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FOREWORD TO THE FIRST ENGLISH EDITION

The ideas and methods of set theory and topology penetrate
modern mathematics. It is no wonder then that the elements of
these two mathematical disciplines are now an indispensable
part of basic mathematical training. Concepts such as the union
and intersection of sets, countability, closed set, metric space, and
homeomorphic mapping are now classical notions in the whole
framework of mathematics.

The purpose of the present volume is to give an accessible
presentation of the fundamental concepts of set theory and topo-
logy; special emphasis being placed on presenting the material
from the viewpoint of its applicability to analysis, geometry, and
other branches of mathematics such as probability theory and
algebra. Consequently, results important for set theory and topo-
logy but not having close connections with other branches of
mathematics, are given a minor role or are omitted entirely. Such
topics are, for instance, investigations on foundations, the theory
of alephs, and the theory of curves.

The main body of the book is an introduction to set theory
and topology, intended for the beginner. Sections marked with
an asterisk cover either more complicated topics or points which
are frequently omitted in a first course; this holds also for some
exercises which allow the reader to get acquainted with many
applications and some important results which could not be
included in the text without unduly expanding it. Many new
exercises not contained in the Polish edition have been included
here.

I take great pleasure in thanking Professor J. Jaworowski and
Dr. A. Granas for their cooperation in preparing the Polish edition
and to thank also Professors A. Mostowski and R. Sikorski,
Dr. S. Mréwka, Mr. R. Engelking and Dr. A. Schinzel for nu-
merous comments which helped me to improve the original manu-

11



12 FOREWORD TO THE FIRST ENGLISH EDITION

script. Also, my thanks go to Mr. Leo F. Boroni and to Mr, A.H.
Robinson for preparing the present text for English-speaking
students of mathematics.

KazimmiERZ KURATOWSKY

Warsaw
September 1960



FOREWORD TO THE SECOND ENGLISH
EDITION

Since the first English edition appeared, set theory and point-
set topology have developed to such an extent that the author
found it necessary to modify in many points the previous edition.
This was done partially in the Polish edition (1965) and in the
French edition (1966).

The most essential changes concern the second part of this
book (devoted to topology). However, there are also changes
worth noticing in the first part (on set theory).

The concepts of inverse limit, of lattice, of ideal, of filter, of
a commutative diagram, and of a cartesian product of an arbitrary
number of factors are considered. A slightly deeper insight into
the axioms of set theory was needed; in particular, the notion of
a class (in the sense of Bernays) is mentioned (and later applied,
mainly in connection with the concept of category used in the
Supplement).

In the theory of ordering relations, more emphasis was put on
what was previously called partial ordering. This is now called,
more concisely, ordering, and this change of terminology seems
to be more appropriate to common use.

For the same reason, some notations have been changed. In
particular, the Lebesgue notation E,@(x) has been replaced by
{x: @(x)}; the union of members of a family 4 of sets is denoted
by U 4, and the intersection by () 4.

The changes in the second part of the book are more essential.
In the first edition, this part of the book was chiefly devoted to
the study of metric spaces. In this second edition, the general
topological spaces form its main subject. Consequently, more
than a half of the second part had to be written anew. It contains
new topics which were not considered in the first edition, such as
cartesian products of topological spaces, the Cech-Stone com-
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14 FOREWORD TO THE SECOND ENGLISH EDITION

pactification, quotient-spaces, completely regular spaces, quasi-
components, and a large number of exercises have been added.

In Chapter XX, on simplexes, more material will be found on
simplicial mappings, on the nerve of a cover and related problems.

Finally, the rather short Chapter XXI, on complexes, chains
and homologies, has been replaced by a much more extensive
Supplement on the elements of algebraic topology. This Supple-
ment, written by Professor Engelking, will certainly be a very
valuable complement to my book.

I have received considerable help from the persons mentioned
in the Foreword to the first edition and also from the young ladies
Dr. Kartowicz and Dr. Vuilleumier. To all of them go my heartiest
thanks.

KAZIMIERZ KURATOWSKI

Warsaw
October 1968



INTRODUCTION TO PART I

The concept of a set is one of the most fundamental and most
frequently used mathematical concepts. In every domain of math-
ematics we have to deal with sets such as the set of positive
integers, the set of complex numbers, the set of points of a circle,
the set of continuous functions, the set of integrable functions,
and so forth.

The object of set theory is to investigate the properties of sets
from the most general point of view; generality is an essential
aspect of the theory of sets. In geometry we consider sets whose
elements are points, in arithmetic we consider sets whose elements
are numbers, in the calculus of variations we deal with sets of
functions or curves; on the other hand, in the theory of sets we
are concerned with the general properties of sets independently
of the nature of the elements which comprise these sets. This
will be made clear by several examples which we shall give here
and by a brief overall view of the contents of the first part of this
volume.

In Chapter II we shall consider operations on sets which are
analogous to arithmetic operations: for every pair of sets A and B
we shall form their union A U B, i.e. the set composed of all
elements of the set 4 and all elements of the set B; we shall also
form the intersection A n B of the scts 4 and B, i.e. the set of all
elements common to the sets 4 and B. These operations have,
in a certain sense, an algebraic character, e.g. they have the pro-
perties of commutativity, associativity and distributivity. It is
clear that these properties do not depend on whether these sets
consist of numbers, points or other mathematical objects; they
are general properties of sets and therefore the investigation of
these properties belongs to the realm of set theory.

In Chapter III we consider another operation, called cartesian
multiplication. For two given sets X and Y we denote by XXY
the set of all pairs of elements {x, y) in which the first belongs

17



18 [SET THEORY AND TOPOLOGY

to the set X and the second to the set Y. Thus, e.g. if X and Y
denote the set of real numbers then XX Y is the plane (whence
the name “cartesian” product in honour of the great French
mathematician Descartes (1596-1650), who, treating the plane as
a set of pairs of real numbers, initiated a new branch of mathe-
matics, called analytic geometry). The computational properties
of cartesian multiplication in connection with the operations
on sets mentioned above are given in Chapter III.

The concept of cartesian product allows us to define the concept
of a function (or a mapping) in a completely general way. We shall
concern ourselves with the concept of function in Chapter 1V with
emphasis on set-valued mappings. In the same chapter families
of sets (in particular, Borel families) are considered.
 An especially important role in the theory of sets is played by
the one-to-one functions. These are functions which map the set
X onto the set Y so that to every two distinct elements of the set
X there correspond two distinct elements of the set Y (and then the
inverse function with respect to the given function, which maps
the set Y onto the set X, is also one-to-one). If there exists such
a one-to-one mapping of the set X onto the set Y we say that these
sets are of equal power. The equality of powers is the generalization
of the idea of equal number of elements; the significance of this
generalization depends first of all on the fact that it can be applied
to infinite as well as to finite sets. For example, it is easy to see
that the set of all even numbers has the same power as the set of
all odd numbers; on the other hand, the set of all real numbers
does not have the same power as the set of all natural numbers—a
fact which is not immediately obvious. Hence, we can—in some
sense—classify infinite sets with respect to their power. We can
also, thanks to this, extend the sequence of natural numbers,
introducing numbers which characterize the power of infinite
sets (called the cardinal numbers); in particular, to sets having
the same power as the set of all natural numbers (or the countably
infinite sets) we assign the cardinal number q, to the set of all real
numbers we assign the number ¢ (the power of the continuum).
It turns out that there is an infinite number of infinite cardinal
numbers. However, in the applications of set theory to other
branches of mathematics an essential role is played by only two
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of them: a and ¢. So we also limit ourselves above all to the investi-
gation of these two numbers. This forms the content of Chapters
V and VI.

Chapter VII is devoted to ordered sets such as the set of all
subsets of a given set (ordered by the relation of inclusion). Among
the ordered sets, of particular importance are the linearly ordered
sets such as the set of all natural numbers, the set of all rational
numbers, the set of all real numbers. For each of these sets the
relation x <C y determines the ordering; here the order types of
these three sets differ in an essential manner: in the first of them
there exist elements which are immediately adjacent to one another
(n and n-+1), in the second there are no such elements (so we say,
the ordering is dense), however, there exist gaps (in the Dedekind
sense), but in the set of all real numbers there are no gaps.

An especially important kind of linearly ordered sets are the
well ordered sets, i.e. those in which every non-empty subset has
a least element. An example of a well ordered set is the set of all
natural numbers (but the set of all integers is not well ordered
since this set does not have a least element). Also well ordered—
although of a different order type—is the set consisting of numbers
of the form 1 —1/n and numbers of the form2—1/n,n = 1,2, 3, ...
In Chapter VIII we give the fundamental theorems concerning
well ordering. So, we prove that given two distinct order types
of well ordered sets one is always an extension of the other (in
a sense which we shall make more precise). From this follows
the important corollary that given two different well ordered sets
one has power equal to that of a subset of the other; in the termi-
nology of cardinal numbers this means that for two distinct car-
dinal numbers corresponding to well ordered sets, one is always
smaller than the other. In connection with this theorem, there
arises the fundamental problem: does there exist a relation for
any set which establishes its well ordering? We shall prove that
this is in fact so, if we assume the axiom of choice.

The discussion of set theory given here is based on a system
of axioms. Even though in the introductory part of set theory, e.g.
in the algebra of sets, the concept of set, with which we usually
have to deal in applications to other branches of mathematics
(and hence the concept of a set of numbers, points or curves, and
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so on), does not touch upon logical difficulties, a subsequent
construction of set theory which is not based on a system of axioms
turns out to be impossible; for there exist questions to which the
so-called “naive” intuitive idea of a set does not give a unique
answer. The lack of the necessary foundations of set theory in its
initial period of development led to antinomies, i.e. contradictions,
which arose from the “naive” intuitive idea of set. Only the axio-
matic conczpt of the theory of sets allowed the removal of these
antinomies (cf. Chapter VI, § 2, Remark 2).

In this book we do not analyse more closely the axiomatics
of set theory or the logical foundation of the subject. Although
these subjects form at the present time an important part of math-
ematics and are being actively developed, the discussion of them
lies outside the principal goal of this book, which is: the pre-
sentation of the most important branches of set theory and topo-
logy from the point of view of their applications to other branches
of mathematics. Therefore we limit ourselves to the formulation
of some particularly important problems concerning axiomatics,
such as the indepzndence of the axiom of choice and of the con-
tinuum hypothesis. We mention also the existence of sets of power
N, and of inaccessible numbers, and we call attention to the neces-
sity of introducing new axioms which imply their existence.

In the first part of this book the reader will find a certain amount
of information on mathematical logic. The notation of mathemati-
cal logic is an indispensable tool of set theory and can be applied
with great profit far beyond set theory. In Chapters I and III we
give the main facts from this subject concerning the calculus of
propositions, propositional functions and quantifiers. The notation
of mathematical logic is not deprived of general didactic values;
by examples for concepts such as uniform convergence or uniform
continuity it is possible to observe how much the definition of
these concepts gains in precision and lucidity, when they are
written in the symbolism of mathematical logic.

In the first period of its existence, set theory was practically
exclusively the creation of one scholar, G. Cantor (1845-1918).
In the period preceding the appearance of the works of Cantor,
there were published works containing concepts which are now
included in the theory of sets (by authors such as Dedekind, Du
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Bois-Reymond, Bolzano), but none the less the systematic investi-
gation of the general properties of sets, the establishment of fun-
damental definitions and theorems and the creation on their
foundation of a new mathematical discipline is the work of G. Can-
tor (during the years 1871-1883).
The stimulus to the investigations from which the theory of
sets grew was given by problems of analysis, the establishing of
the foundations of the theory of irrational numbers, the theory
of trigonometric series, etc. However, the further development
of set theory went initially in an abstract direction, little connected
with other branches of mathematics. This fact, together with
a certain strangeness of the methods of set theory which were
entirely different from those applied up to that time, caused many
mathematicians to regard this new branch of mathematics initially
with a certain degree of distrust and reluctance. In the course of
years, however, when set theory showed its usefulness in many
branches of mathematics such as the theory of analytic functions
or theory of measure, and when it became an indispensable basis
for new mathematical disciplines (such as topology, the theory
of functions of a real variable, the foundations of mathematics),
it became an especially important branch and tool of modern
mathematics.
The following list contains books which may be of aid in the
study of set theory (also the books on topology mentioned in
Part II, Introduction, contain the basic notions of set theory):
A. Abian, The Theory of Sets and Transfinite Arithmetic, Phila-
delphia, 1965.

P.S. Alexandrov, Einfiilhrung in die Mengenlehre und die
Theorie der reellen Funktionen, Berlin, 1956.

P. Bernays, Axiomatic Set Theory, N.-Holland Publ. Comp.,
Amsterdam, 1958.

N. Bourbaki, Théorie des Ensembles, Hermann, Paris, 1970.

J. Breuer, Introduction to the Theory of Sets, Prentice-Hall,
Inc., Englewood Cliffs, N. J., 1958.

P.J. Cohen, Set Theory and the Continuum Hypothesis, Benja-
min, New York, 1966.

A. Fraenkel, Abstract Set Theory, N.-Holland Publ. Comp.,
Amsterdam, 1953,
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A. Fraenkel and Y. Bar-Hillel, Foundations of Set
Theory, N.-Holland Publ. Comp., Amsterdam, 1958.

K. Gddel, The Consistency of the Continuum Hypothesis, Prince-
ton, 1940.

P. Halmos, Naive Set Theory, Van Nostrand Comp., Prince-
ton, 1960.

F. Hausdorff, Set Theory, Chelsea, New York, 1957.

D. Hilbert and P. Bernays, Grundlagen der Mathematik,
2 vols., Berlin, 1934-1939.

E. K am ke, Theory of Sets, Dover Publications, New York, 1950,

D. Klaua, Allgemeine Mengenlehre, Berlin, 1964,

A.H. Kruse, Localization and Iteration of Axiomatic Set
Theory, Detroit, 1969.

K. Kuratowski and A. Mostowski, Set Theory,
N.-Holland Publ. Comp. and PWN, Amsterdam-Warsza-
wa, 1968.

A.P. Morse, A Theory of Sets, Academic Press, 1965.

A. Mostowski, Constructible Sets with Applications,
N.-Holland Publ. Comp. and PWN, Amsterdam-Warszawa,
1969.

I.P. Natanson, Theory of Functions of a Real Variable,
Ungar, New York, 1955, Chapters I and II.

J.E. Rubin, Set Theory for the Mathematician, Holden-Day,
1967.

Jirgen Schmidt, Mengenlehre, Mannheim, 1964.

W. Sierpinski, Algébre des ensembles, Monografie Mate-
matyczne, Warszawa—Wroctaw, 1951,

—— Cardinal and Ordinal Numbers, Monografie Matematyczne,
Warszawa-Wroclaw, 1965,

L.E. Sigler, Exercises in Set Theory, Princeton, 1966.

P. Suppes, Axiomatic Set Theory, Van Nostrand Comp.,
Princeton, 1960.

A. Tarski, Cardinal Algebras, Oxford Univ. Press, New York,
1949.



CHAPTER 1

PROPOSITIONAL CALCULUS

We apply the propositional calculus to propositions each of
" which has one of two logical values, 0 and 1 (denoted also by F
and by T), where we assign the value O to a false proposition and
the value 1 to a true proposition (in particular, all the proposi-
tions in mathematics are of this type, i.c. they take values either
0or1).t

§ 1. The disjunction and conjunction of propositions

If o and f are two propositions, then we write “a or §” in the
form of the disjunction o v § (called also the sum) and we write
the proposition “a and B” in the form of the conjunction o p
or a8 (called also the product). ~

Clearly, the proposition « Vv f is true if at least one of the com-
ponents is a true proposition and the proposition « A f is true
if both factors are true propositions. The above can be put in the
form of the following table:

1 Oovo=0, Ovi=l, 1vo=1, 1vl=l,
) 0A0=0, 0Al=0, 1A0=0, 1Al=1.

i

The equivalence sign used in the above formulas occurs between
propositions; namely, the equivalence o = f holds if and only if
o and f have the same logical value.

The disjunction and conjunction of propositions are commu-
tative and associative, i.e.

3 aovVf=pgva, apaf=pAa,
avV@Bvy)=@vhVy, ar@Bary)=(@rf)Ay.

t The propositional calculus in its actual form (called also algebra of
logic) had its beginning in the papers of G. Boole and A. De Morgan around
1850.
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24 SET THEORY AND TOPOLOGY

The distributive law

@ cABVY)=(@APV @Ay
also holds and more generally we have

) @VvAHAGVH=@ANVEANV(@AHV(EAI.

We can verify the above laws—as well as all laws of the propo-
sitional calculus—by substituting the values 0 or 1 for the vari-
ables and then applying formulas (1) and (2).

§ 2. Negation

Next we introduce the operation of negation of a proposition
o which we shall denote by o’ (or by ~ a or ~|a). The negation
of a true proposition is a false proposition and, conversely, the
negation of a false proposition is a true proposition. We therefore
have the following table:

©) i'=0, 0=1.
From this we obtain the so-called law of double negation,
) o = a.
Two fundamental theorems of Aristotelian logic (which follow
easily from formulas (1), (2) and (6)) hold:
®) avae =1, apa’ =0;

they are the law of the excluded middle (principium tertii exclusi)
and the law of contradiction (these are formulated in classical
logic in the following manner: from two contradictory proposi-
tions, one is true; no proposition can be true simultaneously with
its negation).

Further, the important De Morgan laws hold:

) (xv p) = (" AB),
(10) (@Ap) =('Vp).

The first of these laws asserts that, if it is not true that one
of the propositions o and f is true, then both of these propositions
are false (and conversely); i.e. the negation of the first as well
as the negation of the second are true propositions.



I. PROPOSITIONAL CALCULUS 25

Similarly, if it is not true that both propositions o and § are
true, then this means that the negation of one of them is a true
proposition, and conversely. '

Taking the negation of both members of identity (10) we
obtain, by virtue of formula (7), the identity

(11) anB=(VpY.

From this it is clear that conjunction can be defined with
the aid of disjunction and negation (and, in a similar manner,
one could define disjunction with the aid of conjunction and
negation). This allows the reduction of the number of fundamental
operations to two; however, from the computational-technical

viewpoint it is more convenient to make use of three operations:
disjunction, conjunction and negation.

§ 3. Implication
We write « = f if the proposition ' v § is true, i.e.
(12) (a=p)=(@'Vp;
o = f is read: the proposition o implies the proposition f, or:
if « then f.
Tables (1) and (6) yield the following table:

(13) 0=0)=1, O=1)=1, 1=20=0, (I=>1)=1
We also deduce from this that
(14) ifo=fBandf = o theno = .

Clearly, implication has properties analogous to deduction,
However, the current meaning of the expression “deduction” is
different from the expression “implication”. To say that a proposi-
tion f is deducible from a proposition « (e.g. from a given
theorem) usually means the possibility of proving proposition
f on the basis of proposition «; but the implication « = f always
holds, provided that the proposition § is true (even if the proposi-
tion « were false).

Let us note further two laws: the syllogism law (or the law of
transitivity of implication) and the law of contraposition (on
which the proof by “reductio ad absurdum™, or the indirect method
of proof, depends):
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(15) ifoa= Bandf =y thena = y;
(16) if ' = o thenu = .
Exercises

1. Prove that if « is a true proposition, then § =« is also a true proposition.
Hint: In this and the following exercises apply the “zero-unit” tables

1), (2), (6), (13).

. If &’ => B for each f, then « is a true proposition. Law of Clausius.
. If o is a false proposition, then « => . Law of Duns Scotus.

. Prove that e Af=>a=>aVp.

. Ifa=>pfand y= 0, then apAy = FAdand aVy= V.

. Ifa=p4, then aAf =a and aVf = 8.

7. Prove that aV(@AB) = o= aA (V). Law of absorption.
More generally: aV (BAY) = (VA (xV ).

8. Let (a=p) =[xAB)V (@ AP Prove that (aV ) = [(x+B) +(x A B
We call a8 the symmetric difference of the propositions o« and f; what is
its logical meaning?

9. Prove the laws of tautology: aVo = a, ap o = o.

10. Prove that aVl=1,aV0=a,apAl = o, a A0 =0,

A UMb wWwN



CHAPTER 11

ALGEBRA OF SETS. FINITE OPERATIONS

§ 1. Operations on sets

The union of two sets A and B is understood to be the set
whose elements are all the elements of the set 4 and all the
elements of the set B and which does not contain any other
elements. We denote the union of the sets 4 and B by the symbol
A UB.

The intersection of two sets 4 and B is understood to be the
common part of these sets, i.e. the set containing those and
only those elements which belong simultaneously to 4 and to B.
We denote the intersection of the sets 4 and B by the symbol
An B

Finally, the difference of two sets A and B, i.e. the set A—B,
is the set consisting of those and only those elements which
belong to 4 but which do not belong to B (instead of A—B the
symbols AN\B and 4 ~ B are also used).

The following examples illustrate the operations on sets: the
union of the set of rational numbers and the set of irrational
numbers is the set of all real numbers; the intersection of the
set of numbers which are divisible by 2 and the set of numbers
divisible by 3 is the set of numbers which are divisible by 6; the
difference of the set of natural numbers and the set of even natural
numbers is the set of odd natural numbers.

Other examples are given in Figs. 1-3,' where the sets 4 and
B are circular disks. From Fig. 2 we see that there exists no point
which belongs to both the sets 4 and B; but despite this fact,
we can consider forming the intersection to be possible in all
cases by adopting the following definition.

t Called Euler circles, which are particular cases of Venn diagrams (John
Venn, 1834-1923, an English logician).

27



28 SET THEORY AND TOPOLOGY

The null set (or the empty set or the void set) is the set which
contains no elements; we denote it by the symbol @.

Thus, in Fig. 2 we have A nB = and in Fig. 3 we have
B—4 =@.

FiG. 1

A-B

Fi1G. 2 Fic. 3

The equality 4 n B = @ therefore denotes that the sets 4 and
B do not have common elements. We then say that these sets are
disjoint.

The role of the null set in set theory is analogous to the role
of the number 0 in arithmetic; these concepts are necessary in
order that it be possible to carry out all operations with no
exception.

§ 2. Inter-relationship with the propositional calculus

Operations on sets are closely related to operations on proposi-
tions. Let us write x € 4,' to denote that x is an element of
the set 4 (as a rule we shall denote elements with lower-case
letters and sets with upper-case letters).

t The sign e, introduced by G. Peano, is an abbreviation of the Greek
word éo7!{ (to be).
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We assume also that
(x¢ A) = (xe ).

The following equivalences hold for all x:

1) [xe(AuB) = (xed)V (xeB),
) [xe(AnB) =(xeAdA) A(xeB),
3 [xe(A—B)] = (xe A) A (x e B).

By virtue of formulas (1)-(3), we can easily deduce theorems
on the calculus of sets from analogous theorems in propositional
calculus.

In this connection, let us note that

(4) if the equivalence x € A = x € B holds for all x, then A = B

and therefore the proof of the equality 4 = B reduces to showing
that x belongs to A if and only if it belongs to B.

The operations of union and intersection of sets are com-
mutative, i.e.

®) " AUB=BuUA, AnB=BnNnA.
These operations also satisfy the associative law:
Au(BuC)=(Adu B)u C,
An(BnC)=AnB)nC.
The distributive law
(N An(BulC)=(AnBud4nC)

also holds, as can easily be verified.
It follows from this that

8) (AU B)~(Cu D)
=ANC)Uu(BNnC)u(AdnDyu(BnD),
for,' by virtue of formula (7), we have
(AuBNn(CuD)=[4uBNnClul(4d vB)nD]
=ANCOuUBnCYyu(AnDyu (BnD).

Therefore, in general, as in arithmetic, in order to expand the
intersection of two unions one must take the intersection of
each term of the first union with each term of the second union

(6)
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and then form the union of the intersections obtained in this
manner.

The analogy between arithmetic and the theory of sets is not,
however, complete. For example, the following identities (compare
the laws of tautology stated in Chapter I, Exercise 9) hold in set
theory:

) AuAd=A,
(10) , AnAd=A4,

which point out that, in contrast to arithmetic, neither multiples
nor exponents arise in set theory.

§ 3. Inclusion

We shall now introduce the important relation of inclusion
between sets. We shall say that the set 4 is a subset of the set
B (or also that the set A is contained in B) if every element of
the set A is an element of the set B. We then write 4 < B (or
B 5 4).

We therefore have the following equivalence:
(11) (4 <= B) = [the implication (x € A) = (x € B) holds for all x].

In particular, it follows from this that

(12) Ac A,

i.e. that every set is a subset of itself. Because of this inclusion,
we also use the term proper subset for subsets of a given set which
are different from the given set.

Obviously

(13) if A= Band B< A, then A= B,

for the sets 4 and B consist of the same elements in this case.
Hence, in order to prove that A = B it suffices to prove that
A < B and B c A; in other words, instead of the equivalence

(xeA)=(xeB)
we prove the two implications
xeA=xeB and xeB=>xeAd
(cf. Chapter 1, (15)). |
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It can easily be proved that

(14) if Ac Band B< C, then A = C,
(15 AnB)cAc(AuB), A—BcAd,
(16) if A= B and C = D, then (Au C) = (Bu D)
and (AnC) c (Bn D).
The following equivalences hold:
(17 (AcB)=(AduB=B)=(AnB=A4).

For, let A = B. Combining this inclusion with the inclusion
B < B (cf. (12)), we obtain, by virtue of (16) and (9),

(AU B) « (Bu B) = B,

but since (cf. (15)) B = (Au B), we have AU B= B (cf. (13)).

Conversely, it follows from the relation 4u B= B that
A < B (by virtue of (15)); hence these relations are equivalent.

Similarly, combining the inclusion 4 = B with the inclusion
A c A we obtain 4 = (4N B), whence 4 = A n B, because
AN B c A by virtue of (15).

Conversely, from the relation 4 1 B = A we obtain the relation
A < B because (4 nB)  B.

From this we deduce the following formula which is important
in applications:

18) (AuB)n(AuC)=Au (Bn ).
In fact, by virtue of (8) and (10) we have
AUuBA(ALVO)=UnADUVBNAADHAUVANCIUBNC)
=AU (BnAUVAnCu(BnC),

and (BnA) = A by (15), and hence by (17) Au(BnA)=A4
and similarly AU (4 n C) = 4. Formula (18) follows.

Let us note further the following formulas, the proofs of which
do not present any difficulties:

(19) AnB=A—(A—B),
(20 AU (B—A4) = Au B,
(21 A—(4nB)= A—B,

(22) An(B—C)= (4nB)—-C.
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§ 4. Space. Complement of a set

In the applications of the theory of sets, we assume, as a rule,
that all the sets under consideration are subsets of some fixed
set, called the space. For example, in analysis, the set of real
numbers or the set of complex numbers forms a space, and in
geometry we have to deal with the Euclidean space.

Under this assumption, the theorems of the algebra of sets
assume a still simpler form which is closer to the calculus of
propositional functions.

Hence, let 1 denote a given space (this notation is expedient
from the calculational point of view). We therefore have 4 = 1
for each of the sets A considered. We denote by A€ (or by ~ A4
or CA) the set of elements of the space which do not belong to A,
i.e.

A =1—A.

A° is called the complement of the set A (with respect to the
given space 1). We therefore have
23) xeA°=(xed) =x¢Ad.

Formulas (6)-(8) (Chapter I, § 2) yield immediately the (almost
obvious) formulas:

24 I°'=0, @ =1,

25) A= 4,

(26) AV A =1, And =0.
Formulas (3), (23) and (2) imply the formula

@n A—B = An B,

which allows us to define subtraction in terms of intersection
and complementation.
In fact,

(xe A—B)= (x € A)(x € B)
= (xe A)(x € BY) = (xe 4 n B).
Formula (16) (Chapter I, § 3) implies that:
(28) if B° « A, then A < B.
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Finally, formulas (9) and (10) (Chapter I, § 2) yield the De
Morgan laws for sets:

29) (Au B)* = A° N B°,
(30) (A N B)f = AL B°.
For, we have
xe(AuBFf=[xe(AuB)] =[(xed)V (xeBY
= (xe A°) A (x € B®) = x € (4° N BY).

The proof of formula (30) is analogous.
The obvious formula

€])) Anl=4
yields by (26), that
32) A=(AnB)u (4n B,

inasmuch as
A=Anl=AnBuUB)=(A4nB) u(4nB)

Formula (17) can be supplemented by the following equivalence
which is frequently applied in practice:

(33) (4 < B) = (4 n B° = ©).

For, forming the intersection of both sides of the inclusion
A < B with B° we obtain (4 nB°) = (BnB) =@ (by virtue
of (26)). But from formula (32) we deduce, assuming the equality
AnB° =@, that 4 = 4 n B, whence, by (17) it follows that
A cB.

§ 5. The axiomatics of the algebra of sets

In the considerations up to this point we used only some
properties of sets. The properties can be taken as a system of
axioms, from which all the theorems of set theory, given above,
follow.

We take, namely, as primitive concepts the concept of element
of set and the relation of an element belonging to a set, i.e. the
relation’ x € 4. We assume the following four axioms.

I. UNIQUENESS AXIOM (called also Axiom of extensionality). If
the sets A and B have the same elements then A and B are identical.
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IL. UNION AXIOM. For arbitrary sets A and B there exists a set
whose elements are all the elements of the set A and all the elements
of the set B, and which does not contain any other element.

II1. DIFFERENCE AXIOM. For arbitrary sets A and B there exists
a set whose elements are those and only those elements of the set
A which are not elements of the set B.

IV. EXISTENCE AXIOM. There exists at least one set.

It is not necessary to assume an axiom on the existence of an
interscction because, as we saw (formula (19)), the intersection
can be defined in terms of the difference. Likewise, the existence
of the void set is a consequence of our system of axioms, for we
can define the void set by means of the formula O = A4 —4,
where A4 is an arbitrary set (the existence of at least one set is
guaranteed by axiom IV).

An important consequence of axiom I is the uniqueness of
the operations, i.e. for given sets A and B there exists only one
set satisfying axiom II (which justifies the use of the symbol
Au B to denote this set); the same applies to the intersection
and difference.

As we have already stated, it is possible from the above axioms
to deduce all the theorems of the theory of sets considered till
now, without referring back to the intuitive concept of set.

§ 6. Boolean algebra.! Lattices

Examining the theorems of §§ 2-4, we see that the symbol
€ does not occur in the majority of them (though it does appear
in their proofs). This suggests stating a system of axioms which
will enable us to prove those theorems without referring to the
relation €.

We take as primitive concepts the set & and the operations
v, N, —, and we assume the following axioms:

(1°) AUB=BU 4,
2°) AnB=BnA,
39 Auv (BuC)=(4Au B)u C,

t For more details on Boolean algebra, see R. Sikorski, Boolean Algebras,
2nd edition, Berlin, 1964, and R. Halmos, Lectures on Boolean Algebras,
Princeton, 1963.
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@) An(BNnC)=(AnB)nC,
(5°) AU D=4,

(6°) Avu(AnB)=A4,

(7°) An(4U B) =4,

(8°) AnBuC)=(AnBudn0)),
9°) (4—B)u B= AU B,

(10°) (A—B)nB=0. -

From these axioms we are able to deduce all the theorems
of the algebra of sets in which the relation € does not appear.
Also, if we desire to restrict the domain of the variables to subsets
of a fixed set 1, we assume, in addition, the axiom
(11°) Anl=A.

We add that we define inclusion with the aid of the formula
(cf. (17)):

(4 < B)=(4U B = B).

The theory based on the above axioms is called Boolean algebra.
The applications of Boolean algebra extend far beyond the theory
of sets; we need not interpret the variables A4, B, ... as sets.
Interpreting them, e.g. as propositions, we obtain the proposi-
tional calculus.

This explains the duality between the propositional calculus
and the algebra of sets: to the disjunction (or sum) v of propo-
sitions corresponds the union U of sets, to the conjuction
(product) A of propositions—the intersection n of sets, to the
negation a of a proposition a—the complement 4° of a set A4, etc.
(see aiso Chapter 1V, § 3).

Other interpretations of Boolean algebra in recent times permit
us to apply it in various branches of mathematics, and even
outside mathematics (for example, in the theory of electrical
networks).

Remark. If we omit axioms (8°)-(10°), we obtain the
notion of lattice (with 0 and 1)." Of course, every Boolean algebra

t For a detailed study of lattices, see G. Birkhoff, Lattice Theory, New
York, 1961.
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(with 1) is a lattice. However, the converse is not true. There
are important examples of distributive lattices which are not
Boolean algebras; such is the family of closed subsets of a topologi-
cal space which is a lattice (since the union and intersection of
two closed sets is closed) but is not a Boolean algebra (since the
difference of two closed sets does not need to be closed, see Chapter
X, § 4).

§ 7. Ideals and filters

A non-empty family® R of subsets of 1 is called ideal if the two
following conditions are fulfilled:

(A4eR)B c A) = BeR,
(A4eR)(BeR) = (4u B)eR.
A non-empty family § is called a filter if

(AeS)Y A4 =B)=>BeS,
(AeS)(BeS)=(4dnB)eS.

It is easy to show that a family of sets is a filter iff the family
of the complements of these sets is an ideal.

Obviously the family of all subsets of a given set E is an ideal
and the family of all sets F such that £ = F < 1 is a filter.

A proper ideal (i.e. an ideal which does not contain 1) is called
maximal if it is not a subset of any other proper ideal. The defini-
tion of a maximal filter (called also ultrafilter) is analogous (we
mean by proper filter a filter which does not contain &).

One shows with the aid of the axiom of choice (see Chapter VIII,
Exercise 12) that each proper ideal (filter) is contained in a maximal
ideal (filter).

Exercises

1. Prove the following formulas:
@ AVv({AnB)=A=A4n (4VB),
® (4 VB)—C=(4-C) v (B-0),
© A—B-CO)=A-B)vdn O,
(d) A—(Byu €)= (4-B)—C.

t By family we mean a set of sets. We write then R instead of R.
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2. The set
A=-B=(4A—B) U (B—A)

is called the symmetric difference of the sets 4 and B.
Prove the following formulas:

() A= (B=C) = (4+B)=C (associativity),
(b) AN (B=C)= A B-An C (distributivity),
© AUB=A~B~An B,

« A—B=A=AN B,

(e) define ~ by means of (i) -, v, (i) —, =,
() (A=-B=C)=(B=A-=C),

(@ (A, V... VA)=(By VY ... UB) < (4;=B))V ... V(4,~By,),
(AN . NA)~(ByN ... OB < (A; =B U ... U(4y~By)
(Hausdorff).
3. LetA =A,~A,—~ ... ~A,.Prove that 4 is the set of elements belonging

to an odd number of sets Ay, ..., A,. (Thus the set A4 is not affected by changing
order in which operations are performed.)

4. We define division by means of the formula 4:B = AB¢. Compute
A:(BAC), A:(BYUC), AnN(B:4).

5. Let A, Az, ..., Ay be fixed subsets of the space 1. Let us assume that
Al = 1—4;, A} = A;. Every intersection of the form

Ai'NA2*0 ... NAy’, where ij=0orl,

i s called a constituant of the space (with respect to the sets A;, Az, ..., 4Ap).

Prove that the constituants are disjoint and that their union is equal to
1 (therefore the decomposition into constituants effects a classification of the
elements of the space with respect to their belonging to sets 4;, 4,, ..., Ay).

6. Represent the set A—(B—C) as the union of constituants of the space
with respect to the sets 4, B and C.

7. The sets A, ..., A, are called independentt if all the constituants are
non-empty. Prove that in this case the number of constituants is 2",

8. Let #" denote the n-dimensional cube composed of points (x;, ..., xp)
such that 0 < x; < 1 for i =1,2,...,n Denote by I, the set of points
(x1, ..., xn) where 1/2 < x,, < 1. Show that the sets I, ..., I, are independent.
What is the geometrical interpretation for # = 3?7

9. We say that the operations x+y and x- y form a (commutative) ring
if they satisfy the following conditions:

0] x+y =y+tx,
(ii) x+(y+z) = (x+y)+z,
t The notion of independent sets has important applications in proba-

bility theory. See E. Marczewski, Indépendence d’ensembles et prolongement
de mesure, Coll. Math. 1 (1948), pp. 122-132.
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(iii) there exists an element O such that x40 = x,
(iv) for every pair x, y there exists an element z (z = x—y)

such that y+z = x,

) X-y=y-x,
(vi) x-(D=(xy:z
(vif) x:-(tz) = (x N+ 2).

Prove that sets form a ring with respect to the operations 4—~Band 4 N B,
but they do not form a ring with respect to the operations 4 © B and 4 N B.

10. Show that a proper ideal (filter) R is maximal iff
for each X < 1, either Xe R, or (1—X)e R.

11. Let A4 be a family of subsets of the space 1. Consider the family R of
sets of the form

A nX)v...vd,nX,), where A;,..,4,¢eA.

Show that R is an ideal containing 4 (it is the ideal “generated by 4™).
Establish the dual theorem for filters.

12. Show that the family of all linear subsets of " (i.e. of the origin,
straight lines, planes, etc.) passing through the origin is a (non-distributive)
lattice (with 0 and 1) relative to the operations U and N defined as follows:
A N B is the intersection defined in the usval sense and 4 U B is the least
linear set containing 4 and B.



CHAPTER III

PROPOSITIONAL FUNCTIONS.
CARTESIAN PRODUCTS

Let a fixed set 4 be given, which in the sequel we shall consider
to be the space. Let p(x) be an expression which becomes a propo-
sition when one substitutes for x an arbitrary value of x belong-
ing to A. We call this expression a propositional function' (with
the argument bounded by A).

For example, if the space is the set of all real numbers, then the
expression “x > 07 is a propositional function; it becomes a true
proposition if we substitute, say, 1 for x; it becomes a false propo-
sition if we substitute —1 for x.

§ 1. The operation {x: ¢(x)}

The set of all those values of the variable x for which ¢(x)
is a true proposition (or, as we say, the set of x’s which satisfy
the propositional function ¢(x)) is denoted by the symbol

{x: p(x)}.

For example, in the space of real numbers {x: (x > 0)} is
the set of all positive numbers, {x: (x = x)} is the set of all
real numbers, and {x: (x+1 = x)} is the null set.

It follows from the definition of the operation {x: ¢(x)} that
a necessary and sufficient condition, that the element a should
belong to the set {x: @(x)}, is that the proposition ¢(a) be true.
Hence, the following equivalence holds:

1) for every a: [ae {x: p(x)}] = ¢(a).
The following four formulas hold:

2 {x: e(x)V p(x)} = {x: p(x)} v {x: p(x)},

t Following Bertrand Russell the term predicate is also used in the same
sense (see Hilbert and Ackermann, Grundlagen der Mathematik, vol. 1, 1928).

39
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(3) {x: () Ap(0)} = {x: P(0)} ~ {x: p(x)},
€] {x: p(x) A [} = {x: ()} —{x: p(x)},
) {x: [P} = {x: p(x)}".

We obtain the proof of the formula (2) from the formula (1)
above and formula (1) of Chapter II, § 2:
ae{x: (x) vV p(x)} = 9@V y(a)
[ae{x: M}V [ae {x: ()]
ae{x: px)} v {x: p(x)},

whence equality (2) follows (cf. Chapter 11, § 2, (4)).
Formulas (3)-(5) are proved similarly.

il

§ 2. Quantifiers

Let us now consider the following two operations on proposi-
tional functions:

Visp(x) and  /\cp().

We read the formula Vx @(x) as follows: there exists some x
which satisfies the function ¢(x); /\x @(x) denotes that every x
satisfies this function. (The symbols 9,2, and V., /I, , respectively,
are used in the same sense.)

Clearly, the above operations transform propositional functions
into propositions. The symbols of these operations \/ and /\
are called the existential and the universal quantifiers, respec-
tively.t

For example, in the space of real numbers the proposition
\/x (x > 0) is true but the proposition /\x (x > 0) is false.

The variable x which appears as the free variable in the proposi-
tional function @(x) becomes a bound variable in the proposition

1
\/x p(x) (like x in [ f(x)dx).
0
It may be noted that

Vo) = \/,00).

t The concept of a quantifier was introduced by G. Frege (Begriffsschrift,
1879) and studied by C.S. Peirce (1885).
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Analogous remarks can be made about the universal quantifier.
The operations \/ and /\ may be considered as generalizations
of the operations of disjunction and conjunction. For, if the
domain of variation of x is finite, consisting of the elements a,, a,,
..., Gy, then )
V9 = [p(a) v @)V ...V 9ay)],
N9 = [pla) A p(@) A-.. A @)l

We now set down the following easily proved formulas:
(1) for every xo we have [/\xp(x)] = ¢(x0) = [\/ =9,
®) VoG v V(] = Vlo@ v 9@,
©) [V <90 A9l = \/<0() A /< 9().

Let us note that in formula (9) we cannot replace the implication
sign by the equivalence sign; in other words, implication in the
opposite direction may not hold. For example, both of the proposi-
tions

\/x (x is a positive number) and \/, (x is a negative number)
are true, and hence a true proposition appears in the right member
of formula (9); but on the left side there appears, in this example,
a false proposition (inasmuch as there is no number which is
simultaneously positive and negative).

The duals of formulas (8) and (9) are the following formulas:

(10) A=) A N cp] = N\ lpt) A w0,
(11 [NV N\ cp)] = \lp() v p(x)).

This duality is expressed by the generalized De Morgan formulas
(which appear very frequently in applications):

(12) N\ = /9’ (),
(13) [\Vxe@] = /o' ().

As in the case of finite operations, the De Morgan formulas
permit the definition of the universal quantifier in terms of the

existential quantifier and negation (and the existential quantifier
in terms of the universal quantifier and negation):

149 Nee@ = (\V/io @), Ve = o).

(6)
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Remark. Instead of the symbols Vx and /\\,c we often use

the more complicated symbols \/w(x) and /\w(x) where p(x) is
a given propositional function. We assume that

Voo 8 = V< lp(x) A g,
Mo @) = N\alp() = o()].
§ 3. Ordered pairs

We denote a set consisting of only one element a by the symbol
{a} (let us note that {a} # a). We denote the set consisting of
the two elements @ and b by {a, b}; similarly, {a, b, ¢} denotes
the set consisting of the elements a, b and ¢, and so on.

Obviously the symbols {a, b} and {b, a} denote the same set.
In the sequel we shall need the concept of an ordered pair with
antecedent @ and successor b which we shall denote by the symbol
{a, b). We consider the pair {a, b) as distinct from the pair <b, a)
(unless @ = b); more generally, the pairs <{a, b) and {c,d) are
equal only when @ = ¢ and b = d, i.e. when they have identical
antecedents and identical successors:

(1%) Ka, by ={c,d)] = (@a=c) A (b =d).
An ordered pair can be defined in the following way:
(16) {a, by = {{a}, {a, b}}.

It is easy to verify that condition (15) is satisfied by this defini-
tion.

§ 4. Cartesian product

The cartesian product of the sets X and Y is the set of all ordered
pairs {x, y> where x € X and y € Y. We denote this set by XX Y
and therefore

a7 Kx,y>e(XxXY)]=(xeX)A(yeY).

Cartesian products appear very frequently in mathematics. For
example, the complex number plane is £X¢&, where & is the
set of all real numbers (since a complex number is an ordered pair
made up of two real numbers). A cylinder can be considered as
the cartesian product of the circumference of a circle (base) by
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a closed interval (height); the surface of a torus can be treated
as the cartesian product of two circles.

Let us set down several easily proved formulas concerning the
distributivity of cartesian multiplication with respect to the opera-
tions of the algebra of sets:

(18) XU X))XY=XXYUX,XY,
whence
19 XvX)xXYVT)
= XIX Yl UXIXYZUX2>< Yl UX2>< Y2,
0) X;—X ) )XY=X,xY—X,X7,
21 X; X)X (YL nY3) = (X; X Y) N (XX T)).

If the sets X,,X,,Y, and Y, are nonvoid then
(22) (X1 X Yy) = (XX )] = (X, = X5) (Y, = T)).

All the above formulas can easily be interpreted geometrically,
if we assume that XX Y is the plane with axes X" and Y and that
XicX, X, cX,Y,cY, Y, Y.

Similarly, the following two formulas have a clear geometric
interpretation:

23) AXB = (AXY)n(XXB),
24) (A% B)* = (A°X Y)u (XX B%),

where 4 « X, B < Y, A° and B¢ denote the complements with
respect to X and Y, respectively, and (4% B)¢ denotes the com-
plement with respect to XX Y.

Formula (23) follows from (21), and (24) follows from (23) by
virtue of the De Morgan rules since

(AXY) A (XX B) = (A N X)X (Y " B) = AXB,
(42) (AXY)F = (A°xY) and (XXB)Y = (XX B).

§ 5. Propositional functions of two variables. Relations

Let Z = XX Y. Let ¢(z) be a propositional function of the vari-
able z which ranges over the set Z. Since z = {x, y>, the proposi-
tional function ¢(z) can be considered as a function of two varia-
bles x and y; we write p(x, y) instead of p({x, y>). We also call
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a propositional function of two variables a relation. Denoting
this relation by ¢ we write sometimes xpy instead of ¢(x, y).

Thus a propositional function of two variables ranging over the
space X and Y is the same as a propositional function of one
variable ranging over the cartesian product of these spaces. Con-
sequently instead of {z: @(2)} we also write {{x,y>: ¢(x, )}
or {{x,y>: xgy}. For example {{x, y): (x < y)} is the half-plane
situated above the line x = y, and {{x, y>: (y = x?)} is the para-
bola y = x2,

Quite often in practice we identify the relation ¢ with the set
{{x,y>: xpy}. This set is a subset of XX Y. Conversely, every
set R = XX Y can obviously be considered as a relation; namely

R={{x,y>: ¢(x,y)} where ¢(x,y)=<x,y>€R.

Let us add definitions of various kinds of relations which will
be frequently used later.

Definitions. A relation g is called reflexive if
xpx foreach x;
o is symmetric if
xXQy = yex;
g is transitive if
(xey) ez) = (x02);
o 18 an equivalence relation if ¢ is reflexive, symmetric and tran-
sitive.
Let ¢(x, y) be a given propositional function of two variables.

Hence /\ y¢(x,y)and \/, ¢(x, y) are propositional functions of
one variable, namely of the variable x.
We set down the following easily proved formulas:

(25) Vet 3 =\, Vapx, »),
(26) Asx/\yoGe, 1) = N, N\aplx, v).

In both of these formulas we may alternatively write

Vey@(, ) or \/ 9@, and /\.,0(x,») or /\.9@).

These formulas express the commutativity of the operation
\/ with respect to \/ and similarly of the operation /\ with
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respect to /\ On the other hand, the sequence of the quantifiers
\/ and /\ is significant. The following important formula holds:

27) VAo, )= /N, \x0(x, ).

The left-hand member denotes that there exists an x, such that,
for every value of the variable y, ¢(x,, ») is true; and therefore
to every y we can assign an x (namely, x = Xx,) such that ¢(x, y)
is true; and this is exactly what the right-hand member states.

On the other hand, the implication in the opposite direction
does not hold (compare formula (9)). For example, in the domain
of real numbers it is true that

ANy VO < %),
but it is not true that

Vi /Ay < %).

Another example is: the assumption that the real valued function
fis bounded can be written in the following form:

Vs A < ).

On the other hand, the proposition /\,, \/y(] f(x)] < p) is true
in general (for all real valued functions), for it suffices to set y
=) [+1.

The obvious formula

(28) S\ = \/ 2 (x)

(under the assumption that X # @) can be replaced, for functions
of two variables, with the additional assumption that X = Y, by
the more general formula

29) Nay@0x,p) = N\ep(x, x) = \/2p(x, %) = \/ 2, 0(x, 9).

With this same assumption we can replace formula (9) by the
following formula

(B0)  \VilpG) A pe)l = \/ s, [p(x) A p()]
= Vo) A Vo0 = Vee() A Vap@).
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Analogously, (11) can be replaced by the formula

G Nepx) v Ny
= Ny lp() v )] = /\x[w(x)'v p()].

§ 6. Cartesian products of n sets. Propositional functions of »
variables

The above reasoning can easily be generalized to a larger number
of variables than two. For example, Euclidean three-dimensional
space is the set of ordered triples of real numbers, i.e. §X&XE,
which we write more briefly as £3. More generally, &" denotes
n-dimensional Euclidean space; denoting by .# the closed interval
0 < r <1 we denote the »-dimensional unit cube by ",

Similarly, we may speak about a propositional function of »
variables which run over the same or distinct spaces. The following
examples illustrate the role of the quantifiers and the meaning of
some formulas which are related to them:

ExampLE 1. The continuity of a function f at a given point X, is
expressed by the following condition (in the Cauchy formulation):

(32 AV /\allh] < 8) = (IfGro+-h) —f(x0)] < ©),

where the domain of variation of the variables ¢ and 4 is the set
of positive real numbers.

Therefore the continuity of a function in the interval under
consideration a < x < b is expressed by prefacing formula (32)
with the quantifier /\, and replacing the constant x, by the
variable x. Since we can interchange the order of the quantifiers

,/\,, and /\,, this condition takes on the following form:

(33 NNV \u(hl < 8) = (Ife+R) —f(x)] < €).

If we interchange the order of the quantifiers /\x and \/a, we
obtain a stronger condition, namely the condition for wuniform
continuity. Since, after this interchange, the quantifier \\/5 follows
ﬁ\,, but is still before /\x, it is immediately clear that § depends
on ¢ but that it does not depend on x (which is exactly what “uni-
form” continuity means).



1. PROPOSITIONAL FUNCTIONS 47

ExampLe 2. The condition that the sequence a,,a,, ... be
convergent to the limit b can be written in the form

(34) N\ m/\nltmin—b] < e

Therefore the condition that the sequence of functions f;, f3, ...
be convergent to the limit f is

35) AN/ \e Vi /\# frninG)—f(2)] < &.

By interchanging the order of /\x and /\8 , we obtain an equiva-
lent condition. Let us now interchange /\, and \/m- We then
obtain the stronger condition from which condition (35) follows,
namely

(36) /\a\/m,'/\x/\n’fm+n(x)_f(x)l < e&.

This is the condition for uniform convergence.

ExampLE 3. The rules (12) and (13) of De Morgan lead to the
following rule (which can be extended to n variables):

<) N VAVAVYAR 200 VI AN VR " 2 2

§ 7. On the axiomatics of set theory

The four axioms given in Chapter II, § 5, are not sufficient for
the discussions of Chapter III. Adding three further axioms, we
obtain a system of axioms which expresses all those properties
of the set concept with which we shall deal in this volume, and
which—generally speaking—suffice for the applications of the
theory of sets to other branches of mathematics. These are the
new axioms.

V. For every propositional function @(x) and for every set A there
exists a set consisting of those and only those elements of the set A
which satisfy this propositional function.

As seen in § 1, we denote this set by the symbol

{x: @(x)(x € 4)}, or, more briefly, by {x: ¢(x)},

where the domain of variation of x is restricted to A4.

We had examples of the applications of axiom V in § 3. The
existence of the sets {a}, {a, b}, and so on (where a € A4, b € A)
follows from axiom V, since
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{a} = {x: (x =a)(x € 4)},
{a,b} = {x: [(x =a) VvV (x = D)l(x € 4)}.

On the other hand, the existence of an ordered pair requires
the use of a further axiom.

VI. For every set A there exists a set, denoted by 24, whose ele-
ments are all the subsets of the set A.

VII. AXIOM OF CHOICE. For every family R of non-empty disjoint
sets there exists a set which has one and only one element in common
with each of the sets of the family R.

We have not applied the axiom of choice yet but we shall use
it in the later chapters.

We point out that if we complete the system of axioms I-IV by
means of the axioms V-VII we can at the same time omit some
of the earlier axioms. In particular, axiom III follows from the
rest, for the set

A—B = {x: (x € A)(x € B)'},

exists by virtue of axiom V.

Similarly, we can do without axiom II in the formation of the
union of the sets A and B provided that we assume that both 4
and B are subsets of a fixed “space” C (which is usually the case).
For the existence of the set

AU B={x: [(xe AV (xe B)](xeC)}

follows from axiom V.

Axiom IV is also superfluous in applications; for in its place
appears the axiom which asserts that the space under considera-
tion is a set.

Remark. Besides propositional functions ¢(x) where x
is supposed to be bounded by a given set, we consider sometimes
propositional functions without this restriction on x. We suppose
only—what is sufficient for our aims*—that the free variable
x (as well as bound variables, if they appear in ¢), ranges over
arbitrary sets (and, of course, individuals belonging to a given
set). Then we assume a new axiom asserting the existence of

t For a more general approach, see A. P. Morse, A Theory of Sets.
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K,={x: ¢(x)} called a classt and we add the term class to the
list of primitive terms of set theory.t A class does not need to
be a set (satisfying axioms I-VII); for example, the class of all
sets (compare Chapter VI, § 2, Remark 2).

Similarly, we consider propositional functions of two varia-
bles ¢(x, y), i.e. relations (in the generalized sense), where x,y
are variables ranging over sets.

Exercises

1. Prove that none of the implications in the table below can be inverted.

\/x /\ydj(x’ )= /\y\/x D(x, y)

Ny @, y) == \x D(x, x) == \ /s B(x, x) == \/ 1y D(x, »)

N

2. Prove that

Vo) V A\xv = Vx/\slo V vl = /\y Vilpw V 90,
V@) A Nxv® = \Vx/\slo) A v = /\, Vxle®) A v

3. Prove the following equivalences:

AN\ 9, M = 90} = /\c Vo, ) = (0],
ANAN yorx, = 90} = /\s,ylp(x, ) = p(l.
4, Write down the definition of the uniform convergence of the improper
o0
integral S f(x, y)dy making use of quantifiers.
2 R

5. Show that each formula (8)-(11) is a particular case of the corresponding
formula (25)-(27).

Himt. Put Y = {a, b}, ¢(x,a) = alx) and ¢(x, b) = p(x).

6. Sentences p can be considered as propositional functions, assuming
that

\/y Nx®(x, y) = /\« \/y D(x, y)

(N\sP=p and (\/:p)=p.
Show that

Nxlp Vol =pv N\so), \xlp A 9] =p A V29,

Nxlp= 00 = [p=/\se@], /\elp( =pl = [(/\xox) =Pl

t Following P. Bernays (Axiomatic Set Theory).
t See K. Godel, The Consistency of the Axiom of Choice and of the Gener-
alized Continuum-hypothesis with the Axioms of Set Theory, Princeton, 1940.



CHAPTER 1V

THE MAPPING CONCEPT. INFINITE
OPERATIONS. FAMILIES OF SETS

§ 1. The mapping concept

Definition. Every relation g such that the conditions xpy
and xpy’ imply y' = y is called a mapping (or a function).

Under the above assumption we write y = f(x) instead of
xpy (since y is uniquely determined by x) and denote this mapping
by f. If x ranges over the set X and y belongs to Y, we call X the
domain of f and Y its range, and we say that f'is a mapping of X
into Y. The elements of X are also called the arguments of f and
the elements f(x) its values.

Clearly, the set G = {{x, y>: [y = f(x)]}, called the graph of f,
is a subset of XX Y. Its characteristic property is that for every
x € X there exists one and only one y such that {x,y)> € G. Asin
the case of arbitrary relations, we may identify f and G (when no
confusion can occur).

The set of all mappings f of X into Y is denoted Y%, Instead of
f € YX we write also

XY o xLvy.

Clearly, in the case where X and Y denote sets of real numbers
G denotes the graph of the function f in the usual sense of the
word. An analogous remark applies to a function of two real
variables (or a function of a complex variable).

We do not assume that the values of f fill the entire set Y. But
if this condition is fulfilled, then we say that fis a mapping of the
set X onto the set Y,

If X is the set of natural numbers, then we call f an infinite
sequence. Instead of f(n) we then write f, (or more frequently a,)
and we call the values of f terms of the sequence.

50
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Remark 1. The same notation and terminology can be
applied to the more general case, where X and Y are classes (see
Chapter III, § 7, Remark). Then the graph G of fis a class.

Remark 2. Let4 c X, B < Yand f: X — Y. If f transforms
A onto B, we write f: (X, A) - (Y, B).

Definition 1. Let f: X—> Y and g: Y - Z. The mapping
h defined by the condition
(0) h(x) = g[f(x)]
is called composed and is denoted by h =g o f (or briefly gf).

In other words, if X 7{» ) G Z, then X &:—f» Z.
Obviously

[z = (gN@] = \V/,[y =] [z = gO)].
One can easily show that the composition of mappings is asso-
ciative, i.e.
. f g h
(hog)of=ho(gof) If XHSYSZo>W

(this means that XX is a semi-group relative to the operation g of).

The composition of mappings can be represented by the commu-
tative diagram

-~

X
|
h\\‘ ng

VA
Generally speaking, the diagram

/

xLy
hy e
T-->2Z
k
is said to be commutative if gof = ko h, i.e. if

glf(x)] = k[h(x)] whatever x € X is.

Definition 2. Let f: X Y, fi: X, > Y and X < X|.
If f(x) = f1(x) for each x € X, we call f, an extension of f and f
a restriction of f;. We write then

f<cfi and  f=fi|X.
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§ 2. Set-valued mappings
We shall now consider the case where the values of t!.c mappings
are sets. Thus, let F be a mapping whose domain is a non-empty
set T and whose range is 2%, i.e.
F: T—> 2%, hence F(f)cX.

We shall write F; instead of F(t).

We introduce the following two operations 02 set-valued map-
pings, called generalized union and generalized intersection (which
are analogues of the quantifiers \/, and /\,).

(U F, is the set of all x which belong to at least one of the
sets F,.

(. F, is the set of all x which belong to all the sets F,.
In the notation of logic this means that

1) (xe U.F)=\/(xeF),
¥)) (xe thr) = ,/\t(x eF).

It is to be noted that the existence of the sets |, F, and (), F;
can be deduced from our axioms (see also § 5, Remark).

These operations are indeed generalizations of known opera-
tions of union and intersection of sets (see Chapter II, § 1). For,
if the set T consists of the numbers 1,2, ..., n, then

UtthFIUqu...UF", ntFt=F1 ﬁFzﬁ...r\F,,.

Let us add that if F is an infinite sequence of sets, i.e. if T is
the set of natural numbers, we use the notationl_J,., F, instead
of U.F,, N, F,instead of (), F,.

We now set down several formulas which can easily be proved
((4) is the generalized De Morgan formula):

©)) F, = F, =« U\F,

@ (U E)y =NFr, (NFY = ULF,
(%) if F, = A for every t, then \,F, c A,
(6) if A < F, for every t, then A = (. F,.

As an example, we shall prove formula (5). Hence, let x € \U\F,.
By virtue of (1) there exists a #, such that x € F, ; but by assump-
tion F, < A. Therefore x € A. This means that |, F; < 4.
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Remark. Asin Chapter III (cf. Remark, § 2) we also make
use of the operations Uy, F; and )y, F,, where y(¢) is a given
propositional function. The meaning of these operations is defined

by formulas (1) and (2), replacing \/, by \/.,,(,) and U, by U y1)
and so on.

§ 3. The mapping F; = {y: ¢(x, y)}
Let @(x, y) be a given propositional function of two variables

xeX and ye Y. For fixed xo, {y: @(x0,»)} is some subset of
the space Y. Hence, if we put

(7N Fe = {y: ¢(x,3)},

we define a set-valued mapping F which assigns to every element
x € X a subset of the space Y. Let us apply the operations |,
and (), to this mapping. We obtain the following formulas

which display the duality between these operations and quantifiers
(compare Chapter 11, § 1, (2) and (3)):

®) U=t o, 2} = {r: Vo, 2},
©) Nely: &0} = {2 Newlx, 1)}
In fact, by formulas (1), § 2, and (1), Chapter I11, § 1, we have
yo € Ux{y: o(x, 9} = \Vslvo € {y: 9lx,»)}]
= V<9, ¥0) = yo € {y: \V/.0(x, )}

Formula (9) is proved analogously.

The set {y: \/xq;(x, »)} has the following interesting geometric
interpretation.

Noting the analogy to analytic geometry, we shall say that
the element {x, y) of the cartesian product XX ¥ has the abscissa
x and the ordinate y, and that X is the axis of abscissas and Y is
the axis of ordinates of the space X X Y. Similarly, if 4 < X XY,
then the set of abscissas of the elements of the set A will be called
the X-projection of the set 4 and the set of ordinates will be called
the Y-projection of A. Now:

(10)  the set {y: \/x<p(x, )} is the Y-projection
of the set {{x,y>: o(x,y)}.
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In fact, y, is an element of the Y-projection of the set A
= {{x, y>: @(x, y)} if and only if there exists an x, such that
{Xo, yod € 4, i.e. if p(xo, yo) holds; in other words, if \ / =2(x, Vo),
ie. if yoe{y: Vi.plx,»)}

The universal quantifier does not lead to such a simple geometric
interpretation.

ExAMPLE. By the parametric definition of the circle S with
centre <0, 0> and radius r the point {(x, y> belongs to this circle
if there exists a ¢ such that

(11) x == rcost, y= rsint,
that is
S = {{x,y: \/, x = rcost)(y = rsint)}.

This means that the formulas (11) which give the parametric
definition of the circle .S define this circle as the projection onto
a subset of the plane XX Y (i.e. the XY-projection) of the helix
lying in the three-dimensional space XX YX T and defined (in
an explicit manner) by the same system of equations (11).

§ 4. Images and inverse images determined by a mapping

Let f: X —» Y. Suppose 4 — X. We denote the image of the
set A with respect to f by f(A), i.e. f(A) is the set of values which
f assumes when x ranges over the set 4; in other words,

(12) [y e fld)] = \/ «(x € 4) (y = f(%)),

1.€.

[ = {y: Vilxed)(y=fx)}

Thus f(A) is the projection of the set f|4 into the Y-axis.
The inverse image of the set B contained in Y is the set f~*(B)
consisting of all x such that f(x) € B; thus

(13) xef7B) = [f(x) eBl, ie [7(B)={x: fx)eB}.

(In order to avoid misunderstanding we assume that 4 ¢ X
and B¢Y)

For example, for the function given by the equation y = x?,
the set f~*({1}) consists of two numbers: 1 and —1.
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Let us note the following formulas:
(14)  f(4, U 4,) = f(4,) v f(4)
and more generally (U, F) = U, AF),
sy f4, N A4,) < f1(4) nf(4)
and more generally f((\.F) < (. f(F),
(152) f41)—f(4,) = f(4,—4,),
f(Byv B,) =f1(B)ufB,),

(16)
UG) =U. (G,

an f(By N By) =f"1(By) 0 f(Bo),
FHNG) = MG,

(17a) f7H(By—By) =B —f1(B),

(18) fB=B if BcfX),

(19) A4 < f7H4);

ffi X>Y,g:Y—>Z and h=go f, then

(20) hY(C)=f""(g*(C)) foreach CcZ

We shall prove, say, formula (15). Since ([ );F) < F,, we
have f(().F,) < f(F,) and (15) follows by (6).

§ 5. The operations | R and () R. Covers

Besides the operations |_J, and (1), on mappings we consider
the operations {_J R and ()R on families of sets. Namely assuming
that R is a family of subsets of some fixed set 4, we denote by
(R the union and by ()R the intersection of all sets belonging
to the family R, that is

(21a) xeUR=\/x(xeXeR),

(21b) xe(R = /\x[(X € R) = (x e X)].

We use the same terminology (“union” and “intersection”)
here as in the case where R is a family consisting of a finite number
of sets: R = {4;, ..., 4,}; for

UR=4,v4,u ..U A4,
mR=A1 nAzﬁ...f\A,,.
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It is easy to see that

(JRcXc|JR foreach XeR,
Ug=@, MNB=4, U24=4.

Remark. We have assumed that all members of the family
R are subsets of a fixed set 4. This assumption allows us to deduce
the existence of the set |_JR from axiom V of Chapter III, § 7.
Without this assumption the existence of the set (JR would
require a new axiom (called the generalized Axiom of union).

Definitions. If {JR= A, R is called a cover of A.
If, moreover, the members of R are disjoint, R is called a partition
(or a decomposition) of A.

If R and S are two covers of 4 and to each X € § there exists
Y € R such that X < 7, then S is called a refinement of R.

The notions defined above have important applications in
topology.

§ 6. Additive and multiplicative families of sets
We say that the family R of sets is additive if

(22) (XeR,YeR)= (XuYeR),
multiplicative if

23) XeR,YeR)= (XnYeR),
subtractive if

(24) (XeR,YeR)=> (X—YeR).

An additive and subtractive family of sets is multiplicative
since X Y=X—(X—Y). Clearly, the operations of union,
intersection and subtraction performed on sets belonging to that
family do not take us outside it (we say that this family is closed
relative to these operations).

ExaMpLES. The family of finite subsets of a fixed set A4 satisfies
(22)—(24). Sets which are the unions of a finite number of closed
intervals form an additive family, but they do not form a sub-
tractive family.

THEOREM. For every family Z of subsets of a set A there exists

(1) a smallest additive family R, such that Z < R,,
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(2) a smallest multiplicative family R, such that Z — R,,
(3) a smallest additive and subtractive family of sets R, such
that Z < R,.

Proof. Let us denote by .# the totality of all additive fami-
lies R which satisfy the condition Z < R (consisting of subsets
of the set A). Obviously # # O, for the family of all subsets
of the set A4 is an element of the totality .#. Let

25) R,=(\A.

We shall show that the family R, is additive and that Z < R,.

Let X € R, and let Y € R,. Therefore (cf. 21b)) Xe R and
Y € R for every R € .#. Since the families R belonging to .# are
additive, we therefore have X U Y € R; but since this last formula
holds for every R e .#, hence (cf. 21b)) X U YeR,.

We shall next prove that Z — R,. By assumption we have
Z < R for every R e.#. In other words, if X € Z, then X e R;
and therefore X € R,. This means that X e Z = X e R,, i.e. that
Z c R,

Finally, the family R; is the smallest additive family containing
the family R, being the intersection of all the families with this
property.

In order to define the family R,, we denote by 4" the totality
of all multiplicative families R which satisfy the condition Z = R
and we set

(26) R,= (A"

The proof of the fact that the family R, satisfies condition (2) is
entirely analogous to the preceding proof.
We define the family R, in a similar manner.

Remark. Denoting by Z the family of all the one-element
subsets of the set 4, we obtain as R, the family of all finite subsets
of the set A.

It follows that a necessary and sufficient condition that the
set A4 be finite is that the family of all its non-empty subsets be
identical with R,. This equivalence can serve as the definition
of a finite set (which does not refer to the concept of natural
number).
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§ 7. Borel families of sets

We say that the family R of sets is countably additive or countably
multiplicative if the conditions X,eR for n=1,2, ... imply
that

2 UnriX,eR, or (). X,€R, respectively.

(These concepts play an important role in the theory of proba-
bility.)

We shall encounter a rather large number of examples of
families of this sort in the second part of this book; e.g. the
family of closed subsets of the space of real numbers is countably
multiplicative (a closed set is a set which contains all its accu-
mulation points); the family of its complements is countably
additive. Note that the family of closed sets is not only countably
multiplicative, it is absolutely multiplicative, i.e. the intersection
of an arbitrary family of closed sets is closed (see Part II, Chapter
X, § 5).

A family of sets is said to be a Borel family if it is simultaneously
countably additive and countably multiplicative, i.e. if it is
closed relative to the operations \J,.; and {),_;.

The following theorem, analogous to the theorem of § 6, holds:

THEOREM. To every family Z of subsets of the set A there exists

(1) a smallest countably additive family R, such that Z < R,,
(2) a smallest countably multiplicative family R; such that Z — R;,
(3) a smallest Borel family Ry such that Z — Ry.

In order to prove (1) let us consider the totality U of all countably
additive families R which satisfy the condition Z < R (and con-
sist of subsets of the set 4) and let us set R, = [ \U. In exactly
the same way that we proved the theorem of § 6, we show that
the family R, satisfies condition (1).

The families R; and R, are defined analogously.

Remarks. We also say that the family R, is the Borel
family generated by the family Z. If Z is the family of all closed
intervals then the sets belonging to Ry are called briefly the Borel
subsets of the space of real numbers. It is worth remarking that
all the sets (contained in the space of real numbers) with which
we have to deal in practice are Borel sets (cf. also Chapter XI, § 1).
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§ 8. Generalized cartesian products

Let Ay, A5, ..., 4,, ... be a given infinite sequence of sets.
By the cartesian product of these sets we understand the set of
all infinite sequences of the form

28) ay,as,...,0,,..., where a,€eA, for every n.

We denote this set by the symbol

(29) net An-

The product (29) when 4, =&, i.e. when 4, is the set of
real numbers for all n, is especially important in applications.
We denote this product by the symbol §%; this is the natural
extension of the concept of the n-dimensional Euclidean space
&" to an infinite number of dimensions.

Similarly, if .# denotes the interval 0 < ¢ < 1, then #%, called
the infinite dimensional cube, is the set of all infinite sequences
with terms belonging to the interval .

We obtain further generalizations of the concept of cartesian
product by considering, instead of sequences, sets of arbitrary
set-valued mappings. Thus let F: T — 2%. Then the cartesian
product

(30) [1.F.

is the set of all mappings f* T — X such that f(¢) € F, (where
t e T). Thus we have

(€)9) (fe HtFt) = /\t[f(t) € FJ.

As can be seen, when T is the set of all natural numbers, then
the sets (30) and (29) are identical. It can also be easily shown
that if F, = X for each t € T, then [[,F, = XT.

As in the case of a finite number of factors, we call the values
f(t) of f the coordinates of the point fe [[,F,. Hence f(¢) is the
tth coordinate of f, and the mapping =, defined by the condition

(32) 7 (f) = f(1)
is the projection of [],F, into F.,.
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If X; = X for each ¢ € T, then the mapping 7,: X7 —» X defined
by the formula (32) is called the evaluation of XT at t. The mappings
m, define a mapping #: T — X&) called the evaluation of XT.

Remark. More generally, if @ < XT we call the mapping
e,: @ = X such that

(33) e(f)y=f(t) foreach fe®

the evaluation of @ at t (we write sometimes e(z) instead of e,).
As before, the mappings e, define a mapping e: 7 — X%,
called the evaluation of .
Let g, be the evaluation of X® at fe @. In other words

(34)  g;h) = h(f) for heX®, and hence g;: X® — X.
The following diagram is commutative (where Z = X%):
r-L.x

e

VA
In other words
35 f=gsoe.
Because we have for each ¢ € T (according to (0), (34) and (33))

(870 &)(1) = grle(1)] = gsle) = ef) = A0).

Exercises

1. Prove the following formulas:

@ (WENGY=(Fo( 4G, UFv6y=UFvlG,
(&) (eFe U (G = eslFr U Gy < [ W(Fy v G,

© U 0 6y < ULsF: 0 G =1L F o UG,

) (VMAVUF) =AU F, \UMnF)=4n|,F.

Prove that the inclusion sign cannot be replaced by the identity sign in
formulas (b) and (c).

2. Prove that if
A 2 A2>..o4,>... and B, > B;>..>By> ...
then

m?:l (An u Bn) = m!?:lAn U m:ozl Bn-



IV. THE MAPPING CONCEPT 61

3. Prove that
(U F)x( .G = Ur,s (Fr xGy),
(m:Ft) X (thr) = mt,s(Ft XGg).

4, If F, < Fy for n=1,2, ..., then
Fo=(Fo—F) U (Fi—F) U (F,—F3) U ... U [ 0 Fp.
If Ffp o Fy o F, > ..., then
(Fi—F3) V (Fs—F) V... V[ Vo0 Fy = Fo—[(Fo—F;) Y (F;—F3) U ...].
5. If( Yoe1dy 0 Vi=1B, = and B, = 1, then
ne1 A4, < Uf:lAn N (By_y—By).

6. We define the least upper bound and the greatest lower bound of an
infinite sequence of sets F,, Fz, ..., Fy, ... as follows:

LimsupF, = [ ol Ui0Fui, LiminfF, =|_JiZo( iZo Fu-
Prove the following formulas:

(a) Liminf 4¢ = (Limsup 4,)©,

(b) Liminf(4, n B,) = LiminfA, n LiminfB,,

© Limsup(A4, v B,) = Limsup A4, v Limsup B,,
GY) (=14, < LiminfA4, < Limsupd, < U= 14y,
{e) Liminf 4, U Liminf B, < Liminf(4, V By,),

®) Limsup(4, N B,) < Limsup4, N Limsup B,,
® A=LiminfA, < Limsup(4=A4,),

(h) A=Limsup A, < Limsup(4-=4,).

Show that the inclusion cannot be replaced by identity in the above
formulas.

7. If Limsup F, = LiminfF,, then we say that the sequence Fi, F,, ...
converges to the limit

Lim F, = Limsup F,, = Liminf F,,.
Prove that

@ if F, € F, < ..., then|_Ji~1F, = LimF,,
) if F; > F; > ..., then[ \az1 F, = LimF,.
8. Define the characteristic function f4 of the set A by the conditions

1400 :1 if xeAd,
X) =
4 0 if xede,

and prove the equivalence
(F = LimF,) = (fr(x) = limfF,(x)).



62 SET THEORY AND TOPOLOGY

9, Prove the formulas:

@) fia nfY(B)] =f(4) N B,
(b) if A, < A4,, then f(4,) < f(42),
© if B; < B,, then f™!(B,) < f 1(B,).

10. Let g = f|A (cf. Chapter 1V, § 1). Prove that
gl B)y=A4nfB.
11. Use the axiom of choice to prove that

@ A \Vyo, » = /1 \xo (2, £(0),
(b) Uymx Fey © meny,y’

(¢) if the conditions x # x; and y # y, imply that
Fey N Fxyy, =0,
then
Uymex,y = mx Uny,y~

12. If R is a family of sets, we denote by Re the family of all sets of the
form Z = X—Y, where X, Ye R. Prove that Rp = Roo, and show by an
example that the inverse inclusion can be false.

13. Prove that

R, VRy) = UR, VIUR,, UR: AR = UR nUR:.
Prove that if the elements of R, U R, are disjoint sets, then

U(Rx N R;) = UR1 N URz-

14. Prove that ,

le N mkz < m(Rl N R3).

15. Prove that

2AnB — 2A A 23, zntAt m 2At

16. The mapping f: X — Y induces the mapping d: ZY — ZX defined as

follows:
dlg) =gpof Tor ¢@eZ¥.

Let h: Z@% 5 72 e mduced by d. Show that if e is the evaluation
of ZX and g the evaluation of ZY, the following diagram is commutative (where
U=2Z@% ang v = z@¥y,

S
X--

1

i)
U

Y

iz

-V
h

17. Let f: X — V and g: Y — W. We call the mapping # = (fxg): (XX
XY)— (VX W), such that

h(x, y) = <{f(x), g(xp>,
the product-mapping.
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Show that, if M < ¥V and N < W, then
U (MXN)=f-"(M)xg-'(N).
More generally, if f;: X; =V, for te T, we put
h=1ILf: II.x, I, v,,
where [v = h(2)] = /\Jo() = £i(z())] and zell,x,.
Show that, if M, < V;, then
w T = 1157 (M),
and if 4, < X;, then
h(IT &) = 11f,(4p).

18. Let f: X—V and g: X > W. We call the mapping h = {f,g>:
X — VX W such that

h(x) = {f(x), g(x)>

the complex-mapping.
Show that, if M < ¥V and N = W, then

B (MXN) =f~'(M) N g~ (N).

More generally,if f;: X — Y, forre T, let h: X1, Y,wheren, o h = f;.
Show that, if B; < Y;, then

WU B) = (Mf7 (B,
and if 4 < X, then
k) < 11, f,(4).
19. Let X be a given set and ¢ an equivalence relation defined on X. Thus
(36) xex, (xey)=>(yex), (xey)(yez)=> (xe2).
Given an element xg of X, the set
37 P(xg) = {x: xo0x}

is called an equivalence set; the family of equivalence sets is called the quotient
X/p. Show that the elements of X/p are disjoint and that X is their union.

20. Establish the inverse theorem: if R is a partition of X in non-empty
(disjoint) sets, then there is an equivalence relation ¢ such that

(38 R = X/o.

21. Let X; (j=1,2) be two sets, ¢; two equivalence relations (defined
on X;) and P;: X; —~ Xj/p; two mappings defined by the formula (37) (called
projections). Let f: X; — X, and suppose that

(39 x'01x”" = f(x") 02 f(x").
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Show that there is a mapping F: X, /g, — X2/p, such that the following
diagram is commutative

f
X, — X,
Pli ll’z
Xl/@l‘;'le@z

Moreover if f is onto, so is F.

22. As in Exercise 16, let

(40) de(h) =hef for fiX—>Yand h: Y—Z.
Show that
41) dgof=dred, f fiX—>Yandg: Y —>T.

23. Let f;: X; —Y; and g;: Y;— Z; for j =0, 1. Then the following
distributivity holds (for the definition of a product mapping, see Exercise 17):

42) (go%Xg)° (foXf1) = (go°fo) X (g1°f1).
More generally, if f;: X, = Y, and g,: Y; — Z, for te T, then

(43) (Ilg)o(IIf) = II(g,> f) (Bourbaki).
! t



CHAPTER V

THE CONCEPT OF THE POWER OF A SET.
COUNTABLE SETS

§ 1. One-to-one mappings

The mapping f: X — Y is said to be one-to-one (more concisely:
1-1) if

0] (xy # x2) = [f(x1) # f(x2)]
or, equivalently, if
#)) [fx1) = f(x2)] = (x4 = x2).

For example, the function x3 is one-to-one (in the domain of
reals) but the function x? is not.

If the mapping f is onto, then f is one-to-one if it forms a set
of pairs {x, y) such that every element x € X is the predecessor
and every y € Y is the successor of one and only one of these
pairs.

Still another way of stating this is: f is one-to-one if for every
y € f(X) the set f~*(p) reduces to one element x (such that y =f(x)).
In this case we usually use the symbol f~!(y) to denote x (and
not the set {x}) and we call f~1 the inverse mapping of f; Y is its
domain and X is its range.

Obviously

3 by =51 = [x =)

THEOREM 1. The inverse of a one-to-one mapping is one-to-one.
For

O] =/

Geometrically, the transition to the inverse function can be
interpreted (in the case where X and Y each denote the set of
real numbers) as the reflection of the graph of the function with
respect to the line y = x.

65
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THEOREM 2. The composition of two one-to-one mappings is
a one-to-one mapping.

In other words, if f is a one-to-one mapping of the set X onto
the set Y and g is a one-to-one mapping of the set ¥ onto the set Z,
then the mapping h = g o fis a one-to-one mapping of X onto Z.

For, if h(x,) = h(x,), then g(f(x,)) = g(f(x,)), whence f(x,)
= f(x,), and consequently x; = x,.

Under the assumption that f is one-to-one, formulas (15)
and (19) (Chapter 1V, § 4) may be strengthened: they can be
replaced by the formulas

(5) fd1ndy) =f(4)) n(4y)
and more generally f((: F, = (). A(F),
©) A4 = ff(A).

If .f is one-to-one, we have besides the equivalence (13) of
Chapter IV, § 4, the symmetric equivalence

) [x € 4] = [f(x) e f(4)].

First, we shall establish formula (7). If f(x) e f(A), there exists
x, € A such that f(x) = f(x,;), which implies by (2) that x, = x
and hence x € 4.

Conversely, x € A implies that f(x) € f(4).

Formulas (5) and (6) can be established as follows (referring
to formulas (2) and (13) of Chapter IV and to the equivalence (7)):

fix) e ﬂrf(A:) = /\rf(x) efl4) = /\t x € 4,
=xel ), 4 =f(x) Ef(ﬂt A4,),
xef'f(4) = f(x)efld) = x e A.

Remark. Asinthe Remark of Chapter IV, §8, let & = X7,
lete: T — X® be the evaluation of @, and g;: X? — X the evalu-
ation of X?® at f. Let e be one-to-one. Then by formula (35) of
Chapter 1V, we have

foel cgp ik fle'(W) =gih) for hee(T).
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§ 2. Power of a set

Definition. Two sets X and Y are said to be equipollent,

or to have the same power, symbolically
X~7,
if there exists a one-to-one mapping of X onto Y.

If the set X is finite: X = (a4, ..., @,), then the set Y has the
same power as X if and only if it has the same number n of ele-
ments. The concept of equipollent sets therefore coincides, in
the case of finite sets, with the elementary concept of having
the same number of elements; this concept can however be applied
also to infinite sets.

For example, the set of all odd natural numbers has the same
power as the set of all even natural numbers; in fact, the function
f(n) = n-+1 establishes a one-to-one mapping of the set (1, 3, 5, ...)
onto the set (2, 4, 6,...).

Similarly, the set of all natural numbers is of the same power
as the set of all even numbers (which shows that an infinite set
can have the same power as a proper subset of itself!). Here the
corresponding function is f(n) = 2n.

Two intervals a < x < b and ¢ < x < d are of equal power,
as is easily shown using a linear mapping. The open interval
—7n/2 < x < +m/2 has the same power as the set of all real
numbers; the corresponding mapping is y = tan x.

Next, we shall show that the set of all natural numbers does
not have the same power as the set of all real numbers; it will
follow from this that, in the domain of infinite sets, there exist
sets of different powers, and—as we shall show—there even
exists an infinite number of infinite sets of which no two have
the same power.

THEOREM 3. The relation X ~ Y is an equivalence relation,
ie.

® X~ X,
o X~Y)= (Y ~X),
10) X ~NY~2)= (X~ 2).

Proof. Formula (8) follows from the fact that the identity,
i.e. the function f(x) = x, is a one-to-one mapping of the set
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X onto itself. Formulas (9) and (10) follow from Theorems 1 and 2,
respectively.

Theorem 3 permits the classification of sets with respect to
their “power”. This leads to the extension to infinite sets of the
elementary concept of the number of elements in a set. Namely,
to each set X we assign a cardinal number, or its power, which
we denote by the symbol X, in such a way that the same cardinal
number is assigned to two distinct sets if and only if these sets
have the same power.

The cardinal number of a finite set is the number of its elements.

Remark. Cardinal numbers play an auxiliary role in the
theory of sets, inasmuch as all the theorems of set theory can be
formulated without using them. However, many theorems gain
in lucidity when expressed in terms of cardinal numbers.

From the axiomatic point of view the introduction of cardinal
numbers requires a new axiom, namely the axiom of their existence.

One can also—using the term “class”—define X to be the class
of all sets equipollent to X (cf. Chapter 111, § 7).

§ 3. Countable sets

A set A is said to be infinitely countable if it has the same power
as the set of all natural numbers; in other words, if its elements
can be arranged in an infinite sequence of distinct terms.

Finite sets are called countable sets as well.

Hence a nonvoid set is countable if its elements can be arranged
in an infinite sequence (which may have repetitions). For, if the
infinite sequence contains an infinite number of distinct terms,
then there exists a subsequence which contains each of these
terms precisely once.

As we saw above, the set of even natural numbers (and similarly
the set of odd natural numbers) is countable.

THEOREM 1. The set of all real numbers is noncountable.

To prove this theorem it obviously suffices to show that for
every sequence of real numbers a,, a,, ..., a,, ... we can define
a real number ¢ which does not belong to this sequence.

To this end, we define a sequence of closed intervals p,q,,
P29, s Pudn» ... Which are such that

Gn—Dn = 1/3”; Pndn © Pn-19n-1, a, ¢Puqn'
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Thus, in the closed interval (0, 1) we determine a closed interval
P1g, which does not contain the point a, [this will be one of the
three intervals (0, 1/3) or (1/3, 2/3) or (2/3, 1)]. Similarly, in the
interval p,q; we determine a closed interval p,g, of length 1/9
which does not contain the point @,. In general, in the closed
interval p,_,q._; we determine a closed interval p,g, of length
1/3" which does not contain the point a,.

Let ¢ be the common point of all the closed intervals p,g,:

{¢} = Mp-1Puqns ie. ¢ =limp, = limg,.
n—»w n—o
Obviously, ¢ # a, for every n since a, ¢ p,q, whereas c € p,q,.
We shall now list several important properties of countable sets.

THEOREM 2. The union A U B of two countable sets A and B
is countable.

In fact, under the assumption that the elements of the set
A can be written in the form of an infinite sequence a,, a,, ...,
a,, ..., and the elements of the set B in the form of a sequence
by, b, ..., by, ..., we consider the sequence

(11) alsb11a29b2’-H,arubny'--

The terms of this sequence obviously form the set 4 U B.

It follows from this that the set of all integers is countable.
For the set of all positive integers as well as the set of all nonposi-
tive integers is countable.

THEOREM 3. The cartesian product of two (or, more generally,
of a finite number) of countable sets is a countable set.

Proof. We shall prove that the set of pairs {(m, n), where
m and n are natural numbers, is countable. Hence we have to
represent this set as a sequence. To this end, we adopt the following
rule: of two pairs {m, n> and {m’, n’> we consider that one to
be the earlier whose sum of elements is smaller; but if m-+n
= m’'+n’, then the earlier pair is the one with the smaller ante-
cedent. And therefore this sequence can be represented as follows:

(12) 1,1>,<1,2>,¢2, 15,1, 3>,42,25,43, 1), ...

From this we easily deduce, that given two arbitrary infinite
sequences dy, dz, ..., dy, ... and by, b,, ..., b,, ..., we can write



70 SET THEORY AND TOPOLOGY

the sequence of all pairs {a,, b,y in the form of an infinite se-
quence.

The generalization from two to an arbitrary finite number
of countable sets presents no trouble.

If follows from Theorem 3 that the set # of all rational numbers
is countable.

For, every positive rational number can be represented as
a pair of numbers p/q (in the irreducible form), i.e. the set of
positive rational numbers can be represented as a subsequence
of the sequence (12). The set of positive rational numbers is
therefore countable. The same is true of the set of negative rational
numbers together with the number zero. Therefore, according
to Theorem 2, the set of all rational numbers is countable.

From Theorem 3 it also follows that every double sequence
{au,} can be transformed into a simple sequence, i.e. it is possible
to write down the elements of the array

Ay15 Q12 oo Aypy o-

) a22, "'5a2n7 o

(13) e

.................

in the form of the infinite sequence
(14) Q11501258215 d135 -

From this we deduce the following theorem:

THEOREM 4. The union S=A; VA, U.. VA, U..0ofa
countable sequence of countable sets is countable.

Pro of. We write each of the sets 4,, in the form of a sequence
Aty @mzy -ovs Gmns ---, and then we transform the double sequence
{@m,} into the simple sequence (14) (perhaps with repetitions). [Here
we apply the axiom of choice (Chapter III, § 7), for the set of
sequences consisting of the elements of the set A4, contains more
than one element (and none of them in general can be distin-
guished).]

THEOREM 5. The set of all finite sequences with terms belonging
to a given countable set is countable.
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For this set can be represented in the form of a union 4, LU 4, U

. U A, v ..., where 4, is the set of sequences with m elements.
And the countability of the set 4,, follows from Theorem 3.

From this we deduce that the set of all polynomials with rational
coefficients is countable.

For every polynomial is determined by its coefficients, i.e. the
polynomial ap+a;x+ ... +a,x™ is determined by the sequence
consisting of m--1 rational numbers a,, @;, ..., Gp.

COROLLARY. The set of all algebraic numbers is countable.

In fact, the set of all polynomials with rational coefficients is
countable and hence we can write it in the form of an infinite
sequence wy, Wy, ..., W, ... Let 4, denote the set of roots of the
equation w,(x) = 0; this set, as is known, is finite (the number of
its elements does not exceed the degree of the polynomial wp).
By virtue of Theorem 4, the set 4, U 4, U ... U4, U ..., ie.
the set of all algebraic numbers is therefore countable.

Remark. This last result together with Theorem 1 leads to
the result that transcendental (i.e. nonalgebraic) numbers exist,
and even that there is a noncountable number of them (for the
union of two countable sets is countable). Making use of the
methods given here, one could even define a transcendental
number ; namely, to this end we set down all real algebraic numbers
in the form of an infinite sequence and then apply the method
used in the proof of Theorem 1, which determines a real number
not belonging to this sequence.

We recall that the numbers e and = are proved to be transcen-
dental numbers—by entirely different means.

Exercises

1. Consider the transformation of the plane into itself given by the system
of equations

x =autbv, y=cutdv.

Give the conditions on the coefficients a, b, ¢, d under which this trans-
formation is one-to-one.

2. Is the homographic transformation of the Gaussian plane (i.e. the
plane of complex numbers together with the point at infinity)

w = (az+b)/(cz+d)
one-to-one?
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3. Suppose uy, Uz, ..., Uy, ... is & given sequence of real numbers. Let
Up = Cyo " Cp1Cp2Cpy3 +--

be the decimal expansion of the number u, containing an infinite number
of digits different from 9.

We define the number / = 0-e,e,e3 ... in the following way: e, =0
if oy # 0, e, =1 if ¢y = 0. Prove that the number / is not a term of the
sequence iy, i, -.., and deduce from this Theorem 1, § 3.

4. Prove that the set of all intervals (in the set of real numbers) with both
endpoints rational is countable.

5. We say that a function f (with real arguments and values) has a proper
maximum at the point a if there exists an interval bc containing the point
a in its interior such that the conditions b < x < ¢ and x # @ imply the
inequality f(x) < f(a). Prove that the set of proper maxima of the function
f is countable.

Hint: Give the points b and ¢ rational values.

6. Prove that every family of disjoint intervals is countable.

Hint: Make use of the countability of the set of rational numbers.

7. Prove that the set of points of discontinuity of a monotonic function
is countable.

Hint: A monotonic function has at every point a left and right limit
(which are different at points of discontinuity). Then make use of Exercise 6.

8. Prove that the set of spheres (in 3-dimensional space) which have
both rational radii and rational coordinates of the centre is countable.

9. With the notations of Exercise 21 of Chapter IV, show that, if
x'g1x” = flx)ef(x"),
then the mapping F is one-to-one.
10, Establish the following formulas (used in the next chapter):

(@) (AXB) ~ (Bx A,

() {AX(BXC)] ~ [(AxB)x (],

© (4, ~ B)(A; ~ By)=> [(41 X A4;) ~ (By X By)l,
@ (4 ~ B)= (24 ~ 2B),

(e) (Ax{a}) ~ A,

(3] [(Ai~ B)(A; ~ B)(A, N A; =0 =B, 0 B,)]

= [(4, Y 4,) ~ (B, YV By)].



CHAPTER VI

OPERATIONS ON CARDINAL NUMBERS.
THE NUMBERS « AND ¢

We denote the power of the set of natural numbers by a (or ;)
and the power of the set of real numbers (the power of the “con-
tinuum”) by e,

The numbers a and ¢ are the most important of the infinite
cardinal numbers which occur in analysis and geometry. So far,
we know (Chapter V, § 3, Theorem 1) that

1) a#ec.
The operations on arbitrary cardinal numbers which we shall

now define will interest us primarily in relation to the numbers a
and c.

§ 1. Addition and multiplication

The sum m-+n of two cardinal numbers m, n is defined to be
the power of the union of two disjoint sets which have the powers
m and n respectively.

We therefore have

) X+Y=Xu7Y, if XnY=0.

We note that for every pair of sets X and Y there exists a pair
of disjoint sets X; and Y, such that X, 1 = X and 171 = Y. For,
denoting any two distinct elements by a and b, it suffices to set
X, ={a}xX and Y, = {b} X Y.

Keeping this remark in mind, we can assert that for every two
cardinal numbers their sum is defined uniquely (i.e. independently
of the choice of the sets X and Y, compare Exercise 10(f) of Chap-
ter V).

We define the product m- n of m and n to be the power of the
cartesian product of two sets having powers m and n respectively,
i.e.

3 X Y=XxT.
73
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Thus, the product of cardinal numbers is uniquely defined
(comp. Exercise 10(c) of Chapter V).

It can easily be verified that the above definitions, in the case
where m and n denote natural numbers, are in agreement with
the usual definitions of addition and multiplication in arithmetic.
We deduce from Theorems 2 and 3 (Chapter V, § 3) that
“) ata=a, ara=a, atn=a, a-n=aq,

where n is a natural number.

Multiplication and addition satisfy the associative and commu-
tative laws. The distributive law is also satisfied:

3 m-(n+p)=m-nfm-p.

For, let m=)7, n=7Y and P = Z where YA Z = @&. Then
(cf. Chapter III, § 4 (18) and (21)):

IX(YUZ)=XXYUXXZ,
XXY)N XX2Z)=Xx(Yn2Z)=0,

and therefore XX (Y U Z)= XX Y+XXZ, which was to be
proved. :

It follows from this (by induction) that
) m-p=mtmy .. -+m,

where the right member has »n terms.
For formula (6) is obvious for n = 1, and by virtue of (5):

m-(n+D=m-nt+m-1=m-nt+m.

Equation (6) asserts that m- n is the power of the union of n
disjoint sets each of which is of power m. This theorem can be
generalized to the sum of an infinite number of terms as follows.

Let T = n and let F: T — 2X be a set-valued mapping such that
Q) FE=m, FnF.=@Q for t#¢,
then

®) U.F=m-n.
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Proof. Lett, be afixed element of T and let g, be a one-to-one
mapping of F;, onto F, (we apply the axiom of choice here). Let
us set

) flx,t)=g(x), where xeF, and teT.

fis a one-to-one mapping of the cartesian product F, X T onto
the union U, F,. For let

(10) [, ) =fx', 1), Qe &) =g (x).

If t # ¢/, then g,(x) # g.(x'), since g,(x) € F,, g.(x") € F,,, and
F,nF.=0.

Thus ¢ = t'. If x # x', then g,(x) # g.(x'), because g, is one-
to-one.

Therefore, (10) implies that r =t’ and x = x'.

We have thus proved that the sets F; X T and (U, F, have the
same power. This completes the proof of formula (8).

§ 2. Exponentiation

Let X = m and ¥ = n. The cardinal number n™ is defined to
be the power of the set, denoted by Y%, of all mappings f: X — Y,
ie.

Y¥=7%

The following formulas, known from the arithmetic of natural
numbers, are valid:

(11) WD — pm . np,
(12) (mn)? = m?- nd,
(13) (nm)P = nmp,

Proof Let m=JX, n =Y and P = T
In order to prove formula (11), we must prove that

(14) YXT ~ YXX YT provided X n T=@.

Hence, let fe YX-7. Assign to f the pair {f|X, f|T). This
correspondence, as can easily be verified, establishes a one-to-
one correspondence between the elements of the sets ¥Y¥-T and
Y*x YT, Thus formula (14) is proved.
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Formula (12) means that
(15) XxY)T ~ XTx YT

Let fe (XX Y)". Hence f is a complex mapping, i.e. its values
are ordered pairs belonging to XX Y; we can therefore write

(1) =<g(®),h(t)y, where g(t)eX and h(t)eY.

And therefore g € X7 and h e YT. We have thus assigned to f
a pair {g, h), i.e. an element of the set X7 Y7, It is easy to verify
that this correspondence is one-to-one. This yields (15).

In order to prove (13) we have to show that

(16) (YX) ~ YXxT

Hence let f'e YX*T, f assigns to every pair {x,t) the element
f(x, t) of the set Y. For a fixed ¢ we obtain a function g, of the
variable x defined by means of the formula

(17) g(x) = f(x, 1),
i.e. g, € Y%, for every value of the variable . We have thus defined
a mapping—Iet us denote it by g—which assigns to elements of
T elements of YX, ie. ge (YX)T.

To every f belonging to Y**T we have therefore assigned some
g belonging to (YX). It is easy to prove that this correspondence
is one-to-one.

Let us now consider certain particular cascs.

It is almost obvious that

=n
(in this case the domain reduces to a single element).

Let m be a natural number. By (11) we have

Wl = ™.l = nm.q,

And therefore (by induction)
(18) "M=n-n-...-n,
where the right-hand member has m factors.

It also follows that the definition of exponentiation of cardinal

numbers which we assumed coincides with the arithmetic definition
when these numbers are finite (m = m, n = n).
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Let us now assume that n = 2. Hence let X = m,and Y = {0, 1}
(i.e. Y is the set consisting of two numbers: 0 and 1). Hence the
set YX is the set of functions defined on the set X and assuming
only two values 0 and 1 (or only one of them). We call such func-
tions characteristic functions (see Chapter 1V, Exercise 8); namely,
the function satisfying the condition

1 for xed,
(19 f(x)=0 for xeX—A4

is the characteristic function of the set A.

The set {0, 1}* and the set of all subsets of the set X are of equal
power, namely of the power 2", where m = X.

Proof. Assign to the set 4 < X its characteristic function
fa. This correspondence is one-to-one. For let 4 # B and let
a e A—B. Hence we have f,(a) = 1 but fz(a) = 0 and therefore
fa # fg. Here every characteristic function has been assigned to
some subset of the set X.

CANTOR THEOREM. 2™ # m; in other words, no set X has power
equal to that of the family of all its subsets.

Proof. Itsuffices to show that if F: X — 2%, Fis not an onto
mapping, i.e. that there exists a set Z < X which is not a value
of F. (This is the so-called diagonal theorem.) The Cantor theorem
will follow because if the set X were of power equal to that of
the family of all its subsets, then there would exist a (one-to-one)
mapping F: X — 2X onto.

Define the set Z as follows:

(20) Z = {x: x ¢ F(x)}.

We have to show that Z # F(x) for every x € X. Let us assume
on the contrary that Z = F(x,). By virtue of (20) the following
equivalence holds:

(xe2) = [x ¢ F(x)].
Setting x = X, in this equivalence, we obtain
(x0 € Z) = [xo ¢ F(x0)],

and therefore Z # F(x,), which is a contradiction.
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Remarks. 1. The diagonal thcorem can be illustrated geo-
metrically as follows. Let X be the closed interval 0 < x < 1.
We place the set F(x), which by assumption is a subset of this
interval, on the vertical line passing through the point x. In this
way we obtain a planar set M = {{x,y): y € F(x)} contained
in the square XX X. Let P denote the diagonal of this square.
Thus, the set Z is the projection of the set P—A onto the X-axis.

2. The proof of the Cantor theorem given above permits us
to verify easily that the family of all subsets of the set X is not
of the same power as that of any of the subsets of this set.

It follows immediately that there does not exist a set of all sets
(for the family of its subsets would itself be one of its subsets).

This same conclusion follows, after all, immediately from the
theorem on the diagonal. For, if there existed a set X whose ele-
ments were all sets, then the mapping F defined by the condition
F(x) = x (i.e. the identity) would obviously assume as values
all subsets of the set X (since these subsets would be elements
of the set X).

Let us add that from the (false) assumption that there exists
the set of all sets there follows the existence of

Z={x: (x ¢x)}.

However, the existence of the set Z leads immediately to a con-
tradiction (called the Russell antinomy) because x € Z = x ¢ x,
and therefore ZeZ=2Z ¢ Z.

The theorem on the non-existence of the set of all sets was
deduced by us from the axioms given in Chapter III, § 7. The
assumption, that for a given set A4, the propositional function
@(x) (with unbounded domain of variation for x) determines
the set {x: @(x) (x € 4)} plays an essential role in the formulation
of axiom V. Omitting the expression x € A would lead to a con-
tradiction. For, taking as ¢(x) the propositional function “x is
a set”, we should obtain as an immediate consequence the existence
.of the set of all sets which — as we saw — leads to a contradiction.
Thus the class of all sets (which does exist, comp. Chapter III,
§ 7) is not a set.

Let us note that in the period before the axiomatization of set
theory, and hence in the period of “naive” set theory, it was
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common to assume as obvious the existence for every proposi-
tional function g(x) of the set {x: @(x)}. This has led to the con-
tradictions which we mentioned above (which were then called
antinomies of set theory), and which have necessitated revising
the foundations of set theory. The axiomatic theory of sets, which
arose around 1904, eliminated these antinomies.

§ 3. Inequalities for cardinal numbers

Let X = m and Y = n. Let us assume that m <C n if the set X
has the same power as some subset of the set Y. Therefore

XecY=X<Y).

If m< nand m# n, then we write m < n.
By virtue of (1) we have

21 a < c.
We can state the Cantor theorem (§ 2) in the form
(22) - m < 2™,

In fact, m # 2™, and at the same time m <C 2™, since the set X
has the same power as the family of all its one-element subsets.
It is easy to prove the following formulas:

23) if m<n and n<p then m<yp,
(p2)) if m<n then m+p<<ntip,
(25) if m<n then mp<<wnp,

(26) if m<n then mr<ny,

27 if m<n then pwm<pn,

We shall now prove the fundamental Cantor-Bernstein theorem:
(2%) if m<n and n<m then wm=n.

Proof. LetX = m. Since n < m, the set X contains a subset
Y of power . But since m < n, the set X is of power equal to

that of some subset of the set Y; i.e. there exists a one-to-one
mapping f defined on X such that

29 fX)cYcX.
We have to define a one-to-one mapping g of X onto Y.
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Let us set
(30) Z=Y—f(X), S=Zuf@yvffi@dv..

(see Fig. 4 in which X is the largest rectangle, Y is the second in
size, f(X) is the third, and so on; X—S is the shaded part).

777707
e
/ T

b
/?///’//’////////////////////////////%/
0 000000

FiG. 4
We define g as follows:
X for xeS,
@D gx) = {f(x) for xeX-S.
We shall first prove that
32) gX)=7.
Since S < X, ‘
(33) X=S5uXX-S).
And therefore
(34 g(X) =g(S) v g(X—8) =S U flX—S)

by virtue of (31). At the same time (because of (30) and Chapter
Iv, §4, (14):

) =.2) v fZ) v fifZ)v ..,
and hence applying (30):
35) S =Z u f(S).
From this and (34) and (33), we obtain
gX)=S v fIX—8)=Z u fS) v fIX—S8) = Z u fIX),
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but by (30) we have
ZufX)=[Y-AfX)]vu fX)=7Y.

We have thus proved formula (32).

It remains to show that g is one-to-one.

Since (according to (31)) g is one-to-one on each of the sets
S and X—S separately, we ought to prove that

(36) g(s) N g(X—S)= 3.
Now by (31) we have
(37) g8)=S and gX—S8)=f(X—-5)=/fX)—-/(S);

at the same time, f(X) = f(X)—Z because f(X)n Z= I, and
hence

JX)—A(S) = fX)—1Z v f(S)] = fX)—S
because of (35).
Hence, we have S n [f(X)—f(S)] = &, whence formula (36)
follows by virtue of (37).
This completes the proof of the Cantor-Bernstein theorem.

Another form of this theorem, which is frequently used, is the
following:

(3) if A<BcC ad A=C, then A—=B=C.

The following theorem holds for an arbitrary mapping f-
If X is the domain of f, then

(39) X <X.

For, let y € f(X) and let g(») be an arbitrary element of the set
S71(») [we make use of the axiom of choice (Chapter III, § 7)
here]. Since the sets f~'(y) for various y’s are disjoint, g determines
a one-to-one mapping of the set f(X) onto a subset of the set X.
From this follows formula (39).

§ 4. Properties of the number ¢

We have defined the number ¢ as the power of the set & of
all real numbers. Let us note that, as stated in Chapter V, § 2,
every open interval a << x < b is of power c.
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The interval a < x < b (where a < b) is also of power ¢. This
follows immediately from formula (38) since

{xta<x<blc{xra<x<b}cé.
Further, we also deduce from formula (38) that
(40) c=ctn=cta=cte=n-¢
(n being a natural number);

for (cf. 24)) e < ctn<cta<etcand cte< ¢, since e+
is the power of the set

x:0<x<1}u{x 1l <x<2},

which is a subset of &.
The generalization to n terms is obtained immediately by in-
duction.

41) 2% =¢.

For, let 4 denote the set of all infinite sequences consisting
of the numbers 0 and 1. Therefore 4 = 2°. Let B denote the
subset of the set 4 consisting of sequences with an infinite number

of zeros. To the sequence ¢ = (f,,1,,...) belonging to B we
assign the number

)=t 2+86,/4+ ... +t,/2"+ ..., de. f(t) = (0.t:1; ..)2,
and if re A—B we let
SO = 1+t 246,04+ ... +4,/2"+ ..., e, f(t)=(1.1115...),

(in the binary system of calculation).
It is easy to verify that fis one-to-one. At the same tiine

{x:0<x<1} cf(4d) =6,
and therefore 4 = fo)- = ¢ by virtue of (38).
We deduce from this that
(42) = ¢ =¢"

because (cf. (26)) 2° < a® < ¢ = (2% = 299 =2,
Similarly, we have

“43) P=c¢ for n=2.
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Formula o® = ¢ = n® asserts that the set of all infinite sequences
whose terms are natural numbers {or whose terms are 1,2, ..., n)
is of power c.

We shall now deduce from (42) that

44 c=c-a=c-c=c"=¢" (nis a natural number > 1).
In fact
eecraKer e L =0,

Let us note that ¢2 is the power of the plane, and more generally:
¢" is the power of n-dimensional Euclidean space £". Formula
(44) asserts that the set of all infinite sequences whose terms are
real numbers (i.e. the infinite cartesian product §X&X ...) is
also of power c.

The last formula dealing with the numbers a and ¢ is

45 2° =" = "

In fact, ¢ = (2%° = 2% = 2° for ac = ¢ by (44).

Let us set 2° = f. By virtue of (22), 2° > ¢; f is therefore a car-
dinal number greater than a and ¢. Formula (45) asserts that
f is the power of the family of all subsets of the real line (or more
generally—of the family of all subsets of the space &"); it is at
the same time the power of the set of all real valued functions
of a real variable (as well as the power of the set of all func-
tions of a real variable whose values are natural numbers).

Remark. We now give a more direct proof of the formula
¢? = ¢ because of its fundamental importance.

Let A be the square determined by the conditions 0 << x < 1
and 0 <y < 1. Since 4 = ¢?, our problem depends on the
definition of a one-to-one real valued function on the square
A (it will follow from this that ¢ < ¢; the inequality ¢ < ¢?
is obvious).

Let us develop the numbers x and y in essentially infinite decimal
expansions (i.e. containing an infinite number of nonzero digits):

x=0.aq10,..., y=0.bb, ...,
and let
(46) f(x,y)=0.a,b,a,b, ... a b, ...
We must prove that if f(x, y) = f(x,¥), then x = x and y = y.
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Now the development (46) contains an infinite number of
digits which are different from zero; at the same time no number
has two different essentially infinite developments, and therefore
the formula '

fx,y) =0.a1b,ab, ... = 0.3,b,a,b, ... = f(Z, )
implies that

a=a,, b =0b, a=a, by=b,, ..

iLe. x=Xxand y =y.

Exercises

1. Let R be a family of sets each of which has power ¢ and let R=c
Prove that | JR = c.

2. Let 7,, =¢ for n=1,2,... Prove that
A XAz X . =¢.

3. Let T=1 and F, = m for every te T. Calculate I/, F,.

4. Prove that a necessary and sufficient condition that the set 4 be of
power equal to that of one of its proper subsets (i.e. to some subset distinct

from A) is that a < 4.

Hint: In the proof of necessity take into consideration an element
aec A—f(A), then f(a), ff(a), and so on. In the proof of sufficiency consider
the sequence a4, a,, ... contained in 4 and the function f defined as follows:

fGy=x for x#a, (n=1,2,..) and f(a) =au.



CHAPTER VII

ORDER RELATIONS

§ 1. Definitions

Let the relation g, written <, be defined for elements of a given
set X. Consider the following four conditions:

1. x < x, for each x,

2. if x<<yand y<x, then x =y,

J.if x<yand y<z, then x< z,

4. for each pair x, y, either x <y or y < x.

If the conditions 1-3 are satisfied, we say that the relation
< is an ordering of X (or that the set X is ordered); the relation
< is a quasi-ordering if it satisfies conditions 1 and 3 only; it is
a linear or'dering if it satisfies conditions 1-4.

For example, the family 2% is ordered by the relation of inclusion
X < Y. If the family R < 2X is linearly ordered by the above
relation, we say that R is monotonic.

A quasi-ordered set is called dirécted if to each pair x, y there
exists z such that x < z and y < z. Again such is the family 2%
(since X cXuYand YcXuUY).

An ordered set A4 is said to be cofinal with the set B < 4, if
for each x € A there is y € B such that x < y.

For example the set of all real numbers ordered by the rela-
tion < is cofinal with the set of positive integers.

Obviously, if A contains the last element q, it is cofinal with {a}.

§ 2. Similarity. Order types

We say that the relation < which orders the set 4 and the
relation <* which orders the set B establish similar orderings
of 4 and B if there exists a one-to-one mapping f (called a similarity
mapping) of A onto B such that

(x <y) = [f(x) <* )],
85
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i.e. x precedes y in the set 4 if and only if f(x) precedes /() in
the set B.

For example, the relation < establishes similar orderings
of the set of natural numbers and the set of numbers of the form
1—1/n. ,

Just as cardinal numbers were assigned to sets, we assign order
types to order relations or, as we say, to ordered sets. Namely
we assign the same order type to two ordered sets if and only
if they are similar. We depend here on the property of the similarity
relation of being an equivalence relation, i.e.

(a) every ordered set is similar to itself,
(b) if 4 is similar to B, then B is similar to 4,
(c) if A is similar to Band Bis similar to C, then 4 is similar to C.

We omit the simple proofs of these properties.

Obviously two similar sets have the same cardinality.

The following order typzs are particularly important: w—the
type of the set of natural numbers, w*—the type of the set of
negative integers, y—the type of the set of rational numbers,
and A—the type of the set of all real numbers (all these sets are
considered to be ordered by the relation <0).

The type of a finite set, consisting of # numbers, is denoted by ».

THEOREM. Every countable. linearly ordered set A is similar to
some subset of the set & of all rational numbers (ordered with re-
spect to the relation <).

Proof. Let us arrange the elements of the set 4 (ordered
by the relation g) in a sequence a4, a,, ..., d,, ... consisting of
distinct terms (we assume that A4 is infinite; for finite sets the
theorem is obvious).

We define a similarity mapping f of 4 onto a subset of £,
in the following way.

Let f(a,) = 0; f(a,) is defined as an (arbitrary) rational number
which is less than f{a,) if a,pa,, but larger than f(a,) if a,pa,.
The inductive definition of the number f(a,.,) is the following:
if, in the set A4, a,., precedes all the elements a,, a,, ..., 4,,
then f(@,,,) is a rational number less than all the numbers f(a,),
Aay), ..., fla,); analogously if a,., follows all the elements a;,
a,,...,4d,, then the number f{a,.,) is larger than all the num-
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bers f(a;),f(a,), ..., f(a,); finally, if none of these cases holds,
then let a, be the last among those elements a,, a,, ..., @,, which
precede a,,; and let @, be the first among those which follow
a,,1; then let us set

f@nyy) = {fa)+Sf(am)} /2.

The function f defined in this way is obviously one-to-one.
Moreover, for every n it is a similarity mapping of the set
{ai,as, ..., a,.1} onto the set {f(a,),f(a,), ..., (@n1)}. But
from this it follows that the function f is a similarity mapping
of the entire set A onto f(4). For if a;04;, then, denoting by n+-1
the larger of the two numbers i and j, we deduce from the similarity
of the sets {ay,a,,...,a,,} and {f(a,),f(a)), ..., f(a.,,)} that
Aa) < fa).

§ 3. Dense ordering

We say that a linear ordering of the set A4 is dense if whenever
a < b, then there exists ¢ such that @ << ¢ and ¢ < b.

An example of a dense ordering is the ordering of the rational
numbers (with respect to the “less than” relation).

Every countable set with dense ordering, without a first and
last element, is of type #."

§ 4. Continuous ordering

Definitions. A subset B of an ordered set 4 is said to
be an initial interval of A if together with each of its elements
x € B it contains all the elements of the set 4 which precede x,
ie. if

(y<xeB)= (yeB).

Given a set Z < A, the earliest element a of the set 4 which
satisfies the condition

xeZ)=(x<a)

(if it exists) is called the least upper bound of Z.
t For a proof, see Hausdorff, Set Theory, Chapter 3, § 11, Theorem IV;
or Kuratowski and Mostowski, Set Theory, p. 217.
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An ordering of the set A is continuous if it is dense, and if,
furthermore, for each of its initial intervals B which is nonvoid
and distinct from A there exists a least upper bound.

The set & of all real numbers is of continuous type. This is
in fact only a different formulation of the known Dedekind
axiom of continuity.

The ordering of the set of rational numbers is not continuous;
for we can take as B the set of rational numbers less than }/2.
(We also say that |/ 2 determines a “gap” in the set of rational
numbers.)

Remark. The following theorem which we give here without
proof contains the most essential part of the theory of irrational
numbers due to Dedekind. ,

Let R denote the set of all rational numbers and let K denote
the family of all its initial intervals which are non-empty, distinct
Jrom R, and which do not possess a last element. Then the relation
< establishes an ordering of the family K of type A.

Hence, real numbers can be defined as the initial intervals
of the set # of all rational numbers which are non-empty, distinct
from %, and which do not possess a last element.

§ 5. Inverse systems, inverse limits

Let T be a directed set. Let X be a set-valued mapping,
X: T—>24; thus X; = 4 for each te T. Let f be a mapping
defined on TX T for pairs {to, ¢,y where 7, < #;, and such that

(1) ﬁotl: X, = X,
We assume further that
Q) figofewy,=Fy, for to<t; <t, (transitivity)
and
(3) S = identity.
Then we call the triple (T, X, f) an inverse system.!
The inverse limit of the system (7, X,f), denoted

X, or Lim(T,X,f) or Lim{X,,f.,},
«— 1to<ty

t See S. Eilenberg and N. Steenrod, Foundations of Algebraic Topology,
Princeton, 1952, Chapter VIIL. Comp. P.S. Alexandroff, Ann. of Math. 30 (1928).
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is the subset of the cartesian product [].rX; composed of ele-
ments z = {z} such that

) St (&) = 2.
In other words, we have for ze X,

®) S0 T, = Ty
We shall agree to write

©) Li=mlX,, ie. fi(z2)=2z.
Consequently

Y Jrotyofo, =fr»  hemce  fol=frlofid.
Consider two inverse systems (7', X, f) and (7, Y, g). Suppose
that # assigns to each ¢ a mapping

h: X, - Y,
such that (for ¢, < t;) commutativity holds in the diagram
X, Jon X,,
®) iy | lh,,
Yi,«— Y3,
8oty
ie.
(9) hto °fr°zl = Zitgt, © htl-
Then we may define 2 mapping
ho: Xy > Y,
so that the following diagram is commutative for each t € T
xlx,
(10) b |he
Yi—Y,
g
We put y = {y'} = h,(2) for z € X,,, where
1) h(z') = y*.

It is easily seen that

(12) if each h, is a one-to-one mapping onto, so is h.



90 SET THEORY AND TOPOLOGY

Exercises

1. Let X and Y be two subsets of the ordered set 4 such that X U Y = A4,
XnY=@ and (xe X)(ye Y)=(x <y). We say that the pair X, Y is
a cut of the set 4.

Prove that if X, Y; and X;, Y, are cuts of the set A4, then either X, < X,
or X, < X;.

2. Prove that every linearly ordered set is similar to some monotonic
family of subsets of this set (ordered by the relation < ).

3. Let R be a monotonic family of subsets of the set Z. Prove that the
family of all sets |_JX and mX , where X < R, is also monotonic.

4. Give an example of a linearly ordered set which is not of type w, but
which, despite this fact, possesses a first element and which is such that to
every element there exists an element immediately following and (except
to the first) an element immediately preceding it.

5. A subset G of a linearly ordered set A is said to be dense with respect
to A if between every two elements x and y of the set A there is an element
z of the set G.

Prove that a set 4 of type 2 contains a countable subset which is dense
with respect to A.

Sa. Show the inverse theorem (seec Remark of § 4): if 4 is continuously
ordered, contains a countable subset dense in A4, but contains no first nor
last element, then A is of order type A.

Remark. The following conjecture, called the Souslin problem, is inde-
pendent of the axioms of set theory (that is, it can neither be proved nor
disproved with the help of these axioms):t let every family of disjoint
intervals of a continuously ordered set 4 be countable; is 4 necessarily of
type A (assuming that A contains no first and last elements)?

6. Let us establish an ordering for the set £2 (of all complex numbers)
by assuming that of two complex numbers with distinct imaginary parts
that one is earlier whose imaginary part is smaller, and of two numbers
with equal imaginary parts that one is earlier which has the smaller real part.

Prove that in the set &2 there does not exist a countable part which is
dense with respect to &2,

7. (2) The family of all infinite sequences with real terms can be ordered
in the following way: the sequence a,, a,, ... precedes the sequence b,, b, ...
if there exists a k such that a, < b, for n> k.

(b) A family of real valued functions is ordered by the relation

(<8 = /\ulf) < gl

t As recently shown by Tennenbaum and Solovay.



CHAPTER VIII

WELL ORDERING

§ 1. Well ordering

Definition. We say that a linear ordering of a set A4 is
a well ordering if every non-empty subset of the set 4 has a first
element. ,

We call the order types of well ordered sets ordinal numbers
(concisely: ordinals).

ExampLES. The set of all natural numbers is a well ordered
set (this follows directly from the principle of finite induction).
Therefore w is an ordinal number. On the other hand, none of
the order types w*, , 4 is an ordinal number.

It follows from the definition of well ordering that every subset
of a well ordered set is well ordered. It also follows that for every
element a of a well ordered set (with the exception of the last
element, provided the set contains a last element) there exists
an element b which is its immediate successor. Namely, & is the
first element of the set {x: a < x}.

On the other hand, a well ordered sct can contain an element
(which is not its first element), for which there does not exist
an element which is an immediate predecessor. For example,
the set consisting of the numbers 1—1/n (n =1, 2, ...) together
with the number 1 is well ordered, but there does not exist an
clement in this set which immediately precedes the number 1.

If the set A4 is well ordered, then for every initial interval B which
is distinct from A there exists one and only one element b in 4 such
that

B ={x: x <b}.

Namely, b is the first element of the set 4—B. It is therefore
the least upper bound of the interval B if B does not contain
a last element; but if B contains a last element, then b is the
element which immediately succeeds this element.

91
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Let us set
(1) . Pl@)y={x: x < aj.

P is a one-to-one correspondence between the elements of A and
the family R of all initial intervals of 4 which are distinct from A.

Thus P: A — R is a similarity mapping (where R is ordered
by the inclusion relation: X < Y).

For if a < b, then x < a = x < b, i.e. P(@) = P(b) and con-
versely.

§ 2. Theorem on transfinite induction

Let A be a well ordered set and let @(x) be a propositional function,
where x € A, satisfying the following condition for every x:

®)) if [\ol < x) = @U)], then ().

Then every element of the set A satisfies the propositional function
P(), ie. \cp(x).

Let us assume that this is not the case, i.e. that the set Z of
elements of the set 4 which do not satisfy the propositional
function ¢(x) is nonvoid. Let X, be the first element of the set Z.
Therefore

/\y[(y < xo) = ¢()].

But it follows from this by virtue of (2) that the proposition
@(x,) is true. But then x, ¢ Z.
Remark. The principle of finite induction known from

arithmetic is a particular case of the preceding theorem; namely,
the case where A is the set of natural numbers.

§ 3. Theorems on the comparison of ordinal numbers

Definition. Let « and § be ordinal numbers; let « be the
order type of the set 4 and let § be that of the set B. We write
o < § if the set A is similar to some initial interval of the set
B which is distinct from B.

We assume the above definition of the “less than” relation
in connection with the following theorems.

THEOREM 1. No well ordered set is similar to an initial interval
which is distinct from the set itself, i.e.

3) o< a.
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Let us assume the contrary. That is, let us assume that
f: A P(a) is a similarity mapping for some ae 4. Since
f(a) € P(a) we have f(a) << a. Therefore the set

Z = {x: f(x) < x}
is not empty. Let x, be its first element. Hence
(4) f (xo) < xO ’

and since f is a similarity mapping of A onto P(a), we deduce
that

) ST xo)] < flxo),
but then—comparing formula (5) with (4)—it follows that x, is
not the first element of the set Z.

THEOREM 2. No two initial intervals of a well ordered set are
similar.

This follows directly from the preceding theorem, for of two
distinct initial intervals P(¢) and P(b) one is an initial interval
of the other (depending on whether a < b or b < a).

Theorem 2 can also be expressed in the following manner:
(6) if « << then B < a.

Since an initial interval of an initial interval of the set 4 is an
initial interval of this set, we have:

@) ifo<fand f <y thenm o <y.

We shall now prove the following fundamental theorem:

THEOREM 3. If a5 f then a < f§ or B < a. In other words,
if the sets A and B are well ordered, then either the set A is similar
to an initial interval of the set B or the set B is similar to an initial
interval of the set A.

Proof We shall denote by P,(x) the initial intervals of
A and by Pg(y) the initial intervals of B. We shall write M ~ N
if M and N are similar.

We set

(8) X ={x: \/,[Pa(x) ~ Ps()}.
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By Theorem 2, for every x € X, there exists only one element
y such that P,(x) ~ Pp(y). Hence we can denote this y by f(x).
Therefore the equivalence

6) Dy =/)] = [Palx) =~ Ps(y)]
holds for every x € X.

We shall prove that X is an initial interval of 4. Let x’ < x € X.
We must prove that x’ € X. Since x € X, there exists (by virtue
of (8)) a similarity mapping of the interval P,(x) onto the interval
Pg[f(x)]; but since P4(x’) is an initial interval of P,(x), under
this mapping the interval P,(x') goes over into an initial interval
of Py[f(x)], and hence onto an initial interval of B. This means
that x" € X, i.e. that X is an initial interval of A.

Analogously, the set f(X) is an initial interval of the set B.
For by virtue of (9) and formula (12) of Chapter IV, § 4, we have

(10) fX) = {y: /iy =S} = {y: \/x[Ps() = Pa()]}.
Moreover, as we have already proved, the condition x’ << x

implies that the interval Pg[f(x")] is an initial interval of the

interval Pp{f(x)], and hence that f{x") < f(x). This means that

(1) X ~ f(X).

It remains to prove that either X = 4 or f{X) = B. Let us
assume the contrary, that X # 4 and that f(X) # B. Since the
sets X and f(X) are initial intervals of 4 and B, there exist ae A
and b € B such that

X=Pya and f(X)= Py(d).

By virtue of (11) we therefore have P,(a) ~ Pg(b), whence
it follows by (8) that a € X, i.e. that a e P4(a), hence a < a,
which is a contradiction.

Theorem 3 implies the following:

THEOREM 4. If the sets A and B are well ordered, then their
powers satisfy the trichotomy condition, i.e.
either Z=-§, or7<§, or B< 4.

A question of fundamental significance which arises here natu-
rally is: can every set be well ordered?
We shall consider this question in § 7.



VIil. WELL ORDERING 95

§ 4. Sefs of ordinal numbers

We shall use the following notation:
(12) Ile) = {§: £ < a}.

THEOREM 1. The set I'(u) is well ordered (by the relation <)
and the order type of this ordering is a.

Proof. Let 4 be a well ordered set of type « and let 7(x)
for x € A be the order type of the interval P(x). ,

7 is a similarity mapping of 4 onto I'(¢). For if x" < x, then
the set P(x') is distinct from P(x) and is an initial interval of P(x),
and hence (cf. Theorem 1, § 3) 7(x’) < 7(x). At the same time,
every &£ € I'(¢) is a value of 1. For let £ € I'(a), i.e. & < a; by the
definition of the relation << for ordinal numbers, a set of type
& is similar to some initial interval P(x") of 4; and hence £ = 7(x").

THEOREM 2. Every set of ordinals is well ordered (by the rela-
tion <).

We have to prove that every non-empty set @ of ordinals
contains a least number. Let a € @. If « is not the least number
of @ then the set @ n ['(a) is nonvoid and therefore, being
a subset of the well ordered set I'(¢), it contains a least number S.
The number f is the least number of the set @. For if § € [@—1(a)]
then & > a and hence & > .

THEOREM 3. For every set @ of ordinals there exists an ordinal
number which is greater than every number of this set.

Such a number is a1, where « is the order type of the set
V=& where £eo,

and a+1 denotes the type of the set ¥ u {a} (cf. § 6).

In fact, for every & the set I'(£) is an initial interval of the
set V. If I'(§) = ¥, then & = a (by virtue of Theorem 1); and
in the contrary case & <C a. Therefore for every & we have & << a+1.

THEOREM 4. There does not exist the set of all ordinal numbers.

§ 5. The number

Definition. Let us denote by Z the set of all order types
of countable well ordered sets and by £2 the order type of the set =.
By Theorem 2 of § 4, 2 is an ordinal number.
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We shall prove that
(13) E = I'(Q).

By virtue of Theorem 3 of § 4 there exists an ordinal « greater
than every number of the set 5. Therefore & < I'(«). Further
E is an initial interval of the set I'(x). For let & < £eZ; & is
therefore an order type of some subset of a countable well ordered
set (of type £); this subset is obviously countable and hence
& ek

Since = is an initial interval of I'(a), there exists (cf. (1)) a number
y < o such that & = I'(y). In order to prove formula (13) it
remains to show that y == Q. But this follows immediately from
the definition of 2 and from Theorem 1, § 4, by virtue of which
I'(y) has the type y.

THEOREM 1. The set I'({2) is noncountable, i.e.
(14) I'(s2) > a.

In fact, if the set I'({2) were countable, then its order type
would belong to 5, i.e. 2 €&, whence by (13) we should have
e I'(Q), te. £2 < £ which is impossible.

Remark 1. The cardinal number T'(i2) is denoted by the
symbol N, (“aleph” 1). Hence we have 8; > a, as well as ¢ > a
(Chapter VI, § 3, (21)). However, we were led to the number X, by
entirely different reasoning than that used to define the number ec.
Are these numbers equal? The hypothesis, called the continuum
hypothesis, asserting that

(15) Ry=¢

is independent of the axioms of set theory.t

THEOREM 2. N, is the number immediately following the number
a, e if m<<N; then m< a,

Proof Let 4= m. Since m < N,, there is B < £ such
that B= m. Let § denote the order type of B. Therefore the
sets B and I'(f) are similar and hence of equal power, i.e. I'(f)=m.

t See P.J. Cohen, Set Theory and the Continuum Hypothesis.
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It follows that 8 << Q, for otherwise 2 < 8, whence I'(2) < I'(8),
and therefore ¥; = ﬁﬁ) < 1?(733= = m contrary to the assump-
tion. It follows from the inequality § < 2 (by the definition of
£2) that the set B is countable, i.e. m < a.

Remark 2. The alephs ¥,, N3, ..., ¥,, ... can be defined
similarly to ¥y = a and X,;. Namely N, is the cardinality of the
set of all order types of well ordered sets of power N;; N, is de-
fined by induction. It follows that

Nn < Nn+l .

Here we assume obviously the
AXIOM OF INFINITY. There exist infinite sets.

Another axiom is needed in order to prove the existence of
cardinal numbers greater than all X,, n = 1,2, ... This is the

AXIOM OF REPLACEMENT. If to every element x of a set A there
corresponds an element y (which belongs or does not belong to A),
then the totality of all these y’s is a set.

Consequently, if we denote y by f(x), then f is a mapping in
the usual sense (Chapter IV, § 1).

Here we use this axiom as follows. As shown, there exists,
for each n, a set Z, of power ¥,. Denote by A the set of positive
integers and by R (according to the axiom of replacement) the
family of all sets Z, for n=1,2, ..., and consider the union
Un-1Z, (which exists according to the generalized union axiom,
cf. Chapter 1V, § 5, Remark). Its power exceeds each N,, and
it is natural to denote it N, .

§ 6. The arithmetic of ordinal numbers

Let o and f be two ordinal numbers (or more generally, two
order types). Let A and B be two sets with order types « and S,
respectively; let us assume also that 4 n B = @ (see Chapter VI,
§ 1, concerning the possibility of making such an assumption).
Let us establish an ordering of the set A U B by assuming that
every element of the set A precedes every element of the set B and
that in the domain of each of the sets 4 and B individually the
ordering does not change.

We denote the order type of the set A U B by a—-p.
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We shall prove that, under the assumption that a and § are
ordinal numbers, a-+p is also an ordinal number.

We have to prove that the set 4 U B with the above-established
ordering of its elements is well ordered. Hence,let @ # X < 4 U B.
If X A+# O, then—since the set 4 is well ordered—the set
X n A contains an earliest element; this element is the earliest
element of the entire set X = (X n 4) u (X n B), inasmuch
as it precedes, by the definition of the ordering of the set 4 U B,
each of the elements of the set X n B.

Now, if X n 4 =@, then X = B and therefore there exists
an earliest element in the set X.

ExXAMPLES. a+1 > a whereby a4 1 follows immediately after a.
The number w+w is the type of the set of numbers of the form
1—1/n together with the numbers of the form 2—1/n where
n=1,2,... Let us note that 1+w = w; and hence addition
is not commutative.

We denote by o - § the order type of the cartesian product AX B
ordered as follows:

Kx, y) <lu, )] = [y <o) v (0 = 9)(x < w)].

Under the assumption that o and 8 are ordinal numbers, o - § is
also an ordinal number.

For, let @ # Z <« AXB. Let Y denote the projection of the
set Z onto the B-axis. Hence we have @ # Y < B. Let b be the
earliest element of the set B and let X = {x: {x, b) € Z}. Finally
let a be the first element of the set X. It is easy to verify that {a, b>
is the first element of the set Z.

EXAMPLES. 2-w is the order type of the cartesian product
{1,2}xJ (where J is the set of natural numbers) ordered as
follows:

<1, 15,42, 15,41,2>,42,2), ...,
and hence 2-w = .
On the other hand, w + 2 = w+w is the order type of the product
Jx{1,2} (see the example given above).
As we see, multiplication is not commutative.
o - w is the type of the set of all numbers of the form k—1/n
where k=1,2,...and n=1,2, ...
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Instead of w ‘- w we write w?. In general, o"*! = «" - a.

We denote by a” (for @ > 1) the least number larger than any
a', where n=1,2, ...

More generally, the definition of exponentiation (and of many
other operations) can be introduced with the aid of the following
definitions of the concept of transfinite sequence and of its limit.

Definitions. By a transfinite sequence of type @ we mean
a mapping ¢ whose domain is /'(«); instead of @, we write usually

Ao, Ayy ey gy ey, £ <,

If o is a limit ordinal and the terms of the above transfinite
sequence are ordinals, then its /imitf, denoted
lim a;,
f<a
is the least ordinal larger than all a; for £ < a.

With the help of the above definitions, we define the power
of (for « > 1) as follows

1. o =1,

2. aftt = b o,

3. o = limaf,
&<

where 4 is a limit ordinal (cf. the theorem on the definition by
transfinite induction, § 8, Theorem 2).

Remark. The arithmetic of ordinal numbers forms at
present a well established theory which we shall not develop
any further here.t The main objective of the theory given above
was a study of ordinals of countable sets; all these ordinals can
be obtained with the aid of sets of real (or even rational) numbers
(see Chapter VII, § 2).

Definition 1. The ordinal « is cofinal with the (limit)
ordinal § if the set I'(«) is cofinal with a subset of type f (cf.
Chapter VII, § 1).

Thus, for example w,, (see below) is cofinal with w, while 2 is
not.

t See e.g. W. Sierpiniski, Cardinal and Ordinal Numbers, or F. HausdorfT,
Set Theory, Chapter III.
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Definition 2. The ordinal « is called initial relative to
the cardinal number m if o is the smallest possible ordinal number
of a well ordered set Z such that Z = m.

For example, w and £ are initial numbers. Let us denote them
wo and w,, and more generally let us denote by w, the initial
number relative to N,.

As stated in § 5, the existence of N, follows from the axiom
of replacement. One can show similarly the existence of initial
ordinals w,, w, and so on. The two quoted numbers are cofinal
with smaller numbers (namely with their indices). This leads
to the problem of the existence of an initial ordinal w;, where
A is a limit number (# 0), which is not cofinal with a smaller
number. The existence of numbers of that kind, called inaccessible
numbers, does not follow from our axioms (inciuding the axiom
of infinity and the axiom of replacement). One could, of course,
assume axiomatically the existence of inaccessible numbers, but
this would not solve analogous problems concerning greater
and greater ordinals.

Here we have before us a problem which has not been solved
satisfactorily thus far.

Remark. It can be shown that to each ordinal « there corre-
sponds an initial ordinal w,. This leads to the definition:
Ny = [(wy,).

Let us add that we write, instead of X7, more concisely
X¥x (as we did in the case of o = 0).

§ 7. The well-ordering theorem

We shall deduce this theorem, which is of fundamental impor-
tance for the theory of sets (cf. e.g. Theorem 4, § 3), from the
axiom of choice. To this end, we shall prove first of all, the fol-
lowing theorem which is a generalization of the axiom of choice.

THEOREM 1. (General principle of choice.) For every set A there
exists a mapping e which assigns to every non-empty subset of
A one of its elements, i.e.

(16) e(X)eX for every O #X < A.

Proof. Let F(X)= {X}XxX, ie. the set F(X) consists of
ordered pairs of the form (X, x> where x € X. Let R denote the
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family consisting of all sets F(X), where @ # X < A. This is
a family consisting of nonvoid disjoint sets. By the axiom of choice
(Chapter III, § 7) there exists therefore a set consisting of elements,
one chosen from each of the sets belonging to R; this set is the
desired mapping e.

THEOREM 2. (Zermelo theorem.) For every set A there exists
a relation which establishes its well ordering.

Proof. Let us consider the ordinal numbers § with the fol-
lowing properties: there exists a transfinite sequence f; of type
-1 such that

(A7) f30) =e(d), [f(§) = [A—f(L(§))] for &< B;
in particular

f2(1) = e[d—{e(4)}],

£22) = e(4—|e(4), e[4—{e()}])).

Js is one-to-one. For if & < §<Cf, then & e I'(§) and hence
1o(&) e fy(T®) but f(&) e [A—A(I'(®)] by (16) and (17).

It follows that the set of values of f, i.e. the set fo(I'(6+1)),
is of order type f+1.

Hence the numbers 8 form a subset @ of the set of all order
types of subsets of 4 which can be well ordered. By virtue of
Theorem 3, § 4, there exist ordinal numbers which do not belong
to @. Let a be the least of them. Therefore, there does not exist
J« satisfying conditions (17) (replacing g by «), and on the other
hand, for every f < o, there exists f; which satisfies these con-
ditions.

We shall prove that 4 can be well ordered, its order type being «.

To this end, let us first note that if 8’ < § and the transfinite
sequence gz, of type f’-+1, satisfies conditions analogous to
those of (17), i.e.

(18) g5 (0) = e(4), g5 (&) =e[A—gp(I'(§))] for &<,
then for each & < B’ the identity
(19) 8s-(§) = fp(£)

is satisfied (this means that, if 8’ = B, f; is uniquely determined
and that if B’ < f, f; is an extension of f;.).
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In fact, let us denote by @(§) the propositional function (19),
having the set I'(8'+1) for its domain.

Let us apply to this function the theorem on transfinite induction
(see § 2, where we substitute I'(5’+1) for 4). Hence let us assume
that for given & < f’ the conditiony < & implies that gg.(y) = f3(»)
and therefore that gg.(I'(§)) = fs(I'(é)), which in turn, by virtue
of (18) and (17), implies (19). By the theorem on transfinite in-
duction, (19) holds for every & < f5'.

Let

(20) SB) = 14(8)

for every f < a.

In order to show that 4 admits a well ordering of type «, it
obviously suffices to prove that f is one-to-one and that A is its
set of values.

Hence, let p' < . As we proved (cf. (19)) f3.(£) = f3(é) for
every £ << f’, and hence f3.(6') = fp(8’) in particular. But since
J3 is one-to-one, we therefore have f3(8) # f3(6), i.e. f(B") # f(F).

It remains to prove that f(I'(x)) = A. Let us suppose that
A—f(I'(e)) # O, and define f, as follows:

faB) =f(B) for p <o and fu(o) = [4d—fo(L(@))].
As can easily be seen, f, satisfies condition (17) (replacing j
by ). But this contradicts the definition of «.

* § 8. Definitions by transfinite induction

THEOREM 1. For every set A, for every ordinal a and for every
mapping h: 24 - A, i.e.

@2 h(X)eAd for X c A,
there is a transfinite sequence f of type o+ 1 such that
(22) J@&) = [ f(I(&)],

where f(I'(£)) denotes (as always) the set of all f(n) with n < &.

Sketch of the proof. Letusassume that the theorem
is false and that « is the least number for which there does not
exist a transfinite sequence f of type a1 satisfying condition (22).
Therefore for every f < « there exists f3 such that

(23) f&) = h[f(I'(¥))] for E<B.
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We can prove as above that fz is uniquely determined. The
transfinite sequence f defined by the formulas

f(B)=/p(B) for p<a and flo) = A[f(I(x))]

then satisfies the conditions of the theorem — contrary to our as-
sumption,
This completes the proof of Theorem 1.

Remark. The Zermelo theorem can be deduced from Theo-
rem 1 by substituting

MX)=e(4d—X) for X# A,

and denoting by A(4) an arbitrary element of A.

We denote by @ the set of ordinals § for which there exists
a transfinite sequence f; satisfying condition (23) and the inequality
fs(I'(B)) # A. Let a be the least ordinal which does not belong
to @. Then f(I'(x)) = A, whence it easily follows that 4 can be
well ordered, its order type being a.

Another way of defining by transfinite induction is based on
the following theorem.!

THEOREM 2. Let A be a given set, a an element of A, o an
ordinal, and let g: A — A and h: 24 — A be two given mappings.
Then there exists a transfinite sequence f of type a+1 such that:

(i) f0) = a,
(i) fE+1) =g(f®), for &<,
(iii) &) = W AL(#)]

when A is a limit ordinal < o.
The proof is quite similar to the proof of Theorem 1.

Definition. A set M e R is called maximal (or saturated)
in R if it is contained in no other member of R, i.e. if

McZeR) = (Z=M).

Theorem 2 implies the following theorem.

t For a statement including both theorems, 1 and 2, see Kuratowski-
Mostowski, Set Theory, p. 239.
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THEOREM 3.t Let R be a family of subsets of a given set E such
that for every monotonic and well ordered (by the inclusion relation)
subfamily X < R the union \_ X belongs to R. Then every set
Ao € R is a subset of a maximal set M € R.

Proof Foreach Z € R, which is not a maximal member of R,
denote by G(Z) a member of R such that Z <« G(Z)# Z. If Z is
maximal, then we put G(Z) = Z (we assume also that if Z¢ R
but Z < E, then G(Z) = Z). Finally put H(X)= |J X whenever
X < 28

Then, we can define by transfinite induction a sequence
Ags Ay, ...y Ag, ... such that

Age1 = G(4) and A, = Ueaids,
where A is a limit ordinal.

Obviously, this sequence is monotonic and for each &, 4, € R,
Hence, if « is a number such that all 4, with & < « are different,
then T'(x) < R. Now let o be such that I(a) > R. Then there is
B < o such that Ag,, = Ag, ie. G(4p) = As. This means that
Ay is a maximal set of R.

The following statement will be proved in a similar way.

THEOREM 4.% Let A be an ordered set such that, for each linearly
ordered X < A, there is ¢ € A such that x < ¢ whatever x € X is.
Then there is a maximal element in A.

Proof. Leta,be an arbitrary element of 4. If a is not a maxi-
mal element of 4 denote by g(a) any b € A such that a < b; if
a is maximal, let g(@) = a. Similarly, for Z c 4, let A(Z) be an
element z of A4 following all elements of Z; if such a z does not
exist, let us agree that A(Z) = a,.

By Theorem 2 there exists a- transfinite sequence

A < @y < ...<a;< ..
such that
a ., =g(a) and a,=hZ)

t See my paper in Fundamenta Mathematicae 3 (1922), p. 89. As shown
in this paper, the theorem can also be proved without using ordinal numbers.
t This statement is frequently called Zorn Lemma.
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where Z; denotes the set of all a; such that £ << 4 (4 being a limit
ordinal).

As in the preceding proof, we show the existence of 8 such
that ag,, = a;. It follows that g is a maximal element in A.

Exercises
1. Prove that the conditions o« < £ and f < 2 imply that a+f < Q
and a- f < 0.

2. Every ordinal number is of the form A4n, where 4 is a limit ordinal
and n is a natural number or zero.

Hint: Make use of the fact that in a well ordered set there does not exist
an infinite sequence of the form a; > a, > a;> ...

3. Prove the following implications:

(a) @< P=@+tae<y+p),
(b) @< =@ty < p+y.

Does the condition > 0 imply the inequality y < B+y?
4. Prove the distributive law:
a (B+y) =ofta-y.
Show by means of an example that the formula (B+y) -« =f-at+y-a
is not true.

5. Prove that if « > f then there exists one and only one ordinal number
» such that « = B+ (we call the number y the difference o —p of the numbers
o and B).

6. Prove that for every two ordinal numbers o # 0 and f there exists
a pair of numbers J and ¢ < « such that

f=o-d+e

and that the numbers & (quotient) and ¢ (remainder) are uniquely determined.

7. A transfinite sequence ¢ whose values are ordinals < o, is said to be
continuous if for every limit ordinal 2 < o the following identity holds:

o(2) = lim @(&).
E<A

Prove that the transfinite sequences ¢(§) = «+& and @(§) =a- & (for
o> 0) are increasing and continuous.

8. Prove that every increasing transfinite sequence ¢ satisfies the inequality
& < @(§) for every &.

Hint: Assuming that the theorem is false, denote by o the least number
such that ¢(a) < o.

9. Let @ be an increasing continuous transfinite sequence. Let us form the
sequence

oo =0, oy = @(%o), ..., %y = @(An-1),
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Let » =lim «,. Prove that ¢(x) = » (under the assumption that the
n<w
numbers under consideration belong to the domain of the function ¢).

10. The number » in Exercise 9 is said to be a critical number of the
sequence @. Find the critical numbers of the sequences
P =até, @@ =a& @@ =db

11, Using the generalized principle of choice (see § 7) prove that every
infinite cardinal number m satisfies the inequality m > a.

12. Show that every proper ideal is contained in a maximal ideal.

Hint: Use Theorem 3 of § 8



INTRODUCTION TO PART I

Topology is the study of those properties of spaces, sets,
geometric figures, etc., which remain invariant relative to homeo-
morphisms (see Chapter XII, § 2). We call such properties topolog-
ical invariants. For example, the property of a circle of separating
the plane into two regions is a topological invariant; if we trans-
form the circle into an ellipse or into the boundary of a triangle,
this property is retained. On the other hand, the property of
a curve of having a tangent line at every point is not a topological
property; the circle has this property but the boundary of a triangle
has not, although it may be obtained from the circle by means
of a homeomorphism.

As can already be seen from the above example topology
operates with more general concepts than analysis; differential
properties of a given transformation are nonessential for topology,
but continuity is essential. As a consequence, topology is often
suitable for the solution of problems to which analysis cannot
give the answer.

The generality of topological methods rests not only on the
generality of the assumptions concerning the transformations
considered but also on the generality of the sets considered to
which these transformations are applied. These can be arbitrary
point sets on the real line or in the plane, or in n-dimensional
space, or still more general sets, provided only that they be sets
for which—roughly speaking—it is possible to define the concept
of open set, i.e. provided that they are topological spaces (see
Chapter X). This generality has not only a methodological signifi-
cance; in modern mathematics there is a trend to confer upon
the set of objects considered in a given investigation (be these
functions, sequences or curves) a topology, and hence—to
a geometrization or rather to a topologization—of the investi-
gation. This gives rise to numerous applications. Thus, e.g.

theorems on the existence of a solution of certain types of differ-
109
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ential equations can be expressed as theorems on the existence of
invariant points of a function space (the space of continuous
functions) under continuous transformations; these theorems can
be proved by topological methods in a more general form and in
a simpler way than was formerly done without the aid of topology.

How much more general ought the spaces considered in topology
to be in order that they suffice for applications and yet, because
of undue generality, not become too artificial? The answer to
this question depends on the aims which a given topological
work is to serve.

In this book we are mainly concerned with fopological spaces;
their definition is given in Chapter X. The Chapter IX on metric
spaces and on Euclidean spaces has a rather auxiliary character:
it serves for the interpretation of theorems and notions of general
topology on simple and familiar examples. At the same time,
the metric spaces—though they are simple and geometrically
elementary—have many important applications (e.g. in differen-
tial equations and in functional analysis).

In Chapters X-XIII we give the fundamental concepts used
in all parts of topology, and which are basic for general topology.
The reader knows many of these concepts from analysis for the
space of real or complex numbers (such as accumulation point,
neighbourhood, closed set, and so on); this refers especially to
Chapter XII on continuous functions. Theorems known from
analysis, e.g. on uniform continuity, uniform convergence, the
Darboux property, are proved here (and in Chapters XVI and
XVII) under significantly more general hypotheses. This permits
us to recognize the proper validity of these theorems (which also
is of didactic significance).

In the further chapters (XIV-XVIII) we are gradually leaving
the scope of general topology, confining ourselves to more specific
spaces: we consider spaces with a countable base (and in particular
metric separable spaces), complete spaces (with the Baire theorem
and its consequences), compact spaces (which generalize the
concept of closed bounded subsets of Euclidean space), connected
spaces (connectedness is the precise formulation of the concept
of the continuity of a set) and locally connected spaces (as it
turns out, curves, surfaces, multi-dimensional varieties or mani-
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folds, with which we have to deal in differential geometry, are as
a rule locally connected continua). Many problems of that part
of the book belong to analytic topology (devoted chiefly to the
study of mappings).

Chapter XIX deals with the concept of dimension. This
concept—even though it dates from antiquity (it appears in Euclid’s
Elements)—was properly defined only in recent times and this
thanks to the use of topological methods.

We shall concern ourselves in more detail with the properties
of the n-dimensional simplex, which is the fundamental concept of
classical multi-dimensional geometry, in Chapter XX. In particular,
we give a proof of the famous fixed point theorem, due to L. E. J.
Brouwer (which has extensive applications in the theory of differ-
ential equations).

Chapter XXI, conceptually closely related to geometry, concerns
theorems on the separation of the plane. A detailed proof is given
here of the Jordan theorem, which is a classical theorem of analysis,
and some important far-reaching generalizations due to Jani-
szewski and Eilenberg.

Most of the material contained in Part II (with the exception,
for instance, of Chapter XX) belongs to point-set topology.

An introduction to algebraic topology is given in the Supplement
written by Prof. Engelking.

In its initial stages, point-set topology and algebraic topology
developed entirely independently and possessed completely
different topics. Point-set topology, formerly called the theory
of point sets, and concerning applications of set theory to arbitrary
subsets of Euclidean space, was begun by G. Cantor, the creator
of the theory of sets (circa 1880). Algebraic topology was created
by H. Poincaré in the last years of the past century; its objects
were n-dimensional polygons and polyhedra. Some unification
of these two theories came rather late, about 40 years ago; this
was, to a large degree, the work of P.S. Aleksandrov. This
period was preceded by the transition from the investigation
of subsets of Euclidean space in set-theoretic topology to the
investigation of arbitrary topological spaces. This extension of
the thematics of topology appeared to a significant degree in
connection with the new mathematical investigations concerning
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the concept of function space and infinite-dimensional spaces
introduced by Hilbert.
In the last forty years or so there has appeared an unusually
rich flourishing of topology; many fundamental problems of
topology have been solved, new methods created and new branches
developed; such is the fascinating differential topology, constantly
increasing in importance and interest. Topology, which was
a conglomeration of loosely related theorems, became a systematic
science, and topological methods penetrated into a great many
other domains of mathematics.
The following list contains books which may be of interest
to the reader who wishes to increase his knowledge of topology:
P.S. Aleksandrov and H. Ho pf, Topologie, 1, Edwards,
Ann Arbor, 1945.

C. Berge, Espaces topologiques, Paris, 1959 (also an English
translation).

K. Borsuk, Theory of Retracts, Monografie Matematyczne,
Warszawa, 1967.
N. Bourbaki, Topologie générale, Actualités Scientifiques,
Nos. 1045, 1084, 1142, 1143, 1235, Paris, 1949-1961.
D.C.J. Burgess, Analytical Topology, Van Nostrand, New
York, 1966.

E. Cech, Topological Spaces, Praha, 1966.

G. Choquet, Coursd analyse, t. 11, Paris, 1964 (also an English
translation).

J. Dugundji, Topology, Allyn-Bacon, 1966.

R. Engelking, Outline of General Topology, N.-Holland Publ.
Comp. and PWN, Amsterdam-Warszawa, 1968.

S.A. Gaal, Point Set Topology, Academic Press, 1964.

F. Hausdorff, Set Theory, Chelsea, New York, 1957.

J.G. Hocking and Gail S. Young, Topology, Reading-
London, 1961.

S.T. Hu, Elements of General Topology, Holden-Day, 1965.

-—— Homotopy Theory, New York-London, 1959.

—— Theory of Retracts, Detroit, 1965.

W. Hurewicz and H. Wallman, Dimension Theory,
Princeton, 1948.
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J.L. Kelley, General Topology, Van Nostrand, New York,
1955.

H.J. Kowalsky, Topologische Rdume, Basel-Stuttgart, 1961.

K. Kuratowski, Topology, vol. I, 1966, vol. II, 1968,
Academic Press and PWN, New York-London-Warszawa,

S. Lefschetz Introduction to Topology, Princeton Univ. Press,
Princeton, 1949.

T. O. M o or e, Elementary General Topology, Prentice-Hall, 1964.

J. Nagata, Modern General Topology, N.-Holland Publ.
Comp., 1968.

M.H.A. Newman, Elements of the Topology of Plane Sets
of Points, Cambridge Univ. Press, Cambridge, 1952.

G. Nobeling, Grundlagen der analytischen Topologie, Sprin-
ger, Berlin, 1954.

W.J. Pervin, Foundations of General Topology, Academic
Press, 1964.

H. Schubert, Topology, Macdonald, London, 1968.

H. Seifert and W. Threlfall, Lehrbuch der Topologie,
Chelsea, New York, 1947.

W. Sierpifiski, General Topology, Univ. of Toronto Press,
Toronto, 1952.

W.J. Thron, Topological Structures, Holt, Rinehart and
Winston, 1966.

G.T. Whyburn, Analytic Topology, Coll. Public., New York,
1942,

—— Topological Analysis, Princeton, 1964.

R.L. Wilder, Topology of Manifolds, Coll. Public., New
York, 1949.

We wish to quote also the following more elementary books:

P.S. Aleksandrov, Einfachste Grundbegriffe der Topologie,
Berlin, 1932.

B.H. Arnold, Intuitive Concepts in Elementary Topology,
Prentice-Hall, 1962.

J. D. Baum, Elements of Point Set Topology, Prentice-Hall, 1964.

D. Bushaw, Elements of General Topology, J. Wiley, New
York, 1963.
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W.D. Chinn and N.E. Steenrod, First Concepts of
Topology, New York-Toronto, 1966.

E.T. Copson, Metric Spaces, Cambridge Tracts, 1968.

W. Franz, Allgemeine Topologie, Goschen, Berlin, 1960.

M. Mansfield, Introduction to Topology, Princeton, 1963.

E.M. Patterson, Topology, Interscience Publ., New York,
1956.

F. Simmons, Introduction to Topology and Modern Analysis,
McGraw-Hill, New York, 1963.

G.L. Spencer and D.W. Hall, Elementary Topology,
J. Wiley, New York, 1955.

R. Vaidyanathaswamy, Treatise on Set Topology, Part 1,
Indian Mathematical Society, Madras, 1947,



CHAPTER IX
METRIC SPACES. EUCLIDEAN SPACES

§ 1. Metric spaces

Definition. A set X is said to be a metric space if to
every pair of its elements, i.e. to every pair of points x, y belonging
to the set X, there is assigned a real number |[x—y| > 0, called
the distance from the point x to the point y, which satisfies the
following three conditions:

1) [x—y| =0 if and only if x =y,
) [x—yl = ly—xl,
3) [x—yl+ly—z] = |x—zl;

the last condition is the so-called triangle inequality.

It follows immediately from this definition that every subset
of a metric space is itself a metric space (the definition of distance
remaining the same).

ExampLES. 1. Every set of real or complex numbers forms
a metric space if the distance between two numbers x and y is
understood to be the absolute value of the difference of these
numbers. This justifies the symbol we are using for the distance.

2. Euclidean n-space, &", whose points are sequences of
n real numbers (x, x,, ..., x,), is a metric space under the usual
definition of the distance from the point x = (x;, X5, ..., X,)
to the point y = (y4, ¥,, ..., ¥s) given by the Pythagorean formula

@ st ={ 3 i)

izl
This same formula “metrizes” the cartesian product X, X X, X ...
... XX, of any n metric spaces, X;, X,, ..., Xp.
3. Hilbert space. This space is the set of all sequences of real

0
. Y .
numbers x = (x, X3, ..., X;, ...) such that the series 2, x? is

i=1

115
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convergent. Here the distance between two such sequences is
understood to be

(5) eyl = { D =y}

. i=1
4. The set of continuous real valued functions defined on the
closed interval 0 << x <1 forms a metric space if the distance
between two functions f and g is defined by the formula

(6) [f—gl = sup|f(x)—g(x)l.

Remark. An arbitrary set can be considered to be a metric
space if we assume that the distance between each pair of distinct
points is 1.

§ 2. Diameter of a set. Bounded spaces. Bounded mappings

Definition 1. The least upper bound of the distances
|x—y| between all pairs of points x and y in the metric space
X is called the diameter of the space X and is denoted by the symbol
8(X). If X is a circle or sphere, then its diameter 8(X) is the diameter
in the usual sense.

Metric spaces with finite diameter are said to be bounded.

For example, the closed interval 0 < x < 1 is bounded. The
same is true of a square and the n-dimensional cube. On the
other hand, the half-line x > 0, the real line, and the space &" are
examples of unbounded spaces.

Definition 2. A mapping /> X — ¥ where Y is a metric
space, is called bounded if the set f(X) is bounded.

THEOREM 1. If f and g are bounded mappings of the (arbitrary)
set X into the metric space Y, their distance | f—g| given by formula
(6) is finite.

Proof. Let a be a given element of X. Then

[f(x)—g ()| <1f(x)—f@)]+1f(a)—g(a)|+Ig(@) —g (),

hence

If—&l < S[fX)1+If(9) —g(a@)|+d[g(X)].

THEOREM 2. The set D(X, Y) of all bounded mappings f: X — Y,
where X is an arbitrary set and Y a metric space, is a metric space
with distance defined by formula (6).

This follows easily from Theorem 1.
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§ 3. The Hilbert cube

Under the assumption that the spaces X, X5, ..., X, ... are
uniformly bounded (i.e. the upper bound of their diameters
is finite; see also Chapter XII, § 3, Remark 2), we define the
distance between two points x = (X;, X3, ..., Xp, ...) and y =
= (J1, Y25 --«>Vm>---) Of the infinite cartesian product X; X X, X ...
.. XXX ..., by means of the formula

Q) =yl =) (1/2")%n—ul.
m=1

We shall leave it to the reader to prove that the distance defined
in this way satisfies conditions (1)-(3), i.e. that the space
X XX,X ... is metric.

We denote the closed interval 0 < x <1 by #. The space
H = FXIX ... is called the Hilbert cube; it is a space all “co-
ordinates” x, of whose points x = (X;, X3, ..., Xm, ...) are
contained in the closed interval [0, 1]. The space s#, or the in-
finite countable power of the closed interval [0, 1], is clearly
the natural generalization of the n-dimensional cube.

§ 4. Convergence of a sequence of points

We define the concept of the limit of a sequence of points,
which is a fundamental concept in topology, by making use of
the concept of the limit of a sequence of real numbers which
is known from elementary analysis.

Definition. A sequence of points py, P2, --es Pu> ... Of
a metric space is convergent to the point p of this space if the
sequence of real numbers |p,—p]| is convergent to zero. We then
call the point p the limit of the sequence py, ps, ..., Py, ... and
we write p = limp,.

Using the symbolism of logic, we write this definition in the
following form:

®)  (limp, = p) = (lim|p,—p| = 0)

n—

) = AV /A\ul(n > k) = (Ip—pl < &)
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A sequence of points does not need to converge. However,
if it does converge, then there is just one limit of this sequence.

The definition of the convergence of a sequence of points in
a metric space can be given in another form, very suitable for
considerations in the sequel, by introducing the concept of ball.

An (open) ball with centre p, or more briefly K(p, ¢), is the set
of points x whose distance from the point p is less than &:

(10) K(p, &) = {x: [x—p| < }.

In the space of real numbers an open ball is an open interval
and in the plane it is a circular disk without the boundary. Hence
our terminology corresponds to Euclidean space.

Let us add that by replacing in (10) < by < we obtain the
definition of a closed ball.

§ 5. Properties of the limit

THEOREM 1. A necessary and sufficient condition that limp, = p,

n-»owo

is that every ball K with centre p contains all the points of the
sequence py,p,, ..., With perhaps the exception of a finite number
(i.e. there exists a k such that p, € K for alln > k).

In order to prove this we substitute p, € K(p, ¢) into formula
(9) instead of |p,—p| << & (which we can do by virtue of (10)).

THEOREM 2. Every convergent sequence is bounded; in other
words: the set of terms in a convergent sequence is bounded.

For let p = limp, and let Z be the set of terms of the sequence

n—>

PisD2s ---s Pus --. By virtue of our assumption there exists a k such
that for n > k we have |p,—p| < 1. Let ¢ denote the maximal
of the k+1 numbers

|p1—pl; lp2—pls -5 IPa—pI, 1.
Hence we have [p,—p| < o for every n. Therefore
1Pa—Pm| < |pn—pl+Ip—pml <20, ie. &Z)<20.

The proofs of the following theorems do not deviate from the
proofs given in elementary analysis for sequences of real numbers.

THEOREM 3. If p, = p for n=1,2, ..., then limp, = p.

n—-x
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THEOREM 4 (ON SUBSEQUENCES). If limp,=p and k, <k,
n—-o

< ..., then
lim p,, = p.

n—o

THEOREM 5. Every sequence pi, p,, ..., which is not convergent
to p, contains a subsequence none of whose subsequences is con-
vergent to p.

THEOREM 6. Neither the convergence of a sequence nor its limit
depend on the initial finite number of terms of this sequence.

This means that the addition or the omission of a finite number
of terms of a convergent sequence does not affect either its con-
vergence or the value of its limit.

THEOREM 7. If limp, = p = limg,, then the sequence p,, 41, D2,

n—-»o n-->ao

qs, ... is convergent to p.

§ 6. Limit in the cartesian product

Let Z = XXY be the cartesian product of the metric spaces
X and Y.

THEOREM 1. A necessary and sufficient condition that a sequence
of points z, = {X,, Vay of the space X XY be convergent to the
point z =<{x,y) is that limx, = x and limy, = y.

n—>w n—o

Proof. Let limz, =2z and let ¢ > 0. Hence there exists

n—>o0

k such that |z,—z| < ¢ for n > k. But since
[za—2] = {lxa =X+ ya—pI*}* = [x,—x

(cf. § 1, (4)), we also have |x,—x| < ¢ for n >k, i.e. limx, = x-

n-—»o

In an analogous manner we can prove that limy, = y.

n->»o0

Let us assume conversely that limx, = x and limy, = y. Let

e > 0. Then there exists a k such t’lllz.:) forn >k W:I’::Lve
[Xp—x| <& and |y,—y| <e,
whence
|za—z| = {|Xa—x|2+ya—|2}2 < e)/2.
Therefore limz, = z.

n—>o
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THEOREM 2. Let X, X,, ..., Xy, ... be uniformly bounded spaces
(see also Chapter XII, § 3, Remark 2). Let ¢ > 8(X,,) for m
=1,2,... Let x"= (x},x%,...,xh,..) for n=1,2,... be
a point of the space X; XXX ... XXX ... (i.e. xhe€X, for
m=1,2,...), metrized with the aid of formula (T) of § 3. A nec-
essary and sufficient condition that this sequence be convergent to the
point X = (X1, Xz, e, Xpy» --.) IS that imx}, = x,, for m=1,2,

n—»Q
ey le.
(limx" = x) = /\ ,(limx% = x,,).
n—o n-—»o0
Proof. Letl imx, = x and let ¢ > 0. Therefore, for a fixed

m there exists a k such that
[x" —x| < gf2™
for n > k.
Since, however,
(A/27)xp —%Xm| < %" —x]
by (7), we have

[X =X << 2M[X"—x| < 2™ 2" = ¢

for n > k.
This means that
11 " limx? = x,,.

Let us assume next that formula (11) holds for m=1,2, ...
Let £ > 0. Let 7 be an integer such that

(12) 1/2" < e.

Formula (11) for m = 1,2, ..., i implies that there exists k
such that for n > k the inequalities

(13)  Ii—xil<e, [Xj—x)|<e, ..., I¥—x|<e

hold. Therefore, because of (12) and (13),

I —xl = D (1/2")xn— x|

m=1
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= ) i —xa+ D Q2mixn—x.|
m=1

m=i+41

< MZ:’I 2+ D d(Xa)2m < etep

m=i4+1
for all » >k, i.e.
Ix" —x| < e(1+p).
Hence
limx" = x.

§ 7. Uniform convergence

This concept can be introduced in the same way as in elementary
analysis.

Definition. Let f,: X> Y, n=1,2,..., where X is
an arbitrary set and Y is metric. We say that the sequence f3, f5, ...
converges uniformly to f if

(14) NV A Nasil LG =) <ce.

Let us consider (as in § 2) the space D@(X, Y) of all bounded
mappings f© X — Y with the distance defined by formula (6)
of § 1.

" The definition of the limit in a metric space (see § 4) implies that

(limf, =f) = lim|f,—f| =0

= NV i/ \nsk(sup | /() —f(N)] < )
= /\e\/k /\n;k/\x(ffn(x)—f(x)] < 8)-

Thus we have the following theorem.
THEOREM 1. In the space ®(X, Y), the condition limf, = f means

n—>oo

that the sequence of mappings fi, f, ... converges uniformly to the
mapping f.

THEOREM 2. The limit of a uniformly convergent sequence of
bounded mappings is bounded.

Proof. Let ¢ >0. Let n be such that |f,—f] < e. Since
[fCe) ()l <IfOe0) —fa(x DI+ Ufa(X 1) —Sa(x2)|+ Ifa(x2) —f(x2)],
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it follows that
Sf(X)] < S[fu(X))+2e.

Exercises

1. Let &% be the complex number plane; for points z, z’e &2 (where
z # z') let |jz—Z’|| be defined as follows: in case the line zz’ goes through
the origin of the coordinate system, take [|z—z’|| = |z—2’|, and in the con-
trary case take [|z—z’|] = |z|+-|2’|, where |z| denotes as always the absolute
value of z. Furthermore, let ||z—z|| = 0. Prove that ||z—2z’|| can be treated
as the distance of z from z’, i.e. that it satisfies the conditions (1)-(3).

2. Show that if the sets 4 and B are not void and if 4 < B, then 8(4)
< 6(B).
3. Prove the inequality
3(4 Y B) < 6(4)+-4(B)

under the assumption that 4 A B # O.

4. A set of arbitrary elements is called an #*-space if to certain infinite
sequences p,, pa, ... of its elements (called convergent sequences) there cor-

responds an element p = lim p,, called the limit of the considered sequence
n—w

so that the Theorems 3-5 of § 5 hold true. Thus, metric spaces are £ *-spaces.
Show that Theorems 6 and 7 of § 5 hold in #*-spaces.
5. Let lim p, = p in an % *-space. Show that, if the sequence g1, g5, ...
n—>w
is derived from the sequence p;, p», ... by finite repetition of its elements,
then lim g, = p.

n—aw



CHAPTER X

TOPOLOGICAL SPACES

§ 1. Definition. Closure axioms

A topological space is a set X and a mapping assigning to each
set 4 <X a set A « X satisfying the following four axioms:

1y AUB= AU B,
(ID Ac A,
(111 =0,
(1v) A) = 4.

The elements of the space X are called points and the set A4 is
called the closure of A.

§ 2. Relations to metric spaces

We are going to show that every metric space (and in particular
Euclidean space) can be regarded as a topological space if the
following definition of the closure is assumed.

Definition. p belongs to 4 if and only if p is the limit
of a sequence of points belonging to A.

First, let us show the following theorem.

THEOREM 1. p € A if and only if
(1) KnA# O

for every open ball K of centre p.
For, if p = limp,, where p, € 4, then Kn A # & by virtue

n-—»o
of Theorem 1 of Chapter IX, § 5.

Next, let us assume that condition (1) is satisfied for every K.
Let K, = K(p, 1/n). By assumption, K, n 4 # O, i.e. for every
n there exists a point p, € K, n A. By the definition of K, we have
|pa—p| << 1/n, and therefore p = limp,. Inasmuch as p, € 4 we

n—w0

have p € 4.
123
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Remark. The above theorem can be formulated as follows:
A necessary and sufficient condition that the point p does not belong
to the set A is, that there exist a ball with centre p which is disjoint
from the set A.

THEOREM 2. Let X be a metric space. If the above definition of
closure is assumed, X becomes a topological space.

We have to show that the conditions (I)-(IV) are fulfilled.

Proof of property (I). Let pe Au B. This means
that p = limp,, where p,e Au B. It follows that there exists

n—» 0
a sequence of indices k; << k, < ... such that for every n we
have p;, € A or for every n we have p,, € B. Since p = limp,,

n—»ow

(by virtue of Theorem 4 of Chapter 1X, § 5) in the first case we
obtain p € 4, and in the second case p € B. Hence, in every case

we have pe AU B.
We have thus proved that

@ AUBcAuUB.
In order to prove the converse inclusion we shall show that
(9] (4 < By= (4 < B).

If p € 4, then p = limp,, where p, € A. Because of the inclusion

n—o0
A < B it follows that p, € B, and hence p € B.
Since Ac AU B and B < Au B, we deduce from (I') that

A<cAUB and Bc AU B,
and hence, adding these two inclusions memberwise, we obtain
(3) AUBc AUB.
Inclusions (2) and (3) yield (I).

Proof of inclusion (II). It suffices to note thatif p e 4
then p = limp,, where p, = p forn =1, 2, ... (see Theorem 3 of

n—»w

Chapter IX, § 5).
Formula (IV)_remains to be proved. By virtue of inclusion (II)
we have A < (4). Therefore, it sufficss to prove that (4) < 4.
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Hence, let p € (4). By virtue of Theorem 1 for every ball K of
centre p we have K n 4 # @. Hence, let ge K n A. Let us
choose a ball L of centre g such that L = K. Since ge 4, L is
a ball with centre g, and hence (by virtue of Theorem 1) we have
LnA# @. But since L < K, we therefore have (L n A)
c (K n A), whence K 1 A # @. We deduce from this that p € 4
(by virtue of the very same Theorem 1).

§ 3. Further algebraic properties of the closure operation

Let X denote a topological space. The following formulas hold.
1. (A< B) = (A< B).

Proof (this formula denoted by (I') was proved for metric
spaces in § 2). Obviously

(A4<B)=@®

Il

Avu

]

).

_Hence B= AU Band by (I) B= AU B. But this means that
Ac B.

2. A—B < A—B.

Proof. 4 uB=(4—B) u B, and therefore

Au B=(4A—B)uU B.
From this, by virtue of formula (I), wehave 4U B= A—BU B
and hence Ac A—Bu B, whence A—B < A—B.
3. . AnBc ANB.

Proof. Since An_Bc:A and AQBCB, we have, by
virtue of (I'), AnBc 4 and A n B = B, and therefore AN B
cAn B.

More generally, the following formula is valid:
4. n:A: < ﬂ:zn

where the variable # ranges over an arbitrary set T.
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Proof. Since for every se T we have [ 1,4, < A, hence
by virtue of formula 1 we have ﬂ A, < A,, and from this we
get ﬂ A, = (sAs. Replacing the index s by ¢ we obtain
formula 4.

5. U4, < U;ﬂ,.

Proof. Forevery s we have A,< U, 4,, and hence by virtue
of formula 1 we have A, U A,, and U4, < U, 4,. From
this we obtain formula 5. ’

6. X=X.

This follows directly from axiom (IT).

§ 4. Closed sets. Open sets

Definitions. A setis said to be closed if A = A, that is
(because of axiom (II)) if 4 4.

A set. A is said to be open if its complement is closed, or in
other words, if 4 = X—X—A, where X is the entire space.

Thus, in a metric space, the condition for a set A to be closed
can be expressed by the implication

(lim x, = x)(x, € A) = (x € 4).
n—00

The condition for a set 4 to be open (in a metric space) is that
each point of 4 belongs to an open ball contained in 4 (compare § 2,
Remark).

ExAMPLES. 1. The null set is a closed set, ie. @ =@ (§ 1,
axiom (III)); the entire space is a closed set (§ 3, property 6).
It also follows from this that the null set and the entire space are
open sets.

2. In the space of real numbers the closed interval a <X x << b
is a closed set. Our terminology is therefore in agreement with the
terminology used in analysis. On the other hand, the open interval
a < x < b is an open set (which is not closed).

3. If fis a continuous real valued function defined on the closed
interval a < x < b, then this function, i.e. the set of points

={{x, 0 Iy =f)] (@< x < b},

is a closed set.
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For, let p € 4, i.e. p = limp,, where p, € A. The points p, are

n—»0Q

therefore of the form

(4) Pn = <xn ,f(xn)> ’

%) a<x,<b.
Let p = {x, y>. Since p = limp,, we have (compare Theorem 1

of Chapter IX, § 6)

(6) limx, = x,

n—0

) lim f(x,) = .

It follows from (5) and (6) that a << x < b.

But because of the continuity of the function f, it follows from
(6) that

}.ii?of (xs) = f(x),

and hence y = f(x) by virtue of (7), i.e. p=<x,f(x)> and by
the definition of the set A we have p € 4.

We have thus proved that 4 < 4, i.e. that 4 is closed.

Remark. As seen in Example 1, every nonvoid space
X contains two closed-open subsets, namely & and X. A space
which contains no other closed-open subset is called connected
(connected spaces will be studied in Chapter XVII).

§ 5. Operations on closed sets and open sets

THEOREM 1. The union of two closed sets is a closed set.
For, if the sets 4 and B are closed, i.e. A = A4 and B = B, then

AUB=AUB=A4 uB.

This theorem can be generalized (by induction) to an arbitrary
finite number of sets. The union of an infinite number of closed
sets may be a non closed set; if e.g. 4, = {1/n} then the union
Ay U A, U ... is not a closed set (in the space of real numbers),
since the point 0 does not belong to it but it belongs to its closure.

THEOREM 2. The intersection of an arbitrary number of closed
sets is a closed set.
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In fact, if the sets 4, are closed, i.e. A, = A,, then by formula
4 of § 3, we have

mtAtC ﬂ:zt = ﬂ:Az,

and hence the set (), 4, is closed.

THEOREM 1'. The intersection of a finite number of open sets
is an open set.

THEOREM 2'. The union of an arbitrary number of open sets is
an open set.

These properties follow from Theorems 1 and 2 using De Morgan
formulas (see Chapter II, § 4, (30) and Chapter 1V, § 2, (4)):
X—(AnB)=(X—-4) v(X—B), X—U, 4, =M. (X—-4).

For, if the s=ts 4 and B are open, then the sets X—A4 and X—B
are closed, and hence the set X—(4 nB) = (X—4)u (X—B)
is also closed, i.e. the set A n B is open. The generalization
of the theorems to the case of an arbitrary finite number of sets
is immediate.

If the sets A, are open, i.e. the set X—A, are closed, then the
set X—\J, 4, = (), (X—4,) is closed, and hence the set { J,4,
is open.

Remark. Theorems 1, 1" and 2, 2’ are examples of a duality
in topology: to every theorem on closed sets there corresponds,

by virtue of the De Morgan formulas, a theorem on open sets,
and conversely.

THEOREM 3. The set A is the smallest closed set containing A;
in other words, A is the intersection of all closed F such that A c F.

Equivalently

(8) ped= /\r(4d < F)= (p eF), whenever F is closed;
otherwise stated

9) ped= /\G(peG) = (A NG # O), whenever G is open.

Proof Yetpedand 4 < F. Hence A = F= F and con-
sequently p € F.

Conversely, if (4 = F)= (p € F), we obtain p € A substituting
A for F (according to axiom (IV)).
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(9) is equivalent to (8), since the implication (4 = F) = (p e F)
is equivalent to (p ¢ F) = (4 ¢ F), hence to

(peX—F)= [An(X—F)+# O;

thus it is sufficient to substitute the variable G (open) for F (closed).

§ 6. Interior points. Neighbourhoods

Definition 1. The set Int(4) = X—X—A is called the
interior of the set A.

Obviously, the condition p e X—X—A4 means that p ¢ X—A.
Therefore (see § 5, (9)), p is an interior point of A (i.e. p € Int (A))
if and only if there is an open G containing p and such that
Gn(X—A) =

It follows that A is open iff 4 = Int(4).

The interior operation is dual to the closure operation. Thus
the following statements (which can be easily proved) are dual
to the statements (I)-(IV) of § 1:

t9 Int (4 N B) = Int (4) nInt (B),
() Int (4)c 4,

(L) Int (X) = X

av’ Int [Int (4)] = Int (4).

It should be noted that the interior operation can be taken
as the primitive term in the definition of topological space instead
of the closure operation.

Also one easily sees that Int (A) is the largest open set contained
in A (this is dual to Theorem 3 of § 5).

Definition 2. A set 4 is said to be a neighbourhood of
a point p if p e Int(4), i.e. if p is an interior point of the set A4.

Hence an open set is a neighbourhood of each of its points,
Every neighbourhood of the point p contains an open neighbour-
hood of the point p, namely its interior.

We say, more generally, that A is a neighbourhood of the set B
if B <= Int(4).

Every set containing a neighbourhood of p is itself a neighbour-
hood of p. The intersection of two neighbourhoods of p is a neigh-



130 SET THEORY AND TOPOLOGY

bourhood of p (by (I')). Thus the family of all neighbourhoods of
p is a filter.

Definition 3. The set Fr(4) = A nX—A is called the
boundary of A.

Clearly, every neighbourhood of a point p e Fr(d4) intersects
A and X—A4.

ExampLEs. 1. The interior of the closed interval a << x < b
in the space of real numbers is the open interval a < x < b and
its boundary is the set consisting of its endpoints a and b.

2. The interior of the closed disk {x: |x—p| < ¢} on the plane
is the open disk {x: |x—p| < o} and its boundary is the circum-
ference {x: [x—p| = p}. :

§ 7. The concept of open set as the primitive term of the notion
of topological space
Let X be an arbitrary set and let R be a family of subsets of X
such that

(i) the union of an arbitrary number of sets belonging to R
belongs to R,

(ii) the intersection of a finite number of sets belonging to R
belongs to R,

(iii) J e R,

(iv) XeR. _

THEOREM. R gives a topological structure to X by assuming
that R is the family of open sets of X.

More precisely: define the closure operation by the condition
(9) of § 5 where G ranges over R; then the axioms (I)-(IV) are
fulfilled. Moreover, the family of sets which are open relative
to this definition (according to the definition given in § 4) is
identical with R.

Proof. In order to show that the above defined closure
satisfies (I), put p € 4 U B. We have to show that either p € 4
or p € B. Suppose the contrary is true. Then there exist by (9)
two sets GeR and He R such that peG, pe H, GNnA =0
and H nB = . It follows that

pe(GNn H) and (G Hn (An B)y=@.
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Hence p ¢ A U B because by (ii) (G~ H)eR.

Thus A U B = A U B. The converse inclusion follows directly
from (9). The case of conditions (I1) and (IIT) is similar.
Finally, in order to prove (IV), it is sufficient to show that

(pe 7) = (pe A). Now let pe G e R; we have to show that
A G # 9. Substituting in (9) A for 4, we get A n G # O. Let
ge AnG. It follows by (9) (where p has to be replaced by ¢)
that A n G # O.

We are now going to show that the family of open sets in the
sense of the closure defined according to the condition (9) (with
G € R) is identical with R. Let 4 be open. Hence by (9)

(ped)=@¢X—A)=\/¢(peGeR[(X—A) G = 0]

Thus, A4 is the union of some elements of R (namely, of elements
contained in A4), and therefore 4 € R (by (i)).
Conversely, if 4 e R, A is obviously open.

Remark 1. Another equivalent form of defining topological
space (dual to the preceding) consists in assuming the term closed
set as the primitive term. One will only need to replace in the
conditions (i) and (ii) “union” by “intersection” and vice versa.

Remark 2. Conditions (iii) and (iv) follow from (i) and (ii)
if we agree that the number of elements of R may be zero.

§ 8. Base and subbase

Definition 1. A family B of open subsets of the space X is
called its (open) base if every open G < X is the union of a certain
number of members of B.

A family § of open subsets of X is called its (open) subbase
if the family of all finite intersections of members of § is a base
of X.

Thus the family R of all open subsets of X is generated by
B by means of the union operation. R is generated by S by means
of two operations: the finite intersection operation and the union
operation.

Remarks. The notions of a base and of a subbase lead
to a very general method of introducing topology in an arbitrary
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set X. Namely if R fulfills condition (ii) of § 7, then X becomes

a topological space if we declare that R has to be its base.
Similarly. if F is an arbitrary family of subsets of X, then X be-

comes a topological space if we assume that F is its subbase.
This follows easily from the formula

(UsAs) n(UtBt) = Us,t (4; 0 By)
where A; € B and B, € B (hence (A4, n B,) € B).

Definition 2. A space having a countable base (but
having no finite base) is said to be of weight q.

Generally, the weight of a space is the least cardinal m such
that the space has a base of cardinality m.

Definition 3. A (metric separable) space is called 0-dimen-
sional if it contains a base composed of sets which are simul-
taneously closed and open.

ExampLES. In the space & the family of all open intervals with
rational endpoints is a base. The open rays x >r and x <r
form a subbase of &.

In the space &" the family of all open balls K(p,r) where
r is rational and p has rational coordinates is a base.

The spaces: & (of integers), # of rational numbers, 4" of
irrational numbers are 0-dimensional.

§ 9. Relativization. Subspaces

Each subset E of a topological space X can be regarded as
a topological space when we assume that the set @ < E is open
relative to E if Q is the intersection of E and of a set G open in X.
It is easily seen that the family of open sets relative to E satisfies
conditions (i)-(iv) of § 7, and thus E becomes a topological space
(with the topology induced by the topology of X).

It follows that a subset P of E is closed relative to E if and
only if it can be written in the form P = E n F where F is closed

in X. The closure of 4 < E relative to E equals E n A.

§ 10. Comparison of topologies

Given a set X, there are—generally speaking—various ways
of introducing topology in X. One can, for instance, assume that



X. TOPOLOGICAL SPACES 133

every subset of X is open; this is the topology called discrete.
One can, on the contrary, assume that the only two open sets
are the void set and the whole space; this is the coarsest topology,
the first one is the richest (the finest) topology.

The totality of all topologies of a given set X can be ordered.
Namely denote by (X, R) the topology of X having R as the family
of all open sets and let us agree that

(X, R)) < (X, R))] = (R, = Ry).

Thus (X, R,) is coarser than (or equal) (X, R,). Of course,
the family of closed sets of the first is contained in the family of
closed sets of the second; the closure of a set A4 in the first topology
contains its closure in the second.

§ 11. Cover of a space

Definition. A family C of open subsets of X is called an
(open) cover of X if X = | C, i.e. if each point of X belongs
to some member of C (compare Chapter IV, § 5).

C, is called a subcover of C if C,= C.

The concept of a cover gives rise to a number of important
topological notions which will be studied later.

For instance, X is said to be compact, if every cover of X con-
tains a finite subcover. X is called countably compact if every
countable cover contains a finite subcover. X is called a Lindelof
space if every cover contains a countable subcover.

THEOREM. Let B be an open base of X and C an open cover
of X. Then there exists a cover R which is a refinement (see Chapter
1V, § 5) of C such that R < B.

Proof. Let C = {G,} and let {H,} be the family of members
of B such that for each s there is #(s) such that

M H,c Gy,

{H,} is a cover of X. For let p be a given point of X. Since {G,}
is a cover of X, there is ¢, such that p € G, , and since B is a base
of X there is s, such that p € H, = G, . Hence H,  is a member
of {H}.

Remark. Let B be an open base of the space X. If every
cover of X composed of elements belonging to B contains a finite
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(resp. countable) cover, then X is compact (resp. is a Lindel6f
space); in other words, in order to show the compactness or the
Lindelo6f property of a space X we can limit ourselves to the
consideration of covers contained in B.

Exercises

1. Prove that if the set G is open, then the following rules are valid for
every set A:

(a) GAASGn 4,
(b) GARA=Gn A.

2. Prove the formulas:

@ A< B implies Int(A) < Int (B),

(b (U Int (4)) = It (\J, 4,),

© Frid) =An X —A4 U (4A—A),

(d) = A U Fr(4),

(e) Fr(4 v B) v Fr(4 ~ B) v (Fr(4) n Fr(B)) = Fr(4) L Fr(B),
() Fr[int (4)] e Fr(4),

(8 Int (4) A Fr(4) =,

(h) Fr{Fr[Fr(4)]} = Fr[Fr(4)).

3. Prove the equivalences:
(A s closed) = (Fr(4) = 4 ~ X—A),
(4 is open) = (Fr(4) = A—A4).
(4 is a difference of two closed sets) = (4—A4 is closed).

4. Let {4,} be an arbitrary family of sets open relative to their union.
Prove that

@ Int (UJ: 4p) = UJ; Int (4)),

(ii) int (U 40y = U Int (49).
5. Prove that the following two properties of a topological space are
equivalent:

(i) the closure of each open set is open (a space with this property is called
extremally discontinuous),

(ii) whenever two open sets are disjoint, then their closures are disjoint.

6. Suppose that X contains a countable base. Then every base contains
a countable subfamily which itself is a base.
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7. A family of sets {A,} is called locally finite, if each point p is contained
in an open set G which intersects only a finite number of sets A4,. Show that

U At = UtAt-

8. Let C; and C, be covers of X. Recall that C, is a refinement of C, if
each member of C, is a subset of a member of C,. Write in this case C, < C,.
Show that this relation is a quasi-order (see Chapter VII, § 1) in the totality
of all covers of X and that this totality is directed by this relation.

Remark. X is called paracompact if each cover has a locally finite
refinement. Each metric space is paracompact (A. H. Stone theorem).t

9. Two sets A and B are said to be separated if
A~AB=@ =An B.
Show that A and B are separated iff they are disjoint and closed in 4 U B.

10. If two subsets 4 and B of X are separated, the set X—(4 U B) is
said to separate A from B.
Show that Fr(A4) separates Int(4) from Int(X—A).

11. Prove that if we apply to a set 4 < X two operations, 4 and X—A
then the maximal number of sets that we can obtain is 14. Namely (write

A" instead of 4 and A€ instead of X—A): A, A-, 4¢, A—¢, 4c—, ..., 4—c—c—c,

Ac—c—c—c,

Verify that all the general valid inclusions are exhibited in the following
table:1

X—L‘ (4

c_, xye-c-c-c X—c c~ L, X-

/\

—_,Xt'cc chc— , Xe-
XC =~ F
12. Prove that in a metric space 8(4) = 8(A).

t A simple proof of this theorem is given by M. E. Rudin in Proc. Amer.
Math. Soc. 20 (1969), p. 603.
¥ For typographic reasons we write — instead of < .



136 SET THEORY AND TOPOLOGY

13. Let X be a metric space. We say that a point p € X belongs to the lower
topological limit of the sequence of sets A,, A, ... contained in X, i.e.

pe Li A4,
n->o

if every neighbourhood of p intersects all 4, with sufficiently great indices.

Prove the following formulas:
. Lid, = Lid, = Li4,,
A, © B, - Lid, < LiB,,
. Lid, ULiB, < Li(4, Y B,),
. Li(4, A By) < (Lidy) A (LiB,),
. liminfA4,, < LiA4, (comp. Exercise 6 of Chapter IV),
. Li(4, %X By) = LiA, xLiB,.

14. Let X be as before a metric space. We say that a point p e X belongs
to the upper topological limit of the sequence of sets 4, A4,, ... contained in
X, ie.

AV AWN =

pe Ls A,
>0

if every neighbourhood of p intersects A4, for infinitely many n.

Prove the following formulas:
. LsA, = LsA, = LsA,,
A, < B, =» LsA, < LsB,,
. Ls(4, v B,) = LsA4, Y LsB,,
. Ls(4, ~ Bp) < LsA, ~ LsB,,
. if A, = A4 then LsA, = 4,

. Lsdp = YneolUko0dn+xs

. Ls(4,xB,) < Ls4,xLsB,,

. LsA,~LsB, < Li(4,—B,),

. Li(4, U B,) < Lid, ULiB, U (Ls4, ~ LsB,).
15. If Li 4, =Ls A, we use the notation

H— 0 n—

R R Y N N N

Lt A, =Li A4, =1Ls A,

n— o0 n->o0 n—-o

and call the set Lt A4, the topological limit of the sequence A4,, A4,, ....

n—o0
Prove the following formulas:

. Ltd, = Lt4, = Lt 4,,

. Lt(4, V B,) = LtA4, U LtB,,

. if4, = A, then Lt 4, = 4, o
.ifd; < A, < ..., then Lt4, = U1 4,,
. ifd; > A, > ..., then Lt A, = [ Jae1A4,,
. Lt(4, X B,) = Lt 4, XLt B,.

AU H W N



CHAPTER XI

BASIC TOPOLOGICAL CONCEPTS

§ 1. Borel sets

Borel sets are sets which belong to the smallest family R of
subsets of a given space satisfying the following conditions:

(a) every closed set belongs fo R,

(b) if X,eR for n=1,2, ..., then \J,_ X, R,

(©) if X,eR for n=1,2, ..., then [ 1o X, € R.

A family of Borel sets is therefore, in the sense of the terminology
of Chapter IV, § 7, a Borel family generated by the family of closed
sets.

Making use of ordinal numbers we can classify Borel sets in
classes R,, where a < 2, in the following manner.

1. The class R, is the family of all closed sets.

2. For o = A+n > 0, where A is a limit ordinal and »n is a non-
negative integer, the class R, is the family of all sets of the form

ﬂf:l X, or U:c—:—_le’

according to whether n is even or odd, and the sets X, X;, ...
belong to classes of indices smaller than a.

In particular, the class R, is the family of all countable unions
of closed sets; they are called F,-sets. The class R, is the family
of intersections of a countable number of F,-sets (they are called
F,s-sets), and so forth.

It can be proved that for every a << 2 there exists in the space
of real numbers a set of the class R, which does not belong to any
class with index smaller than a.

Remark. If we start with open sets, instead of closed sets
(cf. condition (a)), we obtain the Borel family generated by the
family of open sets (which, as can be proved, is in metric spaces
identical with the Borel family, considered above, generated by
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the family of closed sets; sce Chapter XII, § 4). Here the open
sets form the zero class, the Gs-sets, i.e. countable intersections
of open sets form the first class, the G;,-sets form the second
class, and so forth. This classification is dual to the classification
previously considered.

§ 2. Dense sets and boundary sets

A set A is said to be dense if 4 = X. A set A is said to be a

boundary set if its complement is a dense set, i.e. if X—4 = X.
(A set whose closure is a boundary set is also said to be a nowhere
dense set.)

Obviously, every set which contains a dense set is dense and
a subset of a boundary set is a boundary set.

In the space & of all real numbers, the set of rational numbers
is both a dense and a boundary set. In the plane &? a straight
line is a boundary set.

It can be easily proved (applying formula (9) of Chapter X, § 5)
that the following theorems are valid:

THEOREM 1. A set A is dense iff in every open set (# ) there
exist points which belong to A.

THEOREM 2. A set A is a boundary set iff in every open set (# O)
there exist points which do not belong to A.

THEOREM 3. A closed set A is a boundary set iff for every open
set (# Q) G there exists an open set (# @) H = G such that
HnAd=0.

The union of two boundary sets might not be a boundary set.
For example, the set of all rational numbers and the set of all
irrational numbers are boundary sets (in the space of real numbers),
but their union is not a boundary set.

On the other hand, the following theorem can be proved:

THEOREM 4. If a set A is a boundary set and the set B is a closed
boundary set, then A U B is a boundary set.

Hint for the proof. Applying formula 2 of Chapter X, § 3, we
have

X—B=X—A—B < (X—A)-B=X—(Au B).
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§ 3. 7 ,-spaces. J ,-spaces

Definition 1. A topological space X is called a 7 ,-space
if each single element set is closed:

¢))] {p} = {p} foreach peX.

Clearly, every metric space is a 7 ;-space.

On the other hand, there are topological spaces which are not
J y-spaces. Such is e.g. each space X containing more than one
point and containing only two open sets: @ and X.

The topological spaces which are under consideration in this
book are—as a rule—assumed to be J ;-spaces; this assumption
will not always be explicitly formulated.

Definition 2. A topological space is called a Hausdorff
space (or a I ,-space, or a separated space) if for each pair of
points p # g there are two open sets G and H such that

) peG, qeH and GnH=0.
Clearly, each metric space is a 7 ,-space.
THEOREM. Each T ,-space is a T ,-space.

Let p be a given point. By assumption, each x # p belongs to

an open G, such that p is not in G,. Consequently, X —{p} = (U G,.
. XED

Thus X—{p} is open, and {p} is closed.

Remark 1. There exist I |-spaces which are not 7 ,. Such
is the space composed of the points 1/n forn=1,2, ... and the
point 0 with the following topology: Open sets which do not
contain the point 1 are identical with open sets in the usual topo-
logy of real numbers; sets,containing 1 are open if and only
if they are complements of finite sets. Obviously, each open set
containing 0 is infinite, and consequently the points O and 1 cannot
be separated by means of disjoint open sets.

Remark 2. It is easy to show that the properties of being
a J i-space and of being a J ,-space are hereditary; that means
that every subset of a 7 ;-space is 7 ; and every subset of a 7 ,-
space is J 5.

§ 4. Regular spaces, normal spaces

A notion less general than that of a J ,-space is the notion
of a regular space.
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Definition 1. A topological space is called regular if
every point p and every closed set F which does not contain p can
be separated by disjoint open sets; i.e. if there are two open sets G,
and G, such that

3) peG,, Fc G, and GonG,=0.

This can be stated equivalently: if there exists an open set G such
that

“) peG and GNF=0.

A still less general notion than that of a regular space is the
notion of a normal space.

Definition 2. A topological space is called normal if
for each pair of disjoint closed sets 4 and B, there are two disjoint
open sets G and H such that

(i) AcG and BcH.

Equivalently stated, if for each pair 4 « C where 4 is closed
and C open, there is G open such that

(ii) AcG and G cC.

The implication (i) = (ii) follows by substituting B = X—C.
In order to obtain the converse implication we put C = X—B
and H=X—G.

Remark 1. Obviously every normal J ,-space is regular.
The converse is not true; moreover regularity is hereditary, while
normality is not (see Exercise 10).

On the other hand, every metric space is normal (see Chapter XI1,
§ 4, Theorem 6).

Remark 2, If X is regular and B is its base, then every open
set G is the union of some members of B whose closures are con-
tained in G.

For, let p € G and let p € H where H is open and H = G (the
existence of H follows from the regularity of X). Since B-is a base
of X, we have H = |_J,R, where R, € B. Hence there is ¢ such
that p € R,. Obviously R, « H = G.

Remark 3. If X is regular, the Theorem of Chapter X,
§ 11 can be strengthened in the following way: we assume that
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not only the cover R < B is a refinement of C but that the family
of closures of members of R is a refinement of C.

To show this one has only to replace in the proof H, by H,.

§ 5. Accumulation points. Isolated points

Definitions. p is an accumulation point of the set A4 if
peA—{p}.

p is an isolated point of A if p belongs to A but is not its ac-
cumulation point.

For example, the point O is the only accumulation point of the
infinite set A of points 1, 1/2, 1/3, ...; all these points are isolated
points of A.

It is easy to prove the following theorems.

THEOREM 1. p is an accumulation point of A iff every open set
containing p contains a point of A different from p.

THEOREM 2. p is an isolated point of A iff there is an open set
G such that G nA = {p}.

Consequently, p is an isolated point of the space iff the set {p} is
open.

THEOREM 3. If X is metric, then p is an accumulation point of
X iff

p= limp, where p,7# p.

n—>w

§ 6. The derived set

The set of all accumulation points of 4, denoted 4%, is called
the derived set of A.

In 7 ;-spaces the derived set has the following properties.

1. A= Au 4%,

2. (Au B)! = 440 B,

3. UtAgC (UtAt)d’

4. A% < 44,

5. A% = A°.

The formulas 1-3 can be easily proved (they hold in every
topological space). Let us establish formula 4.
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Suppose that p ¢ 4% ie. p ¢ A—{p}. There is therefore an
open G such that pe G and G n4A—{p} = @. Suppose (con-
trary to 4) that p e 4%, ie. p e A°—{p}. Since p € G, we have
GnA'—p+# B, and there is g# p such that ge G 4% It
follows that

qe(G—{p)nA—{q}, hence (G—{p}) n(4—{g}) #0,

since G—{p} is open (the space bemg supposed 7 ;). But this
contradicts formula G n 4—{p} =

Formula 5 is an easy consequence of 1 and 4.

Remark 1. If the space is not 7, formula 5 (hence 4) may
not hold. Such is the case if X = {p, q} where p # ¢ and where
the topology is trivial. For {p}? = {q} while {g} = {p, q}.

Remark 2. In contrast to the closure, the second derived
set need not necessarily be equal to the first. If, for example,
A consists of the points 1,1/2,1/3, ..., then A9 consists of the
_ point 0, and A% is the null set. If 4 is the set of numbers of the
form 1/n+1/m (n,m =1,2,...), then A # A% # A% = @.

§ 7. Sets dense in themselves

Definition. A set each of whose point is an accumulation
point of this set is said to be a set dense in itself.

Hence these sets are characterized by the inclusion

A < A¢

or—what amounts to the same—by the condition that they do
not contain isolated points.

In 7 ;-spaces one has the following theorems.

THEOREM 1. The closure of a set dense in itself is dense in itself.

Proof. Let 4 be a set which is dense in itself and therefore

satisfies formula (4). From this, by virtue of formula 1 of § 6, we
infer that

(5) Al=A4 v A= 4,
and therefore, applying formulas 2 and 4 of § 6, we obtain
(AF = (4 U 49" = A0 A7 = 44,

whence by (5), we have (4)? = A. Hence, the set 4 is dense in
itself.
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THEOREM 2. The union of an arbitrary family of sets which are
dense in themselves is a set dense in itself.

For, if A, = A2, then, by virtue of formula 3 of § 6, we have
UtAt < A:’ = (UtAr)d'

THEOREM 3. Each J ,-space is the union of two sets of which one
is closed and dense in itself and the other does not contain any
non-empty subset which is dense in itself.

Proof. Let C denote the union of all subsets of the given
space which are dense in themselves. It follows from Theorem 2
that the set C is dense in itself and therefore, by virtue of Theorem 1,
the set C is also dense in itself and hence is a subset of the set C.
Thus C < C, i.e. the set C is closed. Finally, the set X —C, being
disjoint from C does not contain non-empty sets which are dense
in themselves.

Remark. Sets which are simultaneously closed and dense
in themselves are also called perfect sets. They are therefore
characterized by the identity A = A4“. Sets which do not contain
any non-empty subset which is dense in itself are called scattered
sets.

Exercises

1. Prove that: (a) the complement of a Gs-set is an F,-set, (b) the union
of an infinite sequence of Fy-sets is an Fy-set; the intersection of two Fg-sets
is an F,-set. State thegrems on Gj-sets which are the duals of (b) (use the De
Morgan rules).

2. Prove that the intersection of any collection of topologies for X is
a topology for X.

3. Every open subset of a dense in itself space is dense in itself.

4, If the sets A and X—.A are boundary sets, then the space X is dense
in itself.

5. The set Int [Fr(A4)] is dense in itself.
6. We say that a J,-space X has the property (A) if
A,B<Xand ANB=0) = A4 B =0,

Prove that X has property (A) iff for every accumulation point x e X the
family of sets {V : ¥ v {x} is a neighbourhood of X} is a maximal filter.

7. Show that every subset of a regular space is regular.

8. Prove that X is normal iff the condition X = G v H, where G and
H are open sets, implies the existence of closed sets 4 and B such that

X=AUVUB, A< G and B<H,
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9. Prove that, if every open set of a normal space is normal, then the set
is hereditarily normal (i.e. every subset of the space is normal).

10, Let X ={x:a< 2} and Y = {f: f < o} with the natural (order)
topology (i.e. with topology generated by sets {a: o < f} and {x:a> B}).
Show that the cartesian product (see Chapter XII, § 1) XX Y is normal,
while the set (XX Y)—<{R2, w) (called the Tychonov plank) is not.

11. Show that a space is hereditarily normal iff for each pair of separated
sets A and B there are two disjoint open sets G and H such that 4 < G and
B< H,

12. Let X be a normal space. Two systems of sets A, ..., 4, < X and
B,,...,B, < X are called combinatorially equivalent if the equivalence

(A,'1 NN A4y, =0= (B,-l(\ JERIPEN B"k =0)

holds for every sequence of indices (< n).

Prove that for every system Fy, ..., F, of closed sets there exists a com-
binatorially equivalent system G,, ..., G, of open sets such that F; < G; for
i=1,...,n

Hint: The proof is by induction. First define an open set G, in such a way
that the systems G;, Fj, ..., F, and Fy, ..., F, are combinatorially equivalent

13. Deduce the following corollary from the preceding theorem:
Let X be a normal space. If the sets G,,G,,..., G, are open and
X =G, VG, V... UG,, then there exist closed sets Fy, F, ..., F, such that

FFUF, .. UF,=X and F;<G; for i=1,2,...,n

14. Consider in the space of rational numbers the subbase S consisting
of open bounded intervals and of the set of dyadic numbers (of the form
k2™

Show that the space generated by S is a non-regular ,-space.



CHAPTER XII

CONTINUOUS MAPPINGS

§ 1. Continuity

Definition. Let X and Y be topological spaces and let
f: X - Y. fis said to be continuous at the point x, if

0y Xo € A = f(xo) €f(A) for each A < X.

Mappings continuous at each point are called, briefly continuous.
The set of these mappings is denoted (Y*),,,, or briefly Y*—when
no confusion can occur with the notation of Chapter IV, § 1.

THEOREM 1. Condition (1) is equivalent to
() Xo €fY(B)=> f(x,) € B for each B < Y.

Proof 1. Suppose that (1) is true and that x, € f~1(B).
Put A =fYB) in (1). It follows that f(x,) €f[f~!(B)]. But
fIf~Y(B)] < B (by Chapter IV, (18)). Hence f(x,) € B.

2. Suppose that (2) is true and that x, € 4. Put B = f(4) in
(2). As 4 < f[f(4)] = f~1(B) (by Chapter IV, (19), so x, € f~1(B),
and (2) yields f(x,) € B, hence f(x,) € f(A).

COROLLARY 1. The continuity of fat x, is equivalent to the
Jollowing condition: if C is a neighbourhood of f(x,), then f~1(C)
is a neighbourhood of x,. In other words: if f(x,) e H and H is
open (inY), then there is an open G (in X) such that x, € G and
AG) = H.

Proof. Substitute Y—C for B in (2). One obtains the equiva-
lent formula (compare Chapter 1V, (17a)):

2)  flx))eX—Y—C = x, e X—f-(Y—C) = X—X—f1(C),
ie.
2 S(xo) € Int(C) = x, € Int[f~1(C)].

This completes the proof of the first part of the Corollary.
Its second part follows from the fact that in each neighbourhood
of a point there is an open set containing this point.

145
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THEOREM 2. f is continuous iff

3) f(A) = f(A) for each A = X.
Equivalently: iff

4 f~'(B) = f~(B) for each B Y.

Proof. 1. Suppose that f is continuous and let y, € f@
Hence there exists x, € 4 such that y, = S(xo). By (1) f(x,) € f(4),
hence y, €f(4). Thus inclusion (3) is true.

2. Suppose (3) is true and let x, € A. Hence

f(xo) f(A) = f(4), therefore f(xo) € f(A).

Thus f is continuous at x,.

The proof of the second part of Theorem 2 is similar.

COROLLARY 2. [+ X — Y is continuous iff f~1(B) is closed whenever
B = Y is closed; equivalently—iff f~*(B) is open whenever B < Y
is open.

Proof. To prove the necessity of the condition, we put
B= B in (4).

Conversely, suppose that the inverse image of each closed set
is closed. Then we have, for arbitrary B < Y, f~1(B) = f~'(B),
and (4) follows since f~'(B) < f~'(B).

The second part of the Corollary follows from the first one by
virtue of the identity f~!(Y—B) = X—f~1(B).

COROLLARY 3. Let S be a subbase of Y and let f: X - Y. If
f1G) is open for each G € S, then f is continuous.

Proof. Since the family of all open subsets of Y is generated
from § by means of two operations, the finite intersection and the
union, our conclusion follows from the formulas

f‘l(tht) = m,f"l(Qr), fAI(UtQt) = Utf_l(Qt)-

THEOREM 3. The composition of two continuous mappings is
a continuous mapping.

More precisely, if /1 X > Y, g: Y> Z, h=gof and f is
continuous at x, and g is continuous at y, = f(x,), then h is con-
tinuous at x,.
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Proof. Letx, € A. Then f(x,) € f(A), hence g[f(xo)] e g[f(4)],
i.e. h(xo) € h(A).

§ 2. Homeomorphisms

Definition. If the mapping f of the space X onto (the
whole) space Y is continuous and one-to-one, and its inverse
f~! is also continuous, then we say that f is a homeomorphism,
and the spaces X and Y are said to be homeomorphic (or of the
same topological type). We then write

X =Y (topological equivalence).
top

If X =Y, a homeomorphism is called a topological automor-
phism.

The homeomorphism relation is clearly reflexive, symmetric,
and transitive.

THEOREM 1. Each of the following conditions is necessary and
sufficient for a one-to-one mapping f to be a homeomorphism:

() Sf(A) = f(A) for every A < X,
(%) f1(B) =f-'(B) for every B < Y.

Proof. By § 1, (3), the inclusion f(4) = f(4) is equivalent
to the continuity of £, while the inclusion f{4) < f(4), by § 1, (4),

is equivalent to the continuity of /1. The second part of the theo-
rem can be proved in a similar way.
THEOREM 2. A necessary and sufficient condition for f to be

a homeomorphism (where X is supposed to be a I ,-space) is the
Jollowing :

(i) A = f1(f(4)) for every A c X,
or equivalently
(ii) (x e 4) = (f(x) ef(A)).

Proof. Iffis one-to-one, our statement is true, for then (ii)
is equivalent to (i). It remains to show that a function satisfying

(ii) is one-to-one. Let f(p) = f(g). Then {p} = f~(f(p)) = (D)

= Q}’ whence {;} = {;} and finally p = ¢.
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Remark 1. Each property of the space which is invariant
under homeomorphisms is called a ropological property. It follows
from (ii’) that every property expressed in terms of the operation
A (and of operations of set theory and of logics) is topological.

More generally, if a point a (or a set A4, or a family A of sets,
and so on) has a given property with respect to the space X and
if fis a homeomorphism which maps X onto a space Y, then the
point f(a) has the same property with respect to ¥ (provided
that the property is expressed as above).

Thus it is impossible to distinguish between two homeomorphic
spaces by any topological means. Similarly, if 4 and B are two
sets situated in the spaces X and Y, respectively, and if there
exists a homeomorphism of X onto Y which maps 4 onto B,
then the sets 4 and B are indistinguishable in their spaces from the
topological point of view (with respect to the spaces X and Y).

It should be remarked that two sets may be homeomorphic and,
at the same time, they may be situated in the space in a different
manner so that there is no equivalence between them. For example,
in the space of real numbers, the set composed of a point, a segment,
and a second point (in that order) is not topologically equivalent
(though it is homeomorphic) to the set composed of two points
and a segment following them. However, the same sets (regarded
as subsets of the plane) are equivalent with respect to the plane.

ExampLes. 1. Let a<<x<b and ¢ < y<d, where a<<b
and ¢ << d, be two given closed intervals of real numbers. The
function

y = {(d—o)/(b—a)}x+(bc—ad)/(b—a)

is a homeomorphism which maps the first interval onto the second.
Hence, any two closed intervals are homeomorphic.

The same function maps the open interval ¢ << x < b homeo-
morphically onto the open interval ¢ <y < d.

2. The function y = tanx maps the open interval —m/2 < x
< ©/2 homeomorphically onto the entire set of real numbers.

3. A necessary and sufficient condition for a continuous real
valued function, defined on the closed interval @ << x < b, to be
a homeomorphism, is that it be strictly monotonic.
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4. Let us consider in Euclidean 3-space &3 the surface of the
sphere x2+y?4-(z—-1)2 = 1 and let us draw a line, which is not
parallel to the XY-plane, from the point b = (0,0, 2). Let us
assign to the point p of intersection of this line with the surface
of the sphere, the point f(p) which is the point of intersection of
this line with the plane z = 0.

The function f so defined is, as is easy to verify, a homeomor-
phism which maps the surface of a sphere with the point b removed
onto the entire plane. Hence the plane is homeomorphic to the
surface of the sphere with one point removed. One makes use of
this fact in the theory of analytic functions when it is said that the
plane of complex numbers is completed with “the point at infinity”
to the surface of the sphere.

Remark 2. In the definition of homeomorphism, the con-
dition of continuity of the inverse map is essential, which means
that the continuity of the mapping f does not imply the continuity
of the mapping f~!. For example, the function z = €>™* maps
the set 0 << x < 1 onto the set of complex numbers lying on the
circle with equation [z] =1 in a continuous and one-to-one
manner. However, the inverse mapping is not continuous at the
point z = 1.

- Remark 3. The totality of all topological spaces which have
the same cardinality can be ordered assuming that Y% X if there
exists a one-to-one continuous mapping f of X onto Y. This is
equivalent to saying that Y is coarser than X (compare Chapter
X, § 10).

Remark 4. The space X is said to be topologically contained
(or imbedded) in the space Y if it is homeomorphic to a subset of Y.
We write in this case

XcY.

top

§ 3. Case of metric spaces

First, let us suppose that X is an arbitrary tepological space
and that Y is metric.
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THEOREM 1. Let f+ X — Y. f is continuous at x, iff for each
& > 0 there is an open G containing x, and such that

x € G = |f(x)—f(xo)| < e.
This follows from Corollary 1 of § 1, since
(f)—f(xo) | < €) = (f(x) € K[f(xo), ¢])
and, on the other hand, if H is a neighbourhood of f(x,), then
K[f(x,), €] = H whenever ¢ is sufficiently small.
Similarly, if both spaces, X and Y, are metric, then the conti-
nuity of f at x, is equivalent to the Cauchy condition

G A\ Vo N\eflix—x0l < 8)= (If(x)—f(x0)] < €)}.

It is also equivalent to the following Heine condition.

THEOREM 2. f is continuous at x, iff the condition

6) lim x, = x,
implies
Q)] iim SCen) = f(x0),

whatever the sequence x,, x,, ... of points of X.

Proof. 1. Let us suppose that f is continuous at x, in the
sense of Heine and that — contrary to our assumption — (5) is
not true, i.e. that

Ve /s Vx (=01 < 8) (1Lfx)—f(x0) | = €).

Put 6 = 1/n. Then there exists (by the choice axiom) a sequence
X1, X,, ... Such that

©®) [Xa—Xol < 1/n,
® [f(n) —f(xo) | = &.

(8) implies (6) hence (7) (by the Heine continuity). But this
contradicts (9).

2. Let us assume (5) and (6). Hence there is a k such that
[X,—xo| < & for n>k. It follows by (5) that |f(x,)—f(xo)l
<C ¢. This means that (7) is true, and thus fis continuous at x,
in the sense of Heine.



XII. CONTINUOUS MAPPINGS 151

Remark 1. Iffis a continuous real valued function, then the
sets

{x: f)<a}, {x:fl)=>da}, {x:a<flx)<b}
are closed and the sets

{x: f(x) <a}, {x:f(x) > a}, {x:a<f(x)<b}
are open.

This follows from Corollary 2 of § 1 because these sets are
inverse images of the closed sets

:o<a}, {Oo=a}, {@<y<by,
and of the open sets

{rviy<a)}, {: O@>a}, {y:l@<y<byl
respectively.

THEOREM 3. The limit of a uniformly convergent sequence of
continuous mappings f: X - Y, where X is topological and Y
metric, is continuous.

Proof. Put f(x) = 11m f,,(x) Let ¢ > 0 and let x, be a given
point of X. By assumptlon k exists such that

(10) L filx)—f(x)| < /3 for each x € X.
Therefore, substituting x = x,, we have
(1) [ filxo)—f(x0)] < &/3.

Since f, is continuous at the point x,, there is an open set G
containing x, such that

(12) i) —fi(xo)| < &/3 foreach xeG.
Inequalities (10) to (12) yield |f(x)—f(xo)| < &, which means
that x, is a point of continuity of f.

THEOREM 4. Let X1, X,, ... be a finite or infinite sequence of
(uniformly bounded) metric spaces. Put Z =X, xXX,X ... and
f1 Z - Y where Y is metric. Put z° = (x3, x3, ...) where x2 € X.
Then f is continuous at z°, iff

[\ (imxt, = x)] = [im/(z") = f(°)

where z" = (x7, x3, ...).
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THEOREM 5. Under the same assumptions on Xp,m =1,2, ...,
and Z, let f: T — Z (where T is metric). Put f(t) = (f1(t), f2(2), -..).
Then f is continuous at t, iff

(limt,= to) = /\, limfy, (1) = fu (to)ls

n— o n—oo

which means that each f,, is continuous at t,.

Theorems 4 and 5 are easy consequences of the Heine condition
and of Theorem 2 of Chapter IX, § 6 (the assumption of uniform
boundedness can be omitted by virtue of the Theorem 8 below).

THEOREM 6. The distance between two points of a metric space X
is a continuous real-valued mapping of XX X into &.

Proof. Let

limx, =x, limy,=y

n-—»aoo n—oo

and let ¢ > 0 be given. Then there exists a k such that for n > k
we have

(13) lx_xnl < &, D’n—J’I < e.

From the triangle inequality we obtain (see Fig. 5):

Yo ¥

X, x

FiG. 5
(14) =yl < [ x—Xpl+1xa~Yal+1ya—l.
It follows from (13) and (14) that
(15) |x_J’| < |xn_‘ynl+25-
Similarly, from the inequality

[%0—Yul < [Xg—x|+x—p|+|ya—I
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we obtain the inequality
(16) [Xp—Val < [x—p|+2e.
By (15) and (16) we have for n >k

||xn—J’n|-‘|?C—,V” < 2e.

This means that lim |x,—y,| = |x—y| and hence the function

n—>o
|x—y| is continuous.
THEOREM 7. Let X and Y be two metric spaces and f: X - Y
onto. Then f is a homeomorphism iff

(17 (limx, = xo) = [limf(x,) = f(xo)]

n—»co n—

Jfor every sequence of points in X.

This is an easy consequence of Theorem 2.

THEOREM 8. Every metric space X is homeomorphic to a bounded
space X *.

Proof. We denote by X* the set X with a “new distance”
{lx—y|| defined as follows. If [x—y| < 1, then |[x—y|| = [x—y];
if Jx—y| > 1, then |[x—y|| = 1.

It is easy to see that the new distance satisfies conditions (1)~
(3) of Chapter IX, § 1, which means that X* is a metric space.
Moreover d(X*) < 1.

The mapping f: X — X* defined by f(x) = x is a homeo-
morphism. This follows from the equivalence of the conditions
lim||x,—y||=0 and lim|x,—y|=0.

Remark 2. Referring to the assumption of boundedness
in the definition of the distance in the infinite product X; X X, X ...
(see Chapter IX, § 3 and § 6), let us note that this assumption may
be omitted if we denote the distance between the points
x = (x,, X3, ...) and y = (4, ¥, ...) using the formula

31
as) eyl = ) 3 [om—all.
m=1
Also the Theorem 2 of Chapter IX, § 6 and the above proved

Theorems 4 and 5 remain valid without the assumption of uniform
boundedness.
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§ 4. Distance of a point from a set. Normality of metric spaces

The distance of the point x from the non-empty set A is defined
to be the number

(19) o(x, A) = greatest lower bound of
the numbers |x—al|, where a € 4.

We assume, moreover, that g(x, @) = 1. Let us note that:
THEOREM 1. If A = {y}, then o(x, A) = |x—y|.

THEOREM 2. If @ # A < B, then p(x, B) < o(x, 4).
THEOREM 3. [o(x, A) = 0] = (x € A).

In fact, if x € A, then for every & > 0 there exists a point @ € 4
such that |x—a| < e, This means that g(x, 4) = 0.

Conversely, if o(x, A) = 0, then for every & > 0 there exists
a point a € A such that |[x—a| < ¢, and hence x € A.

From this it follows that:

THEOREM 4. If A is a closed set, then
lo(x, 4) = 0] = (x € 4).

THEOREM 5. The function o(x, A) is continuous (for fixed A).

Proof. The theorem is obvious if the set 4 is empty. Thus,
we can assume that 4 # @. Let 6 >0 and let

(20) Jx—x'| < 8.

By virtue of (19), there exists a point a € 4 (see Fig. 6) such
that

@n [x—a| < o(x, A)+-96.
If follows from (20) and (21) that

(22) o(x’, A) < |x' —a| < |x—al+|x—x'| < o(x, A)+3+4.
Similarly, we have

23) o(x, A) < o(x’, A)+24.
Inequalities (22) and (23) yield

24 lo(x, A)—o(x’, A)] < 24.
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This means that inequality (20) implies inequality (24). Hence
the function e(x, A) is continuous.

—
X
———r
=
A
F1G. 6

THEOREM 6. Every metric space X is normal, i.e. for every pair
of disjoint closed subsets A and B, there exists a pair of disjoint
open sets G and H such that

(25) AcG and BcH.
Proof. Let
G = {x: o(x, 4) < o(x, B)}, H={x: o(x, B) < o(x, A)}.

The sets G and H are open. In fact, by virtue of the conti-
nuity of the functions g(x, A) and e(x, B), the function f(x)
= p(x, B)—p(x, A) is also continuous. Since

G = {x: o(x, By—o(x, 4) >0},
the set G is open (cf. Remark 1, § 3). Similarly, the set H is open.

The proof of the formula G n H = @ is immediate.

Finally, the formulas (25) hold. For, if x € 4, then by virtue of
Theorem 4 we have p(x, 4) =0, but o(x, B)# 0, because x
does not belong to B (since 4 » B = ©). Therefore, o(x, 4)
< o(x, B), and from this it follows that x € G.

This means that A < G. Similarly, B — H.

THEOREM 7. Every closed set in a metric space is a Gj-set.

Proof. Let F=F. Let us set

K(F, &) = {x: o(x, F) < ¢}.

In view of the continuity of ¢(x, F) the set K(F, ¢) is open (cf.
Remark 1, § 3). We shall show that

F= (N2, K(F, 1/n).
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If x e F, then o(x, F)=0 and x e K(F, 1/n). Conversely, if
x ¢ F, then by virtue of Theorem 4, o(x, F) > 0 and hence there
exists an n such that o(x, F) > 1/n; therefore x ¢ K(F, 1/n).

Remarks. 1. It follows immediately from Theorem 7 that
in a metric space every open set is an F,-set (and hence every
Gjs-set is an F,;-set). It also follows that condition (a) in the defini-
tion of Borel sets (Chapter XI, § 1) can be replaced by:

(a’) every open set belongs to R.

2. Normal spaces in which closed sets are G; are called per-
Sectly normal.

§ 5. Extension of continuous functions. Tietze theorem

LemMA 1. For every pair of disjoint closed sets A and B in the
metric space X, there exists a continuous real valued function f
defined on the entire space X and satisfying the following conditions:

N
27 —1<flx)<1 for- x¢A UB.

It is easy to prove, using Theorems 3-5, § 4, that the function f
defined by the formula

f(x) = {@(x: A)_Q(x, B)}/{Q(xs A)+Q(xs B)}
satisfies the conditions set forth in the lemma.

LemMma 2. If f is a continuous real valued function defined on
a closed subset of the metric space X such that |f(x)| < u (£ 0),
then there exists a continuous function g defined on the entire
space X and satisfying the following conditions:

(28) g < (13)u  for all xeX,

(29) lg(x)| < (1/3)u  for all xe X—F,

(30) [f()—g(x)| < /3 for all xeF.
Proof. Let

A={x: f)<(=1/3)u} and B={x: f{x)> (1/3)u}.
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The sets A and B are disjoint and closed (see Remark 1 of § 3).
The function

GD g = (1/3)p{e(x, A)—elx, B)}/{e(x, A)+o(x, B)}
satisfies the required conditions in virtue of Lemma 1.

THEOREM 1 (TIETZE EXTENSION THEOREM). Every continuous real
valued function f defined on a closed subset F of the metric space

X can be extended to the entire space X; i.e. there exists a real
valued continuous function f* defined on the entire space X such that

(32) f*(x)=f(x) for xeF.
Moreover, if f is bounded, i.e.

(33) Ifx)| <pu (#0) for every xePF,

then

34 If*(x)}{ <u for every xeX—F.

Proof. Consider first the case where the function fis bounded
and hence satisfies inequality (33). We define a sequence of con-
tinuous functions g,, g, ... inductively. Let go(x) = 0 for every
x € X. For given n > 0 let us assume that the functions go(x), ...,
g.(x) satisfy the inequality

39 |f-) @) <@Pu for xeF.
i=0

In the case n = 0 this inequality reduces to inequality (33).
Replacing in the assumptions of Lemma 2: f(x) by f(x)—. g:(x)
i=o

and u by (2/3)"u, we obtain a continuous function g, defined on
X and such that

(36) 81 () < (23" ) for xeX,
(37 Igar1(¥)] < @3+ for xeX—F,
n+l

(38) | i - Zo g(x)| < @PBy+u for xeF.

Thus the functions g, are defined for alln =0,1,2, ...
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For every x € X let us set
(39) £ = g,
i=o

It follows from (36) that the series (39) is uniformly conver-
gent in the space X; and hence by virtue of Theorem 3, § 3, the
function f* is continuous.

Moreover, condition (35) implies condition (32), and because
of inequality (37), we have for x e X—F:

el = igi(x)i < 2 e 001 < 3@ = g
i=0 i= i=0

and therefore inequality (34) is also satisfied.

Thus the theorem has been proved for the case where the function
f is bounded.

If 1 is unbounded, we first apply the homeomorphism 4 which
maps the space of all real numbers onto the open interval —I1
<y <1,eg h(x) = (2/r)arctanx. The function Ao f (the com-
position of the functions f and #) is continuous and bounded;
hence there exists by virtue of the part of the theorem already
proved a continuous function A* defined on the space X and such
that

h*(x) = hf(x) for xe F, |h*(x)] <1 for xeX.
Now let
f*ex) = k™ h*(x)
for every x € X. The function f* is continuous and for every x € F
we have
[*(x) = h~hf(x) = f(x).
Thus the theorem has been proved in all generality.

COROLLARY 1. Every continuous function defined on a closed
subset F of a metric space X with values belonging to one of the
spaces 8", 5", & X & X ..., H can be extended to the entire space X.

We shall prove this corollary, e.g. for the Hilbert cube #
=4 X F X ... (the proof in the other cases is analogous).

For every x € F we have f{x)e# X J X ..., and hence

(40) f(X) = [fl(x)i f2(x)7 ""fn(x)’ ],
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where f,(x) is the nth coordinate of the point f(x) in the Hilbert
cube, hence a continuous real valued function. Extending each
of the functions f, to a continuous function f¥ defined on the entire
space X, we obtain a function

(41) f*x) = [f¥ ), /30, ....fx(x), ..]
which is the extension of the function f (see Theorem 5, § 3).

COROLLARY 2. Every continuous function f defined on a closed
subset F of a metric space X with values belonging to the sphere
&, (i.e. to the set of points x}+ ... +x%,, =1 of the space &"*')
can be extended to some neighbourhood of the set F (with respect to
the space X).

Proof. By virtue of Corollary 1 there exists an extension
f* e (61X of the function f. Let us set

G = {x: [*(x) # 0}.

Because of the continuity of the function f*, G is an open set
containing the set F (since [f*(x)| = |f(x)| = 1 for x € F). Thus
the function

g(x) = f*(x)/|f*(x)]

is the required extension of the function f onto the set G which
assumes values belonging to &,.

Remarks. Spaces which can be substituted in Corollary
1 for &, #", etc., are called absolute retracts. Spaces which in
Corollary 2 can be substituted for &, are called neighbourhood
retracts. (These concepts were introduced by K. Borsuk.)

This terminology is connected with the concept of retraction.
We say, namely, that a subset R of the space X is a retract of this
space if there exists a continuous transformation f of the space
X onto the set R such that f{x) = x for xe R (this transforma-
tion is called a retraction; a projection is an example of a re-
traction).

Thus, an absolute retract is, as can be proved, a space which
is a retract of every metric space containing it and in which it is
closed. A neighbourhood retract is not necessarily a retract of the
entire space, but of some one of its neighbourhoods in this space.
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These concepts are important generalizations of the concepts
of classical n-dimensional geometry: the n-dimensional cube is
an absolute retract, every n-dimensional polyhedron is (as can be
proved) a neighbourhood retract.

We are going now to extend Tietze theorem (which was proved
for metric spaces) to arbitrary normal spaces. The proof will be
based on a Lemma analogous to Lemma 1 (whose proof for
metric spaces was immediate).

LemMA 1' (of Urysohn). Given two disjoint closed sets A and B

in a normal space X, there exists a continuous function f+ X -
such that

(42) f(x)=0for xeA and f(x)=1 for xeB.

Proof. First we shall assign to every fraction of the form
r=k/2" (k=0,1,...,2", an open set G(r) so that

(i) 4 =« G(0), X—B = G(1),

(i) the condition r < r' implies G(r) = G(r').

We proceed by induction with respect to the exponent n.

For n = 0 the conditions (i) and (ii) are fulfilled by normality
of X. Suppose that they are fulfilled for n—1. We must define
G(k/2") for an odd k. By hypothesis

Gl(k—1)/2] = G[(k+1)/2"].

By normality of X, there exists an open set, which we denote
by G(k/2"), such that

GI(k—1)2"l = G(k/2") and G&/2" < Gl(k+1)/2"].

Thus the function G(r) is defined for every r.

Let f(x) = 0 for x € G(0) and f(x) = least upper bound of the
r’s such that x e X—G(r) for x ¢ G(0). By (i), f(xX) =0 for xe 4
and f(x) =1 for xeB.

It remains to prove that the function f is continuous, i.e. that for
every x, and every natural number n there exists an open set H
containing x, such that the condition x € H implies | f(xo)—f(x)|
< 1/2", )

Let r be a (finite dyadic) fraction such that

43) S(xo) < r < f(xo)+1/2"+1,
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Let H = G(r)—G(r—1/2") with the convention G(s) =0 for
s <0 and G(s) = X for s > 1. It follows that x, € H. For, the
inequality f(xo) < r implies x, € G(r), while the inequality
r—1/2"1 < f(x,) implies
Xo € X—G(r—1/2"*Y) < X—G(r—1/27).

Moreover, the hypothesis x € H implies x € G(r), hence f(x)
< r. It also implies

(44) xeX—G(r—1/2") c X—G(r—1/27);
hence r—1/2" < f(x). Therefore
45) Sx0)—1/2" < f(x) < flxo)+1/2"

This completes the proof.

LemMA 2. Given a continuous function [ defined in a closed
subset F of a normal space X and satisfying | f(x)| < ¢, where ¢ > 0,
there exists a continuous function g defined in the whole space X
and satisfying the conditions

(46) g <3¢  for xeX,
47 [f(x)—gx) < %3¢ for xeF.
Proof. Let

@)  A={x:f)<—ic, B={x:f(x)>1}c)
and
49) J={y: Iyl < e}

The sets 4 and B being closed and disjoint, there is, by the
Urysohn Lemma, a continuous function g: X — J such that
g(x)= —%c for xe A and g(x) = }c for x € B. Obviously g
satisfies the conditions of the lemma.

THEOREM 1’ (GENERALIZED TIETZE EXTENSION THEOREM). Let
X be normal, F closed and f: F — & continuous. Then there is a
continuous f* such that

(50) fof* X- 6.

Moreover, & may be replaced by £.

If f'is bounded, the proof is completely analogous to the proof
of Theorem 1 (except that condition (37) is not required).
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‘The case of f unbounded can be reduced to the former case as
follows.

& being homeomorphic to the open interval I, = (—1 < y < 1),
we may assume that f: F — I,. As shown, there is a continuous
extensionf*: X — I, of /. Let B denote the two-element set {—1,1}
and let H = f*"1(B), Then H is closed and H n F = (. By the
Urysohn Lemma, there is a continuous A: X — .# such that i(x)
=0 for xe H and h(x) =1 for x e F. Put g(x) =f*(x)" h(x).
Then g: X — I, and g is the required continuous extension of f.

§ 6. Completely regular spaces

Definition. A topological space X is called completely
regular if for each point p and each closed set F which does not
contain p there is a continuous mapping f/* X — # such that

(51) f(p)=0 and fix)=1 for xePF.

THEOREM 1. Each completely regular space is regular.

Proof. Let p, F, and f be as defined previously. Put G
= {x: f(x) < 1/2}. Then G is open, pe G, and G n F=0.

THEOREM 2. Each normal T (-space is completely regular.

This follows directly from the Urysohn Lemma (see § 5).

THEOREM 3. The range of variability of F in the definition of
complete regularity can be restricted to sets such that X —F belongs
to a subbase of X.

Proof. Let us first consider a finite system Fy, ..., F, of
closed sets, a point p € X—F, where F, = F; u ... U F,, and

a system of continuous functions f}, ..., f, satisfying conditions
(51). Put

(52) S(x) = max fi(x).

I<in

Obviously f satisfies conditions (51) for F,.
Moreover, f is continuous. This follows from the identity:

{x:u < f(x) < o} = Ui {x: u < fi(®)} 0 Njer{x: fi0) <},

according to which the set {x: u < f(x) < v} is open for each
pair of real numbers u < v.
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Now let us consider an arbitrary closed F such that p e X—F.
We shall show that there is a continuous f satisfying (51).

Let B be a subbase of X. Then there is a system of members
Fy, ..., F, such that (X—F;) € B,

peX—F, and F < F, where F0=F1u...uF,,.

The function f defined by formula (52) obviously satisfies (51).

Remarks. A regular space may fail to be completely regu-
lar.? Moreover, there are regular J ;-spaces on which every real
continuous function is constant.

There are also completely regular spaces which are not normal
(see Chapter XI, Exercise 10); in fact, complete regularity is heredi-
tary, while normality is not.

Exercises

1. Let the sets 4 and B be both open or both closed, and let f be a mapping
defined on the set 4 U B. Prove that if f is continuous on the set 4 and on
the set B, then it is also continuous on the set 4 U B.

2. Let f be defined on the space X. If the space X is a union of open sets,
and if on each of these sets individually f is continuous, then f is continuous
on the entire space X.

3. Let f be defined on the space X. If X = U,ﬁl A, where A, < Int (4,,1)
and if fis continuous on each of the sets A,, then it is continuous on the entire
space X.

4. The set of all sequences of natural numbers forms a metric space (the
so-called Baire space), if for the distance between distinct sequences
x == (my, my, ...) and y = (ny, ns, ...) we take the number 1/r, where r is the
smallest index such that m, # n,. Show that this space is homeomorphic to
the set of all irrational numbers of the interval [0, 1].

Hint: Assign the continued fraction

foy =2ty Ly

| m; I n,
to the sequence of natural numbers x = (m;, m,, ...).

5. A necessary and sufficient condition for the limit f(x) = limf,(x) of the
n—w
sequence of continuous mappings f;, /3, ... defined in the space X and with
values in a metric space to be continuous is, that for every e> 0, X be the
union of open sets A,(g), where

An(e) = {x: [fu()—f(0)] < &}.

Hint: In order to establish the continuity of f under the assumption of our
condition at an arbitrary point xoe X, we find an index no, such that

t See R. Engelking, Outline of General Topology, p. 76.
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Xo € Ang(#/3). Further, we make use of the fact that the set 4n,(¢/3) is open
and the function fy, is continuous.

6. Introducing a “new” distance into the metric space X with the aid of
the formula

o(x,») = |x—y|[{1 +lx—y},

we define a homeomorphism of X onto X.
Deduce from this that the set of all sequences with real terms x = (x,, x,,
vy Xm, --.) I8 @ metric space under the following definition of distance:

o0
=yl = D) (112 xm—yml [{1+]Xm—Ynl}
m=1
(this is the so-called Fréchet space).
7. Let B(X) denote the family of nonvoid closed bounded subsets of a metric
space X. By the distance between two sets 4, B¢ B(X) we understand the
maximum of the two numbers

least upper bound g(x, B) for xe 4, and least upper bound g(y, 4) for yc B.

Prove that the distance defined in this way, which we denote by the symbol
dist(4, B), metrizes the set B(X) (i.e. it satisfies conditions (1)-(3) of Chapter
1X, § 1).

8. A metric (bounded) space X is called rotally bounded iff for every ¢ > 0,
there is a cover composed of a finite number of sets of diameter < e.

Show that X is totally bounded iff for every £ > 0, there is a finite set F,
such that, for each x, o(x, Fe) < e,

9. Show that if X is totally bounded, then so is B(X) (see Ex. 7)

10. Let X,, X>, ... be totally bounded spaces such that 8(X,) < 1. Show
that their product X, XX, X ... is totally bounded (the distance being defined
by formula (7) of Chapter IX).

11. Show that in Theorem 6 of § 4, the property of A and B of being closed
and disjoint sets can be replaced by the weaker assumption of being separated.
Deduce that each metric space is hereditarily normal.

12. Show that the Hilbert cube 5 is homeomorphic to the subset of the
Hilbert space (cf. Chapter IX, § 1, Example 3) composed of points x = (x,, x2,
eey Xiy-..) such that 0 < x; < 1/,



CHAPTER XIII

CARTESIAN PRODUCTS

§ 1. Cartesian product X <Y of topological spaces

X and Y being two topological spaces, the topologyin Z = XX Y
is introduced in the following way:

Definition. A set & c XX Y is called open in XX Y iff it
is the union of cartesian products G X H where G and H are open
subsets of X and Y respectively.

In other words, the family of all sets GX H is a base of XX Y.

By Chapter III, (21), (G, X H,) n (G, X H,) = (G, n G,)X
X (Hy n H,):.

Therefore, assuming that G, G,, H; and H, are open sets
(in X and Y respectively), the intersection (G, X H;) n (G, X H3)
is open (in XX Y). It follows that the intersection of any two open
sets in XX Y is open.

As the union of an arbitrary family of open sets in XX Y is open,
we have the following theorem:

THEOREM 1. The cartesian product of two topological spaces is
a topological space.

As (XX Y)—(x,, yo) = ((X—x0)X Y) U (XX (Y—y,)) we have:

THEOREM 2. The cartesian product of two 9 \-spaces is a T 1-space.

ExaMPLE. In the case of the plane &2, the usual topology
agrees with the above definition. For every open set in &% can be

represented as the union of open squares with sides parallel to
the X and Y axes.

Another theorem can also be easily shown (compare Chapter
IV, Exercise 3).
THEOREM 3. If {B,} is a base of X, and {C,} a base of Y, then
{B,xC} is a base of XX Y.
The same remains true of subbases.
165
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THEOREM 4. X and Y being topological spaces, the family of sets
GX Y and of sets X X H, where G is open in X and H in Y, is a subbase
of XXY.

Because GX H = (GXY) n (XX H).

Remark. Recall that a relation is a subset of XX Y, namely
the set {(x,y)>: xpy}. Consequently a relation will be called
closed if this set is closed (in XX Y).

§ 2. Projections and continuous mappings

Given z = <{x,y) e XX Y consider x as function of z. Put
x = 7,(z) and similarly y = 7,(z). Thus

T XXY—>X and miXXY-Y,

where %, and =, are called projections of XX Y on the axes X
and Y; m,(z) is the abscissa of z and 7,(z) its ordinate.

THEOREM 1. The projections are continuous mappings.

Proof. If G is open in X, we have a7!(G) = Gx Y, which
is open by definition. Thus 7, is continuous.

THEOREM 2. Let h: T — XX Y. Put h(t) = {h,(t), h,(t)) where
h((t) e X and hy(t) e Y. Then h is continuous iff h, and h, are con-
tinuous.

More precisely, A is continuous at ty iff hy and h, are continuous
at tg.

P roof. Suppose that / is continuous at #,. As A (t) = 7, h(1),
it follows by Theorem 1 that k; is continuous at ¢,.

Suppose that 4, and h, are continuous at 7,. Let & < XX Y
be open and let ¢, € A~1(®). We have to show that ¢, € Inth™1(®).
According to Corollary 3 of Chapter XII, § 1, we can assume that
® belongs to a subbase of XX Y. Put (see § 1, Theorem 4) & = G'X
X Y. Hence A 1(®) = h7'(G) and therefore ¢, € h71(G). As h, is
continuous at 7y, it follows that 7, € Inthy*(G) = Inth™(®).

THEOREM 3. Every continuous mapping of two variables is conti-
nuous relative to each variable.

In other words, if /3 XX Y — W is continuous and if y, € Y, then
the mapping fy: X — W defined by the condition fi(x) = f(x, ¥o)
is continuous.
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Proof. Define the mapping #: X — XX {y,} by the condition
h(x) = {x, yop. Obviously k is continuous (more precisely, & is
a homeomorphism), and as f; = fo h, f is continuous.

Remark. Elementary examples show that the converse of
Theorem 3 does not hold.

THEOREM 4. Let f: U > X and g: V — Y. The product-mapping
h=(fxg): UXV - XXY (compare Chapter IV, Exercise 17)
is continuous iff [ and g are continuous.

Proof. By definition A(u, v) = {(f(u), g(v)). Hence, if we put,
for a given v,, hy(u) = h(u, vo) = {f(u), g(v,)), then f=m; o k.
If we assume that A is continuous, then so is f (by Theorem 3);
similarly, g is continuous.

On the other hand, if f and g are continuous, then so is 4. This
follows from the identity (see Chapter IV, Exercise 17):

Y (Gx H) = f(G)x g (H).

§ 3. Invariants of cartesian multiplication

THEOREM 1. The product of two closed sets is closed.
Let A4 be closed in X and B in Y. By Chapter 111, (24)

(XXY)—(AxB)= [(X—A)X Y] u [Xx (Y—B)].

Thus (XX Y)—(A4 X B) is the union of two open sets, hence is
open.

THEOREM 2. The following properties are invariant under carte-
sian multiplication:

(a) of being a T ,-space,

(b) of being completely regular.

Proof. (a) Suppose that X and Y are J ,-spaces. Let z,
=Xy, Y10, 23 =<X;3,¥,), and z; # z,. Then, either x, # x,
or y; # y,. We may suppose that x; # x,. Since X is a .7 ,-space,
there are two open sets G; < X and G, = X such that x, € Gy,
x,€G,, and G;n G, =0. It follows that z, € (G;X7Y),
z, € (G,XY), and that G, XY and G, XY are open and disjoint.

(b) Let zo = {xo, yop € (XX ¥Y)—F) where § is closed. In
order to show that XX Y is completely regular, we may restrict
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ourselves to the case where F = AXY and A =A4 c X (see
Theorem 3 of Chapter XII, § 6). It follows that x, € X—A4. Now,
as X is supposed to be completely regular, there exists a continuous
mapping g: X —» £ such that g(x,) = 0 and g(x) =1 for x € A.
Put f(x, y) = g(x). Thus, f(z,) =0 and f(z) = 1 for z e &.
Remark. One can show also that regularity is invariant
under cartesian multiplication and that normality is-not; in fact,
there is a normal X such that XX .# is not normal (M. E. Rudin).

§ 4. Diagonal
We call the set
A = {x,y>: (x =)}
the diagonal of X? = XX X.
THEOREM 1. A wsz'
The required homeomorphism is the projection {x,y) — x.
THEOREM 2. If X is a T ,-space, the diagonal is closed (in X?).

Proof Put V= X2—A. We have to show that V' is open,
i.e. that given a point (x, y) of V, there are two open sets G and
H such that xe G, ye H and GX H < V. Now, as x # y there
are (X being 77,) two open sets G and H such that xe G, y e H,
and Gn H=@. Hence (GXH)n A=@, ie. (GXH)cV.

Remark. The assumption of X being 7, is essential. In fact,
if the diagonal of X' X X is closed, X is 7 5.

The following theorem is an important generalization of The-
orem 2.

THEOREM 3. If f: X — Y is continuous, its graph

F={{x,y>: y = f(x)}
is homeomorphic to X.
If Y is a T ,-space, F is closed (in XX Y).
Proof. Put A(x) = {x,f(x)). As in the proof of Theorem 1,
one sees that 4 is a homeomorphism of X onto F.
To prove the second part, put g(x, y) = {f(x), y>. Obviously
[ex, ) edl = [y=f0)] = Kx,>eFl, ie F=g'(4).

Since g is continuous (by Theorem 4 of § 2) and 4 is closed,
so F is closed.
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§ 5. Generalized cartesian products

Let us now consider the general case

Z= ”lETXH

where T is an arbitrary set and X, is a topological space.
As in the case of two factors, we denote by 7,(f) the tth coordi-
nate of f € Z, i.e. (compare Chapter 1V, (32))

) a(f)=f(t), hence m: Z-X,.

7, is the projection of Z on the X;-axis.
We introduce topology in Z (called Tychonov topology) by
means of the following definition.

Definition. The family of sets of the form
@ O =n71(G) = {f: ft) e G},

where G is open in X, is a subbase of Z.

Thus @, is the product of G and of all X,, with ¢’ s ¢. Con-
sequently, the products H +G, where G, is open in X, and, except
for a finite set of indices, is identical with X,, form a base of Z.

It follows also that if T is composed of two elements, the above
definition agrees with the definition given in § 1.

The theorems of the preceding paragraphs can be easily extended
to generalized products. In particular, we have the following
statements.

THEOREM 1. 71, is continuous.

Because 77 1(G) is open in Z if G is open in X,.

THEOREM 2. Let h: W — Z. h is continuous iff h, = m,oh is
continuous for each teT.

Because, if 4, is continuous, then A71(Q; ¢) is open since
Y (Q.6) = K [7 1 (G)] = b '(G).

THEOREM 3. If A, = A, < X,, then [[.4, =][]. A, = Z.

Since 7, is continuous, the set 7z 1(A4,) is closed, and sois [ [, 4,
because

HtAt = N7 Y (Ar).
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R e m a r k. The range of variability of G in (2) can be restricted
to a subbase S of X,.

Because, if G is open in X,, then 7; 1(G) is generated by the
sets 7wy 1(H), where H € S, in the same way that G is generated
by the sets H (with the aid of the union operation and the finite
intersection operation).

THEOREM 4. The properties of being a I \-space, a T ,-space,
a completely regular space, are invariant under the generalized
cartesian multiplication.

The proofs are similar to those given in § 3.

§ 6. XT considered as a topological space. The cube #7

Let X be a topological space and T an arbitrary set. X7 is
obviously a particular case of the product [],X,, namely when
X, = X for each t € T. Thus X7 can be regarded as a topological
space with the Tychonov topology. In other words, it has a subbase
composed of sets O, ; defined by formula (2) of § 5, where G is
an open subset of X and 7, is the evaluation of XT at 1, i.e. (com-
pare Chapter IV, (32)):

)] #(f)=f(t), hence m: XT > X.

Theorems 1 and 2 of § 5 imply the two following theorems.
THEOREM 1. The mapping n,: X7 — X is continuous.

THEOREM 2. Let W be a topological space. Then the mapping
@: W XT is continuous iff each mapping ¢, = 7, o @ is contin-
uous. :

THEOREM 3. Let T be a topological space. Assume that the ele-
ments of @ < XT are continuous mappings. Then the evaluation e
of D is a continuous mapping of T into X°.

Proof. Letg,denote the evaluation of X at f € @; this means
that (compare Chapter 1V, (34)):

@ gr(h) = h(f) for each h e X®, hence g;: X% - X.

Therefore gy o e = f for each f € @ (compare Chapter 1V, (35)),
and it follows by Theorem 2 that, since the mapping gy o e is con-
tinuous (because f is continuous), so is e.
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Remark. We will now.consider the important case where
X = 4. Thus #7 is a generalized cube. In particular SV is the
Hilbert cube (N denoting the space of positive integers).

THEOREM 4. Every completely regular J ,-space X is topologi-
cally contained in a generalized cube.

More precisely, let e denote the evaluation of D= (I )op (the
set of all continuous mappings ¢: X - F). Thene: X— #% is a
homeomorphism.

Proof Recall that (see Chapter 1V, (33))
A3) [eJ()=f(x) for fed, hence e, DS

In order to show that e is one-to-one, suppose that x;, # x,.
As X is a completely regular 7 ;-space, there is f e @ such that
Sf(x1) # f(x2). Since e, (f) = f(x), we have e, (f)# e,,(f) and hence
€x, 7 €x,.

It remains to show that the inverse mapping to e is continuous.
In other words, that if G < X is open, then ¢(G) is open in e(X);
that means that, if x, € G there is Q = Z = #® open and such
that

(€] e, €Q and [Q n e(X)] c e(G).
As X is completely regular, there is f € @ such that
(5) Sflxg) =0 and f(x) =1 for xeX—G.
Define Q by the condition
© (e =lg®W#1, ie Q=Z—g'Q).

Since the mapping g, is continuous, the set g7'(1) is closed,
hence Q is open. Moreover e, € Q since by (2) and (3)

grlex)) = ex,(f) = flxo) # 1.

To show the second part of (4), note that by (6)
) 0 n e(X) = e(X)—g7'(1),
and since (see the Remark to Chapter V, § 1)

f° el c g hence [fo e_I]—l e g;l, ie. eof‘l [ g;ly
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it follows that e[f™*(1)] = g7'(1). Therefore, by (7) and Chapter
IV, (15a),

0 n e(X) < e(X)—elf (D] < e[X—f'(1)] = e(G)
since X—f (1) = G.

COROLLARY. A J i-space is completely regular iff it is topologi-
cally contained in a generalized cube.

Proof. Since a generalized cube is a product of completely
regular spaces (namely, of intervals), it is completely regular (by
Theorem 4 of § 5). It remains to refer to the fact that each subset
of a completely regular space is completely regular (Chapter X1I,
§ 6, Remarks).

Remark. The second part of Theorem 4 remains true and
the proof remains valid if the set (#%),,, is reduced to a set @
such that

@) if xo ¢ F=F c X, there is fe @ for which f(x,) ¢ f(F).

It follows that, if @ is countable, X can be imbedded in the
Hilbert cube #¥. Such is the case of a metric space X with a count-
able base (see Chapter XIV, § 4).

§ 7. Cartesian products of metric spaces

The product [[,X, of a finite or infinite sequence of metric
spaces X, X,, ... can be considered as a metric space if we use
the definition of distance given by formulas (4) and (7) of Chapter
IX. We are going to show that the topology induced by this dis-
tance agrees with the topology (of Tychonov) defined in this
chapter.

THEOREM. A set H c Z = XXX, X ... is open in the metric
sense iff H is open in the Tychonov topology.

Proof. With no loss of generality (see Chapter XII, § 3) we
can assume that 8(X,) <1 for each »n and that the distance is
defined by formula (7) of Chapter IX.

First, suppose that H is open in the metric sense. Let z € H.
Hence there is € > 0 such that K(z, ¢) = H. Let n be such that
27" < gf2. Put z= (x,, X;,...) where x;€X;, and let G,
= K(x;, £/2) < X; for i <<n and let G; = X for j > n. There-
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foreze Gy X G, X ... = H;because,if 2 € G; X G, X ..., it follows
from (7) that |2’ —z] < ¢, i.e. 2’ € K(z, ¢).

Thus H is the union of some sets belonging to the base of Z
(compare § 5), and consequently H is open in the Tychonov topo-
logy.

It remains to show that each member Q of the subbase of Z,
considered in § 5, is open in the metric sense. We can assume, of
course, that Q = GX X, XX3X ... where G is open in X,. Let
z = (x,, x;, ...) € Q. Hence x, € G. Put ¢ = p(x,, X;—G), hence
& > 0. It follows that K(z, ¢/2) = Q, and consequently Q is open
in the metric sense.

Exercises

1. Let A < X, B < Y. Prove the following formulas:

Int (4 X B) = Int(A) X Int (B),
Fr (A x B) = [Fr(4) x B] U [4 xFr(B)].

2. A necessary and sufficient condition for the cartesian product A x B
to be dense in itself is that one of th® sets 4 and B be dense in itself.

3. Suppose that, for each ae A4, X, is a topological space. Let B and C
be disjoint subsets of A such that 4 = B U C. Then the product space I, X, %

x I, cec X¢ is homeomorphic to the product space T aca Xg.

For each fixed topological space X the product X4 is homeomorphic to
XB x X€ and (XB)C is homeomorphic to XBxC, all spaces being given the prod-
uct topology.

4. Let F be a closed subset of the metric space X, and let

fx) =1lo(x,F) for xeX—F.
Prove that the set

{<x 000 Iy =fI(x ¢ F)}

is closed in the space Xx&.

Deduce from this that every open set in X is homeomorphic to a closed
subset of the space X x & (making use of Theorem 2, § 4).

5. Let Q be a Gs subset of the metric space X, 1.e.Q =G, 0 G, N ... NG,
N ..., where G, is an open set. Let
fu(x) = lo(x, X—G,) for xe G,, and  f(x) = [fi(x), (), ...].
Prove that the set
{Kx, 00 v = f)lx e O}
is closed in the space XX&XEXE x ...

Deduce from this that every Gs-set is homeomorphic to a closed subset
of the space Xx&xEXE X ...
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6. Let {T, F, g} be an inverse system (comp. Chapter VIII, § 5). Let F;,
for te T, be a metric space (or more generally a completely regular space),
and gy, be a continuous mapping (for tp < t,).

Prove that:

(1°) the set Z = Lim{T, F, g} is closed in I/ (er F; (with Tychonov’s topo-

logy) and hence fs zc)—mpletely regular;

(2°) sets of the form Z N {f: fic G}, where re T and G is an arbitrary
open set in F;, form a base of Z;

(3°) if M < Z, then fe M = /\t fie M;, where M, is the projection of
M onto Fi;

(4°) if the mappings 4; in Chapter VII, § 5, are homeomorphisms, then s
is a homeomorphism.

7. A continuous mapping which maps open sets onto open sets is called
an open mapping (similarly we define closed mappings).

Prove that:

(a) an open (closed) one-to-one mapping is a homeomorphism;

(b) the projection of XX Y onto X is an open mapping;

(c) extend the preceding theorem to generalized cartesian products.

8. We say that a uniform structure on X is defined with respect to a (non-
empty) family U of subsets of the cartesian product XXX, if the following
axioms hold: - :

(a) if Ve U, then ¥ contains the diagonal of XXX (i.e. the set {{x, x):
xe X)), .

(b) if Ve U, then the set {<x, y>: {y, x> e V} belongs to U,

() if Vi, Ve U, then (Vi N VL)e U,

(d)if VeUand V< Z, then Ze U,

(e) if Ve U, then there exists a set V; e U such that the set

(x> Valix, 2> e Vil Kz, p> e Vil}

is a subset of V.

Prove that

() if (U is the diagonal of Xx X, then X becomes a completely regular
T 1-space, if we assume that

xed= Ny {y: 9, x>eVIn A+ D, where VelU.

Prove that a uniform structure is given to every metric space X by~ the

family of all sets containing sets of the form
Ve = {{x,y>: |x—y| <€}, where &> 0.

9. A proximity relation on the set X is a relation 4 6 B defined for 4, B < X
and such that

(a) the relation & is symmetric,

(b) [AS(B v O)] = [(46B) (45C)),

© Ny (x0y) = (x =y),

{d) & non-dXx,
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(e) if A non-6 B, then there exists a pair of sets C and D such that
AcC, B<D, CnD=, Anon-d6(X—C), B non-d(X—D).
Prove that X is completely regular, if the closure is defined by the formula
(xe A) = (x64).

10. Let X be a completely regular 7,-space. Assume that 4 non-0 B iff
there exists f'e X such that f(4) = 0 and f(B) = 1. Prove that the relation
is a proximity relation.

Prove that in an arbitrary metric space a proximity relation can be defined
by the equivalence

(46B) = [o(4,B) =0] (where 4 # @ # B).



CHAPTER XIV

SPACES WITH A COUNTABLE BASE

§ 1. General properties

Let Gy, G,, ... denote the base (composed of open nonvoid
sets) of the given J ;-space X. This means that every open set is
the union of some of the sets G,.

THEOREM 1. The property of containing an open countable base
is hereditary.

Namely, if E « X, then En G,, En G,, ... is an open base
of E.

THEOREM 2 (of Lindeldf). Every space X with a countable base
is a Lindeldf space.

This follows immediately from the Remark of § 11 of Chapter X.

* THEOREM 3 (BROUWER REDUCTION THEOREM). Let X be a space
with a countable base and let A be a family of closed subsets of X
such that, for each decreasing sequence F, > F, > ... of members
of A, the intersection Fy N F; n ... belongs to At Then each
M, € A contains an irreducible member (i.e. a set M € A such
that no proper closed subset of M belongs to A).

Proof. We assume that M is the intersection of a sequence
of members M, > M; o ... of 4 defined by induction as follows.
Let n > 0 be a given integer. Let M,_, € 4. If there is B € 4 such
that B < M,_,—G,, then M, is such a set B (thus in this case
M, n G, = );ifsuch a Bdoes not exist, then we put M, = M,_,.
Thus in any case M, € 4, and consequently M € 4.

We have to show that M is an irreducible member of 4. Suppose
it is not. So let Be A, B< M and B # M. Accordingly there
is G,suchthat M n G, # @ and B n G, = . Therefore B <
cM—G, c M,_,—G, and (by the definition of M,) M,, n G, = Q.
But then M n G, = O, which is impossible.

T A family of sets having the above property is called inducible.
176



XiV. SPACES WITH A COUNTABLE BASE 177

THEOREM 4. If the spaces X, X,, ... have a countable base, then
so does XXX, X ...

Proof. Let G, 4, G, ;, ... denote the base of X,. According
to the Remark of Chapter XIII, § 5, the base of X; X X,X ... is
composed of sets of the form H; X H,X ... where for each index
n, except a finite number of indices, H, = X, while for the excep-
tional indices H, is a term of the sequence G, 1, G, ;, ... This
base is obviously countable (compare Chapter V, § 3, Theorem 5).

§ 2. Separable spaces

Definition. A space is said to be separable if it contains
a countable dense subset.

Hence, a metric space is separable if it contains a sequence of
points p;, p,, ... such that every point p is of the form
M) p = limp, .

n—>oQ

The space of all real numbers is a separable space, for the set
of rational numbers is countable and dense. An example of a space
which is not separable, is an arbitrary uncountable set in which
[x—y| = 1 for every pair of points x # y.

THEOREM 1. Every space with a countable base is separable.

For the proof, it suffices (according to the axiom of choice) to
choose a point p, from each G,.

THEOREM 2. Every metric separable space contains a countable
base.

Thus, for metric spaces, the concepts of a separable space and
of a space with a countable base are equivalent.

Proof. Letpy,p,, ... be a dense sequence in the given metric
space. Let us consider the balls with centres p, and with rational
radii:

)] Kn,r = {x: (Ix—pa) <r}.

The set of these balls is countable (cf. Chapter V, § 3, Theorem 3)
and forms a base.

In fact, for an arbitrary point p and every number & > 0, there
exists a point p, such that |p—p,| << e. Let r be a rational number
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such that [p—p,| <r < e Then peK,, and 8(K,,) <2¢ and
hence the sets K, , form a base.

§ 3. Theorems on cardinality in spaces with countable bases

We assume in § 3 that the space X under consideration has
a countable base.

THEOREM 1. The family of all open sets is of power < c.

The same applies to closed sets.

Proof. Let Gy, G,, ... be a base of the space. Hence to every
open set H there corresponds a sequence of natura! numbers
ki, k,, ... such thq.t

3 H=J.,.G,,.

It follows that the number of open sets is <X the number of all
sequences of natural numbers, i.e. is < ¢.

The second part of the theorem follows immediately from the
first, for, if we assign to each open set its complement, then we
map the family of open sets onto the family of closed sets in a one-
to-one manner.

THEOREM 2. Every J ;-space with a countable base has power
< e

This follows at once from the second part of Theorem 1.

*Remark. More generally, we can prove that the family
of all Borel sets has power < ¢. Hence, if the space is of power c,
it contains non-Borel sets; and furthermore, since the family of all
subsets of this space has power 2°, the family of non-Borel sub-
sets has power > ¢ (and therefore, e.g., on the real line there exist
more non-Borel than Borel sets).

THEOREM 3. Every family R of disjoint open sets is countable.

Proof. Letp,,p,, ... be a sequence dense in the space under
consideration. Hence, if H is a non-empty set belonging to the
family R, then there exists an index n such that p, € H; we denote
this index by n(H); if @ € R then we put n(J) = 0. We have
therefore assigned to each non-empty set H belonging to R a num-
ber n(H) so that '

4 Puny € H.
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Distinct numbers correspond to distinct sets. For if n(H,)
= n(H,), then by (4) we have

Dnuy) € H, n H,,

which is possible only if H; = H, (because the sets belonging
to the family R are disjoint). oo

Therefore, there are at most as many elements of the family R
as there are non-negative integers, which was to be proved.

THEOREM 4. The set of isolated points is countable.

Proof. Since each isolated point of the space constitutes an
open set (see Chapter XI, § 5, Theorem 2), it follows that the one-
element sets, whose single element is an isolated point, form a
family of disjoint open sets. This family is countable by virtue of
Theorem 3, and hence the set of isolated points is also countable.

COROLLARY. Let Z < X. Then the set of isolated points of Z is
countable.

The set Z, being a subset of a space with countable base, can
itself be considered as such (by virtue of Theorems 1, § 2, and 1,
§1).

THEOREM 5. If the spaces X and Y have countable bases, then the
space YX (i.e. the set of continuous mappings f: X — Y) has power
< e

Proof. By virtue of Theorem 2, Chapter XIII, § 4, if fe Y7,
then fis a closed set in the space XX Y; but since the latter space
has a countable base (Theorem 4, § 1), the family of all its closed
subsets has power < ¢ (Theorem 1).

Remark. If the space ¥ has power ¢, then the space Y* has
the same power, because the set of constant functions is then of
power ¢. Under the assumption that the space X also has power ¢,
we note that there are more discontinuous than continuous map-
pings, because the set of all mappings of X into ¥ has power ¢* > ¢
(cf. Chapter VI, § 4, (45)).

§ 4. Imbedding in the Hilbert cube
URYSOHN THEOREM. Every separable metric space X is homeomor-
phic to a subset of the Hilbert cube #, i.e.
Xc#.

top
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Proof. By the Theorem 8 of § 3, Chapter XII, we can assume
that
X)) < 1.
Let py, p,, ... be a sequence of points dense in the space X. To
each x e X we assign the point of the Hilbert cube with “coordi-
nates”: |[x—p,|, |x—pal, ..., i.e.

(5) h(x) = (x—pil, Ix=pals o5 [X—Pal;s --)-
The functions
(6) ho(x) = |x—p,|

are continuous (Chapter XII, § 4, Theorem 5), and therefore, by
Theorem 2, Chapter XIII, § 5, the function £ is also continuous.
We shall prove that this function is a homeomorphism.

We assume that

) lim#aQx) = A(x).
k—o0
We must show that
®) limx, = x.
k—o0

Let £ > 0. Since the sequence py, p,, ... is dense in the space
X, there exists a point p; such that

©) |x—p;l < .
It follows from formulas (7) and (5) that
klinoloh,-(xk) = hy(x).
Because of (6) this means that
Ilciinoolxk—le = |x—pjl;
therefore, there exists a ko such that
(10) xXe—pyl < |x—pjl+e

provided that k > k,.
By the inequalities (9) and (10), we therefore have

[x—x| < Ix—pjl+Ipj—xl < 3¢
for k > k,. This means that formula (8) is valid.
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Remark 1. Since every subset of the Hilbert cube is a sepa-
rable metric space, it follows from the above theorem that from
the topological point of view separable metric spaces are equivalent
to subsets of the Hilbert cube.

*Remark 2. Instead of assuming that X is metric separable,
we could have assumed that X is a 7 ; normal space with a countable
base. In this case the proof would run as follows.

Let G, G,, ... be a base of X. Consider all pairs {i,j)> such
that G; < G;. By the Urysohn Lemma (Chapter XII, § 5), there
is a continuous function f;;: X — £ such that

1) fy(x)=0 for xeG; and f(x) =1 for x e X—G,.

Arrange the double sequence {f;;} into a simple sequence {g,}
and put

(12) h(x) = (8:(x), g2(%), ...) € # .

We shall show that 4 is a homeomorphism:

As the continuity of % follows from the continuity of g,, it re-
mains to show that p ¢ 4 implies h(p) ¢ h(4).

Now, as X is a normal J ,-space and Gy, G,, ... is its base,
it is easy to see that there exists a pair of indices {i,j) such that
peG; and G; < G; < X—A4. Put g, =fy. By (1), g.(p)=0
and g,(x) = 1 for x € A. According to the definition of the dis-
tance in J# (see Chapter IX, (7)), we get for xe 4

(13)  |hG)—h(p) = 1/2", ie. h(4) A KIh(p), 1/2"] = O.

Thus h(p) ¢ F(A).
Let us add that another proof of the theorem under considera-
tion was referred to in Chapter X1II, § 6 (Remark to Theorem 4).

*§ 5. Condensation points. The Cantor-Bendixson theorem

A point p of a set A is said to be a condensation point of A if
every neighbourhood of p contains a non-countable set of points
of the set A,

We denote the set of condensation points of the set A4 by the
symbol 4°.
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Every condensation point of the set A4 is an accumulation point
of A4, i.e.

(14) A® < A
It is also easy to prove that the set 4° is closed, i.e.
(15) A° = A°,
and that
(16) (AU B)® = A° U B°.

The following generalization of Theorem 4, § 3, is valid:

THEOREM 1. In a space X with a countable base the set A—A°
is countable.

Proof. Let G,, G,, ... be a base of the space. Let p e 4 —A4°.
Then there exists a neighbourhood K of p such that 4 n K is count-
able. There exists also an index n(p) such that p € G,,, = K,
whence 4 N Gy = A N K, and therefore the set 4 N G,y is
countable.

Since the union of a countable number of countable sets is
countable (Chapter V, § 3, Theorem 4), the set

S= 1,4 Gup),

where pe 4 — A4° is countable, Now, we have 4 — A° = S,
for p € A 0 G,py. Therefore the set A—A° is countable.

Since a countable set clearly has no point of condensation, it
follows from the theorem that

an (A—A4%° = 0.
From this we deduce that
(18) X0 = x00,

In fact, the identity X = X° u (X—X9) yields, by virtue of (16)
and (17), that

X0 =Xy (X—X°° = X°°.
THEOREM 2. Every J ;-space X which contains a countable base

and does not contain non-empty sets dense in themselves (i.e. a scat-
tered space) is countable.
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Proof. By virtue of (18) and (14), we have X0 = X°° < X4,
ie. X° < X%, which means that the set X°is dense in itself. There-
fore X° =@ by hypothesis; it follows that X = X—X°, and
this last set is countable by virtue of Theorem 1.

THEOREM 3 (CANTOR-BENDIXSON). Every 7 ;-space with a count-
able base is the union of two disjoint sets, one dense in itself and
closed (i.e. perfect) and the other countable.

This is an immediate consequence of the preceding theorem
and of Theorem 3, Chapter XI, § 7.

Exercises

1. Define a dense sequence in the Hilbert cube 7.

2. Let X be the set of all real numbers having the topology induced by
the family B of all half-open intervals (a, b)) = {x: a < x < b}, considered as
base.

Prove that

(a) The members of the base B are both open and closed.

(b) The space X is separable but has no countable base.

Hint: Notice that for every x ¢ X each base contains a set whose infimum
is x.

(c) Every subspace of X is separable.

3. Show that the space considered in Exercise 1, Chapter IX, is not sepa-
rable.

Hint: Show that there exists a continuum of disjoint open sets in this
space.

4. Prove that 4°—B° < (4—B)°.
5. Prove that

(m: At)o < () Ao, Ut A° < (Ut At)o-

6. Assign to every ordinal number & < « an open set 4; lying in the space
X (with a countable base), so that Az41 < Ag and Az 1 # Ag. Prove that
o << £2 (i.e. that there is but a countable number of sets Ag).

Hint: Let G1, G,, ... be a base of the space X. Assign to each & (with
perhaps the exception of the last one) a number n(£) such that

Gney< A and  Guey—Aei1 # .

7. Prove the analogous theorem for closed Ag.

8. Deduce the following corollary from the above theorem: every set of
real numbers which is well ordered with respect to the “less than” relation
is countable. :

9. The derived sets of transfinite order are defined inductively by means
of the formulas (where the space is ; with a countable base):

X = X4, XCE+D = (X)), XB) = )e2X® (4 a limit ordinal).
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Prove (making use of Exercise 7) that beginning with some o < 2 the
derived sets of all orders are equal.

10. Deduce the Cantor-Bendixson Theorem from the above theorem
making use of Theorem 4, § 3.

11. Prove that every totally bounded space is separable (comp. Chapter XII,
Exercise 8).

12. The product IT, X, has a countable base iff each X, has a countable
base and all but a countable number of X; have the trivial topology (comp.
§ 1, Theorem 3).

13. We say that a topological space satisfies the first axiom of countability
if for every point x there exists a countable family of open sets such that every
neighbourhood of x contains a member of that family.

() Give an example of a space which satisfies the first axiom of counta-
bility but has no countable base.

(ii) Prove that every metric space satisfies the first axiom of countability.

(iii) Let X; be a topological space satisfying the first axiom of countability
for each 7 e T. Then the product 11, X; satisfies the first axiom of countability
if and only if all but a countable number of the spaces X; are trivial.

14. A space is said to be locally separable at the point p if there is a separable
neighbourhood of p. Give an example of a metric space which is locally sepa-
rable at none of its points.

Hint: Use a construction analogous to the construction used in Exercise 1,
Chapter IX.



CHAPTER XV

COMPLETE SPACES

§ 1. Complete spaces

Definition. We say that a sequence of points p,, p,, ...
in a metric space is a Cauchy sequence if for every & > 0 there
exists a k such that for every n > k we have

M [Pa—pil < e,
ie. if
NV \alln > 8 = (Ipa—pil < €.
A metric space is said to be complete if every Cauchy sequence

D1, P2, ... I8 convergent, that is, there exists a point p of this space
such that p = limp,.

n—>o00

The space of all real numbers is complete according to the known
Cauchy theorem from analysis. Let us note that completeness is
not a topological property of the space. The space of all real num-
bers is homeomorphic to the open interval 0 < x << 1 (see Chapter
XII, § 2) which is not a complete space inasmuch as the sequence
1/2, 1/3, 1/4, ... is a Cauchy sequence but is not convergent (in
this space).

THEOREM. Every convergent sequence in an arbitrary metric space
is a Cauchy sequence.

Proof. In fact, if the sequence p,, p,, ... is convergent to
the point p, then for every ¢ > 0 there exists a k such that for
every n > k we have the inequality

) lps—pl < €/2.
In particular, for n = k we have
€) [Pe—pl < ¢/2.

For n >k, inequality (1) follows from the inequalities (2)
and (3).
185
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§ 2. Cantor theorem. Let {F,} be a decreasing sequence of non-
empty closed sets in a complete space:

(4) Fl:) Fz:... DF" DFn+1:) cee
If

) limd(F,) =0,

then

(6) Moz Fo # B,

Proof. Let p,eF,. Then p,, p,, ... is a Cauchy sequence.
In fact, by virtue of (5), there exists for every ¢ > 0 a k such that
6(F,) < & provided n > k.

By 4), p,e F, < F,, and hence for n > k

Pns Pk € Fy,  whence  [p,—pi] < 0(F) < &

i.e. py, ps, ... is a Cauchy sequence. Since the space is complete,
this sequence is convergent. Hence, let p = limp,.

n—oco

For every m, the terms of the sequence py, p,, ... with the excep-
tion of at most the first m—1 terms belong to F,, and since the
set F,, is closed, the limit of this sequence also belongs to F,, i.e.

peF,form=1,2,..., ie. pe( o iFn.

Remark. The set (), F, consists of only one point p.

§ 3. Baire theorem. In a non-empty complete space X the union
@) E=F UF,vu..UF, u..

of closed boundary sets cannot fill the entire space; furthermore,
this union is a boundary set.!

Proof. In order to prove that the set E is a boundary set
in the space X, it suffices to show that every neighbourhood S, of
an arbitrary point contains points of the set X—E (see Chapter
X1, § 2, Theorem 2).

Since the closed set F, is a boundary set, there exists a ball S
such that S; < S, and S; n F;, = & (see Chapter XI, § 2,
Theorem 3). Clearly, we can assume that §(S;) < 1.

t Sets of the form (7) (where the sets Fy are closed boundary sets), as
well as all their subsets, are said to be sets of the first category.
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Similarly, we find an S, such that S, = S,, S, " F, =@
and 4(S;) < 1/2.

Continuing in this manner, we obtain a sequence of balls which
satisfy the conditions

®) Sy 58, 58,5...58,>...,

&) SynF,=@

and

(10) 6(S,) < 1/n, whence limd(S,)=0.

From the Cantor theorem, we deduce by virtue o£ (8) and (10)
that there exists a point p belonging to all the sets S,. Therefore

(by (9)
pPe m:°=1*§n < m?:l(X_Fn)':X—U;”:an,

hence by (7) pe X—E. Also pe S,.

Remarks. 1. Since a subset of a boundary set is a boundary
set, Baire theorem can also be stated in the following manner:
in a complete space every set of the first category is a boundary
set.,

2. It follows from the Baire theorem that every nonvoid com-
plete dense in itself space is noncountable.

In fact, if the space were countable: X = (p,, p;, ...), then it
would be the union of a sequence of sets each consisting of one
point: X = {p,} U {p,} U ... But each of these sets is a closed
boundary set, inasmuch as each of the points p, is an accumulation
point of the space X.

Since the space & of real numbers is complete and dense in
itself, we have thus obtained another proof of the inequality
¢ > a.

3. The set of irrational numbers is not an F,-set in the space
& (and therefore the set of rational numbers is not a Gj-set).

For, if the opposite were true, the set of irrational numbers
would be the union of a countable number of closed boundary -
sets (because the set of irrational numbers is itself a boundary set).
But since the set of rational numbers is the union of a countable
number of one-element sets—and hence of closed boundary sets—
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the entire space & could be represented as the union of a count-
able number of closed boundary sets; but this contradicts Baire
theorem.

§ 4. Extension of a metric space to a complete space

LeMMA. Let X be a topological space and Y a metric complete
space. Then the space D(X, Y) of all continuous bounded mappings
S+ X > Y metrized by the formula (6) of Chapter IX is complete.

Proof. Suppose that |f,—fi] < & for n > k. Then, for each
X, |fu(x)—fi(x)] < ¢ and fi(x), fo(x), ... is a Cauchy sequence,
hence is convergent. Put f(x) = limf,(x). The convergence is uni-

n—>oQ

form. Because, for every m > k, we have

,fm(x)_ﬁc(x)l < &, hence If;l(x) —fm(x) I < 2e.
Consequently |f,(x)—limf,,(x)] < 2& and finally |f,(x)—f(x)|

m-»00
< 2e.

It follows that fe @(X, Y) since the limit of a uniformly con-
vergent sequence of continuous bounded functions is continuous
and bounded (compare Chapter XII, § 3, Theorem 3 and Chap-
ter IX, § 7, Theorem 2). On the other hand f = limf, (by Theorem

1 of Chapter IX, § 7).

THEOREM. Each metric space X is isometric with a subset of
a complete space.

More precisely: let us define @ = @(X, &) as in the Lemma,
let a be a fixed point of X and let

an hp(x) = |x—pl—|x—al;

then 4, € @ for each p € X, and h: X — @ is an isometric mapping,
which means (according to the general definition of isometric
mappings) that

(12) lhy—hg| = |p—ql.

Proof. h,is bounded since |h,(x)| < |p—al| by (11). Accord-
ing to the Lemma, we have to prove (12). Now

[hp(x)—hy(x)| = ||x—p|—|x—ql| < [p—ql,
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hence |h,—h,| < |g—p|. On the other hand
hy(p)—hy(p) = —Ip—al—I|p—ql+|p—al,
hence |h,—h,| > |p—ql, and (12) follows.
Remark. If Xis bounded, the definition of /, may be simpli-
fied. We can assume, namely, that h,(x) = [x—p].

Exercises

1. Show by means of an example that Baire theorem is not valid in
arbitrary metric spaces.

2. The cartesian product XX Y of two complete spaces, metrized with
the aid of the formula

X1y Y10 =LX2, Y20 = {lxy—x312 41y, —}’212}1/2 »
is complete,
3. The cartesian product X; X X, X X3 X ... of complete spaces is complete

if the distance between two points x = (x{, x2,...) and y = (¥y, ¥2, ...)
is defined by the formula

o0
x—yl = 3 (1/20x5—al [(1+1x5 =Y.
n=1
4. Prove that every Gsset lying in a complete space is homeomorphic
to a complete space (Alexandrov theorem).
Hint. Use Exercise 5 of Chapter XIII.
5. Let f be a continuous mapping of a complete space and let the sequence
F,, F,, ... satisfy the assumption of Cantor theorem. Then

(W= 1F) = (1 f(FD).

6. Prove that the set Z of convergence points of a sequence f;, f3, ... of
mappings with values in a complete space satisfies the equivalence

xe2)= NV m/\il fmsi)—Fn(0 < 11k

Infer that if f; are continuous mappings, then Z is F,5 (Hahn’s theorem).

7. Prove that if X is complete, then so is B(X) (comp. Chapter XII,
Exercise 7).

8. Let X be metric (bounded). Denote by «(X) the infimum of all ¢ such
that there exists a finite cover composed of sets of diameter < ¢ (compare the
concept of a totally bounded space, Chapter XII, Exercise 8).

Prove the following generalization of Cantor theorem.

Let {F;}, te T, be a family of closed sets such that

(i) each finite intersection of the sets F; is non-empty,

(ii) inf 0 (F;) = 0;
then { \F; # 9.

9. Define a space which is bounded, complete and separable,t but is
not totally bounded.

t A complete separable space is called a Polish space (see Bourbaki).



CHAPTER XVI

COMPACT SPACES

§ 1. Definition

A topological space X is called compact if every open cover of
X contains a finite cover of X.

In other words, if {G,} is a family of open sets such that |_J,G,
= X, where ¢ ranges over an arbitrary set 7, then there is a finite
system #;, ..., ¢, such that X = G;, u ... U G,,.

It is easy to show that the above condition, called the Borel-
Lebesgue condition, is equivalent to the following Riesz condition:
if {F,} is a family of closed sets such that { \,F, = &, then there
is a finite system ¢,, ..., #, such that F;,, n ... n F, = @.

ExampLEs. The interval .#, the cube $" are compact. More
generally, each closed and bounded subset of the space " is com-
pact (see § 5).

§ 2. Fundamental properties of compact spaces

THEOREM 1. Each compact subset of a F ,-space is closed.

Proof. Let A = X be compact. We have to show that X—A4
is open, i.e. that given a point b € X— A4, there is an open G such
that be G < X—A.

Since X is a J ,-space, there is for each x € A a pair of open
sets U, and V., such that

beU,, xeV, and U,nV,=0.

Consequently, the family of sets 4 n V,, where x € 4, is an
open cover of A (considered as a space). Since A is compact,
there is a finite system x,, ..., x, such that

A=AnV)u ..u (4 AVy), ie. AcV,u..u Ve,

Put G=U,, n ... U, Therefore G is open and beG
< X—A.
190
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THEOREM 2. Each closed subset of a compact space is compact.

Proof. Let F=F < X.Let {G,}, t € T, be a cover of F, where
G, is open relative to F. Hence there is an H, open (relative to X)
such that G, = F n H,. Consequently the family of sets H,,
where ¢ € T, augmented of the set H = X—F, is an open cover
of X. Since X is compact, there is a finite system #y, ..., f, such
that X=Hu H,, v ... UH, . Hence F=G, U ... UG,,.

THEOREM 3. The image under a continuous mapping of a compact
space is compact.

Proof. Let X be compact and f: X — Y continuous and
onto. Let {G,} be an open cover of Y. Hence {/~*(G,)} is an open
cover of X. Since X is compact, there are ¢4, ..., ¢, such that

X=f1G)v ..vufYG,), hence Y=G, v ..uG,.

COROLLARY 1. Each continuous mapping of a compact space
into a T y-space is a closed mapping (i.e. if F < X is closed, so is
S(F)). .

Proof. LetXbecompactandf: X —» Ycontinuous. Let F = X
be closed. By Theorem 2, F is compact. Therefore, by Theorem 3,
f(F)is compact, hence closed by Theorem 1 (since Y is a 7 ;-space).

COROLLARY 2. Each one-to-one and continuous mapping of
a compact space into a I ,-space is a homeomorphism.

Proof. Put g=f-' Hence g~'(F)= f(F), and since F is
closed, so is g~!(F).

THEOREM 4. Each compact I ,-space is normal (hence completely
regular).

Proof. Let 4 and B be two closed disjoint sets. As in the

proof of Theorem 1, one can assign to each b € B two open sets
G, and H, such that

beG, AcH, and G,nH, =0

(in fact, it is sufficient to put G,= U,,n..nU;, and H,
=V, U ... U V).

Since B is compact (by Theorem 2), it follows that Bc G,, U
U..UGy,. PutG=G, v...UGy,, H=H, n...n H,,. Hence
AcHBcGandGn H=0.
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Moreover, G and H are open. This completes the proof.

THEOREM 5. A topological space which is the union of two compact
sets is compact.

We leave the proof to the reader.

§ 3. Cartesian products

THEOREM 1. Let X be an arbitrary topological space and let
Y be compact. Then the projection of XX Y on the X-axis is a closed
mapping of XX Y onto X.

Equivalently: if G is open in XX Y, then the set Q of all points
x of X such that (x)XY < G is open in X,

Pro of. We shall prove the theorem in the second formulation.
By the definition of product topology, G is of the form G
= (UJ,G, X H, where G, is open in X and H, in Y. Let x, be a fixed
point of Q, ie. (xo)XY = G. Hence for each y € Y there is an
index #(y) such that {xo, y) € G,(;,X H,(,,. Thus

¢)) X0 €Gyyy, YE€Hy, and G,;XHy,, <G.

Since the family {H,,}, where y ranges over Y, is an open
cover of Y, there is a finite system y,, ..., y, such that

(2) Y= }It(yﬂ oL, U Ht(yn)'

Put R(xo) = Giyy N ... N Gyy,y. Hence R(xo) is open,
Xy € R(x,) by (1), and by virtue of (2) and (1):

[R(x0)X Y] © [(Griyy X Higyyy) VU - U (GriyyX Hiyy)] = G.

Thus R(x,) = Q. Since R(x,) is open and contains x,, it follows
that Q is open. This completes the proof.

The main object of this section is to show that the cartesian
product of compact spaces is a compact space. We shall start
with the case of two spaces (which is simpler).

THEOREM 2. The cartesian product XX Y of two compact spaces
is compact.

Proof. Let C be a cover of XX Y. We have to show that it
contains a finite subcover. Since the sets Gx H, where G is open
in X and H in Y, form a base, we are allowed to assume that
C = {G, X H,} (see the Remark of Chapter X, § 11).
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Let R be the family of all open sets Q < X such that
(3) QXYC (GTIXH'I) ooV (thXth)

for an appropriate system 7,, ..., f,.

We shall show that R is a cover of X.

Let xo €X. Since {x,}XY is homeomorphic to ¥ and Y is
compact, so {Xo}X Y is contained in a finite subcover of C:

{x0}XY € (G, X H;)) U ... u (G, X H,).

By Theorem 1, there is an open Q containing x, and satisfying
(3). Thus R is a cover of X.

Since X is compact, R contains a finite subcover: X = Q; U
U ... U O. Since we have by (3), for i <k,

XY < (G,“XH,“) U..u (G,‘.‘"@X H,l'”(i)),
50

XXY = U§=1Qi>< Y ULIU;(—PIGH,JXH'

1,2

and the right-hand side is a finite subcover of C.

This completes the proof for the case of the product of two
spaces. The proof of the general case will be based on the Alexander
Lemma.

Let us call essentially infinite every cover which contains no
finite subcover. (Thus compact spaces are spaces which have no
essentially infinite subcover.)

ALEXANDER LEMMA. Let A be an open subbase of the topological
space X. Suppose there exists an essentially infinite open cover of
X. Then there exists such a cover contained in A.

Proof. Denote by M the totality of all essentially infinite
open covers of X, By assumption IM # . We shall show first
that M has the following property: whenever {P,} is a trans-
finite (see Chapter VIII, § 7) monotone sequence (i.e. o < f
= P, = P;) of members of M, then (.P.) € M.

(P, is obviously a cover of X. It is essentially infinite. For
otherwise, it would contain a finite cover G, ..., G, and con-
sequently there would be a finite system o, ..., o, such that
G; € P,,. Denote by 8 the greatest o; (1 << i< n). Hence G; Py
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for each i=1,...,n and it follows that P, is not essentially
infinite.

From the property of 9 just shown, it follows (see Chapter
VIII, § 8) that M contains a maximal element. Denote it by P.
Thus, if H is open and does not belong to P, then P U {H} is not
essentially infinite, which means that there is a finite system
G, ..., G, such that

@ HuGivG,u..vuG,=X and G;ePfori=1,..,n.
We shall show that the family of open sets which do not belong
to P is a filter, i.e. that (H and G being open)
(51) H ¢P and H,¢Pimply (HinH,)¢P
and
(52) H¢P and H <G imply Gé¢P.
The condition H; ¢ P, j = 1,2, implies (see (4)) the existence
of sets G;; ..., Gj,, such that
HuG,vG,u..vG, =X and G;;eP.
It follows that
Hy n Hy)u UG = X,
hence (H, n H,) ¢ P, since P is an essentially infinite cover.
Thus (5;) has been established.

Now let H ¢ P. We may suppose that (4) is fulfilled. Therefore,
if Hc G, we have

GuG,uGu.. VG, =X

which yields G ¢ P.

We shall show that (5;) and (5,) imply that 4 n P is a cover
of X.

Let x, € X. Since P is a cover of X, there is a G € P such that
Xo € G, and since A4 is a subbase of X, there is a finite system
Hy, ..., H, of elements of A such that

xo€(H,n..n H)cG.
It follows by (5;) and (5,) that there is an i such that H, e P.

Hence xoe H;e A n P. Thus A n P is a cover of X.
Finally, since P is essentially infinite, so is 4 n P.
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Tueorem 3 (of Tychonov). The product Z = [[.r X, of
compact spaces X, is compact whatever is the set T.
In particular, the generalized cube $% is compact for each a.

Proof. Let A be an open subbase of Z composed of sets (see
Chapter XIII, § 5, (2)):
6) Qrg=1{f f(t)eG} where teT and G c X, is open.

Suppose that Z is not compact. Then by the Alexander Lemma
there is an essentially infinite cover U < 4.
Denote by ¥V, the family of sets defined by the condition

™ GeV,=Q,geU.

We shall show that ¥, is not a cover of X;.
Suppose that the contrary is true for some ¢ e 7. Since X, is
compact, if follows that

@) X;=G,v...uG, where G;eV,, ie. Q,qelUfori<n.
Therefore, by (6) and Chapter IV, (8),

Uilre, = Ui{f: f() e G} = {f: \/ilf(t) e G}
={f1 feUG}={f fOeXx}=2

Thus U contains a finite cover of Z, which is impossible.
Consequently, ¥, is not a cover of X,. This means that there
is f(t) in X; which belongs to no member G of V,. Thus

) GeVi=>f(t)¢G, ie. QO ceU=f(t)¢G

by (7).

On the other hand, since U is a cover of Z and U < A, there
is a pair (z, G) such that feQ, e U. But this contradicts (6)
and (9) because

feQic=>f(t)eG while Q,celU=f(t)¢G.

§ 4. Compactification of completely regular spaces

A compact space Y is called a compactification of the space
X if it is compact and X is homeomorphic to a dense subset of Y.

For example the interval # and the circle &, are compacti-
fications of the space & of reals.
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It was shown in § 6 of Chapter XIII (Theorem 4) that if X is
a completely regular J ;-space, the evaluation e of the set @
= (F)p (=the set of continuous functions f: X — ) is
a homeomorphism of X into Z = #2. Put '

(1) BX = o).

Since Z is compact by the Tychonov Theorem, so is X (by
Theorem 2 of § 2). Thus X is a compactification of X (called the
Cech-Stone compactification). It may be considered as a maximal
compactification (see the Remark below).

FUNDAMENTAL LEMMA. Let f: X — ¥ be continuous. Then the
Sunction f o e™1: e(X) — & has a continuous extension [*: Z —> 5.
Namely f* = m; (compare the Remark of Chapter V, § 1).

In other words: let us identify X with e(X) (which is homeomor-
phic to X by Theorem 4 of Chapter XIII, § 6); then

)] fef*: Z-># and f* is continuous.
GENERALIZED LEMMA. Let T be an arbitrary set and let X be

identified with e(X). If - X —» #7T is continuous, then

3 fef* Z-> 5T, where f* is continuous.

Proof. Let f, denote the rth coordinate of f and let f, = f*:
Z — #. Then the complex mapping f* which has f;* as its tth
coordinate is the required mapping.

THEOREM. Let X be a completely regular 7 y-space, Y a compact
T ,-space and f: X — Y continuous. Then, identifying X with e(X),
we have
4 fcg: pX—>Y where g is continuous.

Proof. Since Yis a completely regular 7 y-space (by Theorem
4 of § 2), it may be assumed to be a subset of a cube #7 for an
appropriate set 7. Thus f: X —» #4T. Applying formula (3) put
g =f*|pX. It follows that f < g. Finally g: pX — Y, since the
continuity of g and the compactness of Y imply:

gBX)=g(X) c gX) =fX) = Y=7Y.

Remark. The Cech-Stone compactification is maximal in
the following sense. Given a compactification ¥ of X (where Y
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is a J ,-space), there exists a continuous mapping of X into Y
which is the identity on X.

This is just another form of the preceding theorem. For, let
h be a topological immersion of X into Y and 4 = A*: X - Y.
By identifying x with A(x), one obtains the required mapping A*.

§ 5. Compact metric spaces

Definition. A topological space & is called countably
compact, if it satisfies the following condition (called the Borel
condition):

every countable open cover contains a finite subcover.

Obviously a compact space is countably compact, while the
converse is not true (as seen in the example of the space of ordi-
nals o < £). If, however, the space is supposed to be metric,
then compactness and countable compactness are equivalent
(see Theorem 1).

The Borel condition is equivalent (by duality) to the following
condition:

() if F,, F,, ... is a sequence of closed sets such that

(l) Fkln'--anM¢ %]
for every finite system &, ..., k,, then
(2) m(;o:an # Q-

It is also equivalent to the following condition (of Cantor).
(i) if Fy, F,, ... is a sequence of closed nonvoid sets such that

3 FioF,>...oF ..,

then condition (2) is fulfilled.

Proof. Suppose (3)is true. Then Fy, n ... F,, = F; # @,
where j is the largest among the indices k,, ..., k. Therefore,
if (i) is supposed to be true, condition (2) follows. Thus (i) implies
(ii).

The implication (i) = (i) follows directly from the formulas:

F1 ﬁFz N... =Fl n(Fl an)n... (‘(Fl n... ﬁFn ...
and
Fl :D(Fl ﬁF2) o ... D(Fl M. (\F,,) D...
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LEMMA 1. For metric spaces, the condition of countable compact-
ness is equivalent to the following Bolzano—Weierstrass condition:
(iii) each sequence of points p,,p,, ... contains a convergent
subsequence; i.e. there is a point p and a sequence of indices k,
< k, < ... such that
) p =limp,,.

Proof. 1. Suppose that X is metric and countably compact.
Therefore the condition (ii) of Cantor is fulfilled. Let p,, p,, ...
be a sequence of points of X and put P, = {p,, pu+1,..-}- By
(ii) there is a point p such that p € P, for each n. Consequently
the ball K(p, 1/n) has points in common with P, and there exists
an infinity of indices m > n such that |p,—p| < 1/n. The defini-
tion of the sequence k; << k, <C ... can easily be derived.

2. (iii) = (ii). Choose from each F, a point p,, and let (4) be
fulfilled. By (3) each F, contains all points p,, p,, ..., except
a finite number, and hence p € F, (since F, is closed). This implies
@.

LeMMA 2. Every countably compact metric space is separable,
and hence contains a countable open base (by Theorem 2 of Chapter
XIV, § 2).

Furthermore, for every number ¢ > 0, there exists a finite number
of points A, = {p,, p>, ..., p} (called an e-net) such that

(4,) Q(x9 Ae) <&,

i.e. such that every point x is at a distance less than ¢ from some
point of the set A,.

We define thg set 4, inductively. Let p; be an arbitrary point
of our space. Let p, be an arbitrary point such that |p;, —p,| = &,
provided that such a point p, exists; if such a point does not exist,
then we take 4, = {p,}.

In general, p, is a point such that

G |Pn—Dml = ¢ forall m<n,

provided that such a point p, exists; if such a point does not exist
we take A, = {py, ..., Pu_1}-
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The sequence py, p,, ... constructed in this manner must be
finite; for in the contrary case, it should contain a convergent
subsequence (by virtue of the compactness assumption), which
however is impossible because it follows from condition (5) that
no subsequence of py, p,, ... is a Cauchy sequence, and hence it
cannot be convergent.

We have thus defined the set A4,. It remains to show that the
space is separable.

Let B= A, U Ay;» U ... U Ay, v ... This set is countable.
It is dense in the space because for every x and every n we have
o(x, B) < o(x, Ay;,) < 1/n (by virtue of (4') and Theorem 2 of
Chapter XII, § 4); this means that there exists a point b € B such
that [x—b| < 1/n. And therefore x € B.

THEOREM 1. Every countably compact metric space X is compact.
Thus, for metric spaces, compactness and countable compactness
are equivalent.

Proof. Let {G.} be an open cover of X. By Lemma 2, X con-
tains a countable base, and it follows (see Chapter XIV, § 1,
Theorem 2) that X is a Lindelof space; consequently

X=UG,.
Applying the Borel condition we get
X=G,v..vG,,
which completes the proof.
THEOREM 2. Every compact metric space is complete.

Proof. Letusassume that the sequence py, p,, ... is a Cauchy
sequence. We shall show that it is convergent.

By assumption, for a given & > 0, there exists a j such that for
n > j we have the inequality

© |Pa—pil < &.

Since the space is compact, we can select a subsequence from
the sequence py, p,, ... which satisfies condition (4).

We shall prove that
) limp, = p.

n—->od
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By virtue of (4) there exists an m > j such that
®) [Pr,—pl < &.
Since k,, == m > j, we therefore have by (6):

® [P, —Pl < &

Adding inequalities (6), (8) and (9) memberwise, we obtain
(10) |pa—p|l <3¢ for n>j,
which proves (7).

THEOREM 3. Every compact metric space is bounded.

Put ¢ =1 in Lemma 2. It follows that 8(X) < 8(4,)+2.

COROLLARY 1. For subsets of Euclidean spaces, compact sets arid
closed bounded sets coincide.

Proof. If Fis bounded, Fis contained in a (sufficiently large)
cube, hence in a compact space. If F is supposed to be closed, F
is compact (by Theorem 2 of § 2).

Conversely, if 4 = &" is compact, then 4 is bounded by The-
orem 3 and is closed by Theorem 1 of § 2.

COROLLARY 2 (GENERALIZED WEIERSTRASS THEOREM). Every
continuous real valued function f defined on a compact space X is
bounded and attains its least upper and greatest lower bounds.

Proof. The set f(X) is, by virtue of Theorem 3 of § 2, a com-
pact subset of the set of real numbers and hence (cf. Corollary 1)
it is a closed and bounded set. Since the set f(X) is closed, the
least upper bound m, and the greatest lower bound m; of the
function f belong to f(X). Therefore, there exist an x, such that
mo == f(x,) and an x; such that m; = f(x,), which was to be
proved.

We introduce the concept of uniform continuity in a way similar
to the way it is done in analysis.

We say, namely, that the mapping f: X — ¥ where X and Y
are metric is uniformly continuous, if for every & > 0 there exists
8 > 0 (depending only on &) such that the condition |x'—x"| < §
implies the inequality |f(x)—f(x")] < ¢ for arbitrary pairs of
points x’, x” of the space X; we write this condition symbolically
in the form

AD ANV N\x N\an{lIx' —x"[ < 8] = [Ifx)—fx")] < €]}
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Continuity in the usual sense follows from uniform continuity.
The converse theorem is not true as shown by:

y=1lx 0 <x<1), y=¢€ (—w<x<+ 00).
On the other hand, the following theorem is valid in compact
spaces:
THEOREM 4 (GENERALIZED HEINE THEOREM). Let f: X — Y be

continuous and X and Y metric. If X is compact, f is uniformly con-
tinuous.

Proof. Let us assume that f is not uniformly continuous.
Hence there exists an ¢ > 0 such that for every 6 > O there exists
a pair of points x’, x'" in the space X which satisfies the conditions

(12) IX'—x"| <8 and |fx)—fx") =,

1.€.

(13) Voo Var VIl —x"1 < 8] [fx)—f(x")] = e}
From this it follows in particular for § = 1/n that there exists

a pair of points x;, x,’ such that-

(14) [xa—x,"[ < 1/n,

(15) [f(en)—fCe, )| = e

Since the space X is compact, we can select a convergent sub-
sequence X, Xi,, ... from the sequence xi, x3, ... Let

(16) limx;, = x.

n—-»oo

It follows from conditions (14) and (16) that

17 limx;! = x.

Since f'is continuous, we deduce from (16) and (17) that
limf(x;,) = f(x) and limf{x;,) = f(x),
whence

lim | f(xi,) —f(xi)l = 0,

n—>oo

which is a contradiction of inequality (15).



202 SET THEORY AND TOPOLOGY

Remark. Theorem 4 can be derived from the following
more general statement, in which we do not assume that X is
metric.

* THEOREM 4'. Let f: X — Y be continuous, X compact and Y

metric. Let ¢ > 0. Then there exists an open finite cover G, ..., G,
of X such that
a7 oG <e for i=1,2,..,n

Proof. Let K, denote the open ball with centre y € ¥ and
radius £/2 (see Chapter IX, (10)). Obviously, the family of all K,
is an open cover of Y, and consequently (since f is continuous)
the family of all f~(K,) is an open cover of X. Since X is compact,
the last cover contains a finite cover f(K,), ...,f*(K,,) of X.
It remains to put G; =f1(K,) fori =1, ...,n.

In order to derive Theorem 4 from Theorem 4’, we denote by
d (> 0) the Lebesgue coefficient of the system of sets X—Gy, ...,
X—G, (see Theorem 7). Then the condition |x'—x"'| << § implies
that both points x” and x”’ belong to one of the sets G;, and hence
by (17), [f(x")—f(x")] < e.

* THEOREM 5 (on continuous convergence). 4 necessary and
sufficient condition for a sequence of continuous mappings f1, [, ...
defined on a compact metric space X to be uniformly convergent to
/. is that the condition

(18) limx, = x
implies
(19) limfy(x,) = f(x).

[We say that the sequence fi, f3, ... is continuously convergent
if condition (18) implies condition (19).]

Proof. Necessity. Let us assume that the sequence f7, /5, ...
is uniformly convergent to f. Let ¢ > 0. Hence, there exists a k
such that

(20) () —f(x)] < e.

for all x and for n > k.
Let us assume (18) is satisfied. We must prove (19).
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Applying (20), we have

(21) | fa(xa) —f(xa)] < &
for n > k.

Since the function f'is continuous, being the limit of a uniformly
convergent sequence of continuous functions (cf. Chapter XII,
§ 3, Theorem 3), therefore by (18), we have

2 ) —f()] < &

for sufficiently large n.
From inequalities (21) and (22) we deduce for sufficiently large n

[faGxn) —f(X)] < 2,
which proves that (19) is satisfied.
Sufficiency. Let us assume that the sequence of continuous

mappings f, is continuously but not uniformly convergent to f.
Hence

Ve An Ve Viltk > n) 1) —f(x)] = €1},

i.e. for some & > 0 and for every natural number n we can choose
a point x, and an index k, in such a way that

23) ky <k, <..<k,<..,
(29) Vi) =)l 26 for n=1,2,..

The space X being compact, we can choose a convergent sub-
sequence from the sequence x,, Xx,, ... Clearly, we can assume
that the points x, are so chosen that the sequence xy, Xx,, ... is
convergent. Now, let (18) be satisfied. We shall prove that
(25) limf, (x,) = f(x).

Let us construct the sequence xy, x; ... in the following way:
6) x,=x, for k,,<m<k, (whereko,=0).

Obviously
limx,, = limx, = x.
m—00 n-+oQ
From this, by virtue of the continuous convergence of the
sequence f3,f,, ..., we have

limf,, (x,) = f(x),

m-—oo
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and hence

@7 limfy, (i) = f(x)-

n—»o00

But since, by virtue of (26), x;, = x,, (27) yields (25).
Since the sequence {f,,} is continuously convergent, we have

limf,(xo) = f(x0)

m->o00
for fixed x,. Therefore, for every n we have

limfm(xn) = f(xn) s

m—>00
whence we deduce that the inequality
(28) [ fmaOin) —fCxa)] < 1/

holds for some increasing sequence of indices

(29) m<m, <..<<m<<..
We showed above that conditions (18) and (23) imply (25).

Therefore, taking (28) into account, we have

(30) limfmn(xn) = f(x) .

n—»oo

Formulas (25) and (30) yield
lim Iﬁtn(xn) _fm,.(xn) l =0 )

whence by virtue of (28) we have

lim lfkn(xn) —f(x)|=0;
"but this contradicts inequality (24).
This also concludes the proof of the theorem.

THEOREM 6. In a compact metric space X the family of sets
which are simultaneously closed and open is countable.

Proof. By Lemma 2, X contains a countable open base
Gy, G,, ... Thus every open H is the union of a number of sets
G,; if moreover X is compact, this number may be assumed to
be finite. Thus to every open-closed set H we can assign a finite
system ky, k3, ..., k, in such a way that

H =G,V G,u ..U Gy,.
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To distinct sets H there obviously correspond distinct systems
of natural numbers. Hence, there are at most as many open-closed
sets as there are finite systems of natural numbers, and the number
of the latter is countable (see Chapter V, § 3, Theorem 5).

THEOREM 7. Let {F,} be a family of closed subsets of a compact
metric space such that ( \.F, = @. Then there is ¢ >0 (called
the Lebesgue coefficient of the system {F.}) such that every set of
diameter < ¢ is disjoint from at least one of the sets F.

Proof. Note that (since the space is compact) we have F;, n
N ...n F,_ =@ for an appropriate system ¢, ..., t, of indices.
Put

f(xy, ..., x;) = max|x;—x;| where x,€F,,
i,j<n -

and denote by ¢ its lower bound (observe that f: F, X ... X F,,
- & is continuous). As F;, n ... F,, =&, we have ¢ >0.

Suppose that 4 N F, # @ for each teT. Put x,, eAdn F,, .
Then 8(4) = 6(x;, ..., X,) = .

The following statement is dual to Theorem 7.

COROLLARY. Let C be an open cover of the compact metric
space X. Then there is ¢ > 0 such that every cover of X composed
of sets of diameter << ¢ is a refinement of C.

Remarks. In many cases the assumption that the compact
space is metric leads to simpler proofs. Such is the case of Theorems
1-3 of § 2. Here we shall give a simple proof of the invariance of
compactness under finite or countable cartesian multiplication.

1. The product XX Y of two compact metric spaces is compact.

Proof. Let z,=<{x,, > €XXY, ie. x,€X,y, €Y. We
must show that the sequence z,, z,, ... contains a convergent
subsequence.

We can choose a convergent subsequence from the sequence
Xy, X5, ... Since the space X is compact. Hence, let
3D ' limx, = x.

n—>o0
Similarly, since the space Y is compact we can select a conver-
gent subsequence from the sequence yy,, yx,, ... Let

(32) limy,, = y.

n—-»oo
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By (31) we have

(33) limx,, =x.

n—oo

Because of (32) and (33) we get

lim<xrk,.’ yrk,,> = (X, y>: ie. limz'k,. =z

n->oo n—od

We have thus selected a convergent subsequence from the
sequence z;, Z,, ...; this completes the proof.

In an analogous manner it can be proved that the cartesian
product of an arbitrary finite number of compact spaces is a com-
pact space.

2. If the metric spaces X, X,, ... are compact, then the space
X XX,X ...1is also compact.

Proof. Let p;,p,,... be a sequence of points belonging to
the space XX X,X ... Hence
Pn=(xt,x2,...,x"..), where x"eX,fornm=1,2,..

Since the space X is compact, there exists a sequence
(34) 1<k, <k,<..
such that the sequence x;,, x7,, ... is convergent. Let
(335) limx}, = x.

n—oo

Similarly, there exists a sequence
(36) 1<ji<j2< ...
such that the sequence xijl , X2 PPN is convergent. Let

37 limxZ, == x2.
n
n—oo
Continuing this process, we define an infinite sequence x!, x2,
x3, ... Let us set
q=(xt, x2,x3,..).

Hence we have g € X; XX, X ... We shall prove that g is the
limit of the sequence

(38) Pul’kl,Pk,‘s---
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In fact, making use of formulas (34) and (36) we verify that
V<ky <kj, <k <..,

and therefore the sequence (38) is a subsequence of the sequence
Pi1sDP2,P3, -
The sequence

1 1
x,kl, x,,“, e

is therefore a subsequence of the sequence xi,, Xi,, Xi,,...;
hence, by virtue of (35) it is convergent to x!. Similarly the sequence

2 2
xkjl, xkjil, “ee

converges to x? by virtue of (37).
In general, the sequence

n n g
X1, xkl’ xkjl’

converges to x”".

Thus, we have proved that the sequence (38), which forms
a subsequence of the sequence py, p,, ..., is convergent to g.
This means that the space X; XX, X ... is compact.

§ 6. The topology of uniform convergence of Y*

Let X be compact and ¥ metric. The set Y* of all continuous
mappings f: X — Y can be considered as a metric space if the
distance between its elements is defined by formula (6) of Chapter
IX (the topology induced by the distance thus defined is called
topology of uniform convergence).

We refer here to the fact that the mappings f are bounded
(because of the compactness of X, comp. § 5, Theorem 3) and
hence YX = @(X, Y) (the latter symbol denoting the space of
continuous bounded mappings f: X — Y).

This identity implies the following theorem:

THEOREM 1. If X is compact and Y complete, then Y is complete.

Because according to the Auxiliary Theorem of Chapter XV,
§ 4, if Y is complete, so is @(X, Y).

Remarks. In particular, the space é"j is complete; this
space is not compact, as is shown by the example f,(x) = x".
This same remark applies to the space S s,
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Theorem 1 allows us to apply the Baire theorem of Chapter XV,
§ 3, to function spaces (in the case where the space X is compact
and the space Y is complete) for the purpose of proving existence
theorems.

As an example of the numerous applications to analysis let
us quote the following theorem:

BANACH THEOREM. In the space &% the set of functions which
possess a derivative in one point at least forms a boundary set.

Banach theorem is a remarkable sharpening of Weierstrass
theorem on the existence of continuous functions which do not
possess a derivative at any point.

THEOREM 2. Let X be compact metric and Y metric. Then the
set of all one-to-one mappings f+ X = Y (i.e. the set of homeo-
morphisms) is a Gg-set in the space Y*.

Proof. Let I' denote the set of mappings f which are not
one-to-one. Thus f e I" means that there are x; # x, such that
J(x1) = f(x,). Let f € I, mean that there are x, and x, such that
[xy—xz| = 1/n and f(x;) = f(x,).

Hence I'=I", v I', U ... Obviously the limit of a uniformly
convergent sequence of members of I, belongs to I',; and hence
I, is closed in Y, This completes the proof.

§ 7. The compact-open topology of Y%

Let X and Y be arbitrary topological spaces. We introduce
in YX topology, called compact-open, in the following way.

Definition. For Cc X and H < Y, put
I'(C,H)={f: f(C) = H}, where feYX

The compact-opzn topology of YX is defined by assuming
that the totality of sets I'(C, H), where C is compact and H open,
is an open subbase of Y7,

THEOREM 1. If X is compact and Y is metric, then the uniform
convergence topology of Y coincides with its compact-open topology.

Proof. 1. Let G be open in the compact-open topology of
Y*. We must show that it is open in the uniform convergence

topology. Without loss of generality we may assume that G
= I'(C, H).
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Let fo, € I'(C, H). We have to define ¢ > 0 such that

() [f—fol < e implies feI(C, H).
Put
2 e = info[fo(x), Y—H] where xeC.

Since f,(x) € H for each x € C, then o[fy(x), Y—H] > 0 (comp.
Chapter XII, § 4), and since C is compact and ¢ a Continuous
function of x (ibid., Theorem 5), g attains its lower bound on
C (by the Corollary of § 5). Thus ¢ > 0.

Let |f—fol < e. Suppose, contrary to (1), that f¢ ['(C, H),
i.e. that f(x,) € Y—H for some x, € C. Hence

elfo(xo), Y—H] < | fo(x0) —f(x0)l < .

But this contradicts 2).

2. We must show that each open set in the uniform convergence
topology is open in the compact-open topology. Clearly, it suffices
to prove that, for each f, € Y¥ and ¢ > 0, there are two finite
systems C,, ..., C, and Hy,..., H, (where C; c X is compact
and H; c Y is open) such that

(3) fO € F(ClaHl) 0N F(Crn Hn) < K(fOs 8)'

Since X is compact and f, continuous, there is a finite open
cover X = Gy U ... U G, such that 8[fo(G)] < ¢/3 and G; # 9
for i=1,...,n. Choose x; € G; and put

@ Ci=G; and H; = K[f,(x), ¢/2]
= {y: ly—fo(x)l < &/2}.
Now, since 8[fo(C)] < ¢/2, we have for x € C; the inequality
[fo(x)—fo(x)] < ¢/2,

and hence
fox)e H;, ie. foel(Ci, H).

This is true for each i =1, ..., n. Thus the proof of the first
part of (3) is completed.

To prove the second part of (3), put fe I'(C;, H;). Then for
each x e C; we have f(x) € H;, and by (4),

) —folx)l < /2.
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Since [f5(Cy)] < &/2, it follows that
(%) ~fo () < 1) —fox)+ 1 fo(x) —fo(¥)] < e.

Therefore fe K(fo, €).

Remark. It follows from Theorem 1 that the uniform
convergence topology for X compact and Y metric is a topo-
logical invariant (it does not depend upon the metric of Y); for
X compact metric this follows also from Theorem 5 of § 5.

THEOREM 2. Let X be a compact T ,-space and Y arbitrary.
Given a continuous - X — Y, put ¢(f, x) = f(x). Then the map-
ping @: YXXX — Y is continuous.

Proof. Let H < Y be open. We have to show that the set

Y (H) = {{f,x): f[(x) e H}
is open in YXx X. In other words, that for each f,(x,) € H there
is Q open in Y¥x X such that
&) {fo, X0 €0
and
6 Q <o '(H), ie. [{f,x)eQ]=[f(x)eH].

Since f; is continuous and X regular (cf. § 2, Theorem 4), there

is G open in X such that
xo€G and fo(G)c H, ie. foel(G,H).

Put
Q) Q = I'(G, H)XG.

It follows that Q is open in Y*¥X X and that formula (5) is
fulfilled.

Formula (6) is also true because the condition (f, x) € Q means
(by (7)) that f(G) = H and x € G, hence f(x) € H.

Remark. Instead of assuming that the compact space X is

a J ,-space one could assume that Y is regular. The proof would
be similar.

§ 8. The Cantor discontinuum

The Cantor discontinuum is the set € of all numbers ¢ of the
form
1) t=1t34+6,/94 ... +£/3"+ ...,
where t, assumes one of the values 0 or 2.
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They are therefore numbers of the interval [0, 1] which can be
written in the ternary system of calculation without using the
digit 1.

For example, 1/3 belongs to € because

1/3 =0/34+2/9+2/27+ ... +2/3"+ ... = (0.0222 ...),

but 1/2 does not belong to %.

We can also define the set € geometrically as follows.

Let us divide the closed interval [0, 1] into 3 equal parts and
let us remove the middle open interval. We divide the remaining
two intervals (0, 1/3) and (2/3, 1) into three equal parts and
remove their (open) middle parts. Continuing in this way we
obtain an infinite sequence of deleted intervals

(1/3,2/3), (1/9, 2/9), (7/9, 8/9), (1/27, 2/27), ...

Deleting from the interval [0, 1] the union of the removed
intervals we obtain the set ¢ which was defined previously
arithmetically.

FiGc. 7

It is therefore a closed set and—as is easy to see—it is dense
in itself (and hence perfect), and also a boundary set in the interval
[0, 1] (it does not contain any interval).

Next, let us note that every number of the set ¥ possesses
only one development of the form (1), where ¢, is either O or 2
(without this last assumption this uniqueness would not hold).
It follows easily that a necessary and sufficient condition for the
sequence of numbers of the Cantor set 1V, #®, . ™ .. to
converge to ¢, is that the kth digits in the development of these
numbers converge to the kth digit in the devélopment of the
number ¢ (for k =1,2,..), ie.
¥)) (t = limt™) = /\ (tx = limt{™).

n—oo n—>o0

This means that the following theorem holds (cf. Chapter IX,

§ 6, Theorem 2):
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THEOREM 1. The Cantor discontinuum is homeomorphic to the
infinite power of the set consisting of two elements:

% = 10,2} x{0,2}x{0,2}x ...

Hence, we may identify the points of the Cantor discontinuum
with sequences of zeros and twos; in other words, we identify
a number belonging to ¥ with the sequence of its digits in the
ternary expansion (of type (1)).

We deduce from this the following theorem:

THEOREM 2. 4* = €.
In fact, every point p of the set ¢ can be represented in the
form p = {x, y> where x and y are sequences of zeros and twos:

x=(x;,%3,...) and y=i,¥2,-..):

From these two sequences we form one: Xx;,y;, X2, )3, ...
and we denote this sequence by f(p).

It is easy to verify that f is a homeomorphic transformation
of the set 4% onto the set f(¥*) = 4.

We could prove similarly that " = € for arbitrary n. More-
over, the following theorem holds:

THEOREM 3. € X C X € X ... = .

* top
The points p of the set ¥X¥X ... are sequences of points
belonging to %:

A3) p=10p"p?, . . pQ,..1, pMe?

In turn, p™ being a point of the Cantor set, can be considered
as a sequence of zeros and twos:

P =10, 09, ., PP ]

The double sequence {p{}, wheren = 1,2, ...andm=1,2,...,
can, by a known method (cf. Chapter V, § 3, (13) and (14)), be
transformed into a single sequence

p(ll),P(Zl)’p(lz_),pgl),pgz)’p(ﬁ)s

Denoting this last sequence by f(p), we obtain—as is easily
proved—a homeomorphism mapping ¥X %X ... onto €.
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Remark. Let us consider the (closed) “non-deleted” intervals
which appear in the construction of the Cantor discontinuum, i.e.

0,1/3), 2/3, 1),
©,1/9), 2/9,1/3), 2/3,7/9), 3/9, 1),

....................................

The intersections of these intervals with the set € we denote
successively by P;, P,, P;,... The following theorem holds:
THEOREM 4. The sets P,, P,, ... are open-closed in the space
% and form a base of the space. Furthermore
lim é(P,) = 0.
n—>o0
The proof that the sets P, are open-closed does not offer any
difficulty. In order to prove that these sets form a base of the
space %, it suffices to note that the intervals of the first row have
length 1/3, those of the second 1/9, of the nth 1/37; furthermore
the intervals of each row form a covering of the set €.

§ 9. Continuous mappings of the Cantor discontinuum

THEOREM 1. The interval # is a continuous image of €.

Proof. We define a so-called step function which maps the
Cantor discontinuum onto the interval [0, 1]. Namely, the number
t € 4 being represented in the form (1), we set

@) @(t) = (6, 2+ 1,4+ ... +1,/2"+ ..).
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It is easy to verify that the function ¢ has the same value at
both endpoints of each deleted interval; we take this value as
a constant value of the function f in this interval; otherwise,
i.e. for t €%, we set f(t) = ¢(¢). Figure 8 is the graph of this
“step” function.

THEOREM 2. The Hilbert cube # is a continuous image of 6.

Proof. Since, by virtue of Theorem 3, § 8, the set ¥X¥x
XEX ...1s a continuous image of the set €, it suffices to prove
that the space # = FXFXF X ... is a continuous image of the
space €XEXEX ... Thus, if we represent the point p of this
last space in the form (3) we set

%) Ap) = [p(pD), (@), ..., p(p™), ...],

where ¢ is the step function defined by formula (4).

The function f is continuous, as can easily be seen (cf. Chapter
X1, § 5, Theorem 2). Its values are sequences of numbers belong-
ing to the interval [0, 1], i.e. they are points of the space .
Every point x = (x, x,, ..., X,, ...) of this space is a value of
the function f, for, by virtue of Theorem 1, for every n there exists
a point p™ € & such that x, = @(p"™); hence it suffices to define
p by formula (3) in order to obtain x = f(p).

THEOREM 3. Every compact metric space is the continuous image
of some closed subset of €.

In fact, by virtue of the Urysohn theorem (Chapter XIV, § 4)
each compact metric space X can be regarded as a subset F of the
Hilbert cube 5. Here, F = F because the space X is compact
(cf. Theorem 1, § 2).

Let f be a function which maps % continuously onto the space
H. Let A =f1(F).

Because of the continuity of the function f, the set 4 is closed.
At the same time (cf. Chapter IV, § 4, (18)): f(4) = ff~'(F) = F.

*Remark. Theorem 3 can be sharpened as follows.

THEOREM 4. Every non-empty compact metric space is a con-
tinuous image of €.

Because of Theorem 3 it suffices, for this purpose, to prove
the following lemma:
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LeMMA. Every non-empty closed subset F of the Cantor discon-
tinuum € is a continuous image of €.

Proof. Since the sequence P,, P,, ... forms a base of the
space € (see Theorem 4, § 8), the open set ¥—F is the union
of a certain number of terms of this sequence. Hence, let

(6) $—F=G,uG,u ...,

where the sets G, belong to the sequence P,, P,, ... Since we have
either P, " P;= O or P; c P; for i <j, we can assume that
the sets G, are disjoint (for we can omit terms in the series (6)
which are contained in the earlier terms).

We denote by p, the point of the set F which lies nearest the
set G,, i.e. the point in which the function o(x, G,) defined on
the set F attains its greatest lower bound (cf. Chapter XII, § 4,
Theorem 5 and Corollary 2 of § 5); if there is more than one
such point, then we denote by p, any one of them.

We define the function f as the retraction of the set € to F,
namely:

x for xeF,
Jx) = {p,, for x¢eG,.
Hence we have f(¥) = F. We must prove that the function f
is continuous.
The sets G, being open, the function f is obviously continuous
on their union. It remains to prove that if

™ limx, = x, where x,e%—Fand xeF,
k—>o00
then
®) limf(x,) = f(x), 1ie. limf(x) = x.
k—>oo k—o0

We denote by n(k) an index such that
©) Xy € Gy -

Since to a given G, there can belong only a finite number of
points of the sequence x;, x,,... (for x ¢ G,) and since (cf.
Theorem 4, § 8) we have

limd(P,) =0, and hence 1iméd(G,) =0,

n—>00 n—>oo
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we deduce that

(10) lim 8(G, ) = 0.

Let g, denote the point of the (closed) set G, lying nearest
the point p,. Hence we have by virtue of the definition of the
points p, and g,

|Pa—aal = 0(Pas Gu) < 0(x, Gy,
and therefore
[Paiy =] < 0%, Gay) < [X—x4
according to (9); whence
[ Pncey =Xkl < | Pugey = Ity 1y =%k < [x—2x1]+ 6(Grry) -
And therefore by virtue of (7) and (10) we have

(11 limp, .y = x.
k-»00

At the same time, by virtue of the definition of the function
S and by the formula (9) we have

(12) fx) = Dniys
and hence (8).

Exercises

1. Prove the following theorem:

If X is a completely regular space, 4 is a compact subset and U is a neigh-
bourhood of A, then there is a continuous function f: X — . such that f is
1onA4and0on X—-U.

Hint: For each x in 4 consider a function g which is 1 at x and 0 on X—U.
Put A(y) = min [2¢(»), 1] and construct a finite family 4o, ..., A, of conti-
nuous functions on X to ¥ such that 4 = |_J7-o {hi"' (1)} and each #; is 0
on X—U.

2. Prove the following theorem (of Wallace):

If X and Y are topological spaces, 4 and B are compact subsets of Xand Y
respectively, and W is a neighbourhood of 4 X B in the product space XX Y,
then there are neighbourhoods U of 4 and V of B such that UXV < W,

3. Let X be the square J#2 linearly ordered by the relation:
[(a,b) < (c,d)]l = [(a <) or (a=c and b < &)].
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Let the topology for X be generated by the subbase S which consists of sets
of the form:

{xeX: x<p} or {xeX:p<x} for some pinlkX.

Prove that X is a compact J,-space and that it satisfies the first counta-
bility axiom, but is not separable.

4, Prove that a J;-space X is countably compact iff the derived set of
each infinite subset of X is nonvoid.

5. Prove that if f: X — Y is continuous and the sequence 4y > 4, > ...
is a decreasing sequence of countably compact subsets of the space X, then

SR 14,) = (2 1f(4y).

6. Let f: X — Y be continuous and X compact and X and ¥ Z,-spaces.
Define the equivalence relation ¢ as follows

(x10x;) = (f(xl) =f(x2)),

and consider in the quotient-space X|g (cf. Exercise 9 of Chapter V) the topology
defined by the condition: a set R < X/g is open iff the union of its members
is open (in X). Prove that X/o oot Y.

7. Let f be a mapping defined on a J,-space X satisfying the first axiom
of countability (comp. Chapter XIV, Exercise 13). Prove that if for every
compact subset F < X the partial function f|F is continuous, then fis conti-
nuous (on X).

8. Let X, Y and T be metric spaces. Prove that

1°, YX UT::T} YXx YT if X U T is compact and X and T are two disjoint
closed sets;

2°, (XX Y)T ngTx YT if Tis compact;

3. (v5T tprX XT if X and T are compact.

Hint: Proceed as in the proofs of formulas (11)-(13), Chapter VI, § 2.
In particular, using formula (17), we have

fG YXXT =ge (YX)T.

9. Prove that if the space under consideration in Exercise 7, of Chapter
XI1I is compact, then the implication can be replaced by equivalence.

10. Let f: X — Y be continuous and Y a compact Z,-space. Prove that
if the set {<x, y>: y = f(x)} is closed (in XX Y), then f is continuous (the
converse theorem is true without the assumption of compactness of Y, comp.
Chapter XIII, § 4, Theorem 2).

11. Deduce from Theorem 1 of § 3 (under the same assumption on X and Y),
that if ¢(x, ») is a propositional function of two variables such that the set
{<x, ¥>: ¢(x, »)} is closed, then so is the set {x: \/y @(x,»)}; if the set

{{x,»>: p(x,»} is open, then so is the set {x: /\y olx, M}.
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12. Let 7, X and Y be compact J-spaces and f: T—>Xand g: T— Y
continuous. Let X = f(T) and suppose that g is constant on the set f~!(x)
for every x e X. Let h(x) = gf*(x) for xe X.

Prove that the following diagram is commutative and that 4 is continuous

X
A

~
w N

N o

Hint: Show that
(y = h() = \/ oy = g()) (x = (1))

and use Exercises 10 and 11.
13, Let ¢,(x), p2(x), ... be a sequence of propositional functions defined

on a countably compact space X. Show that if ¢,(x) = ¢,_;(x) and if the sets
{x: @n(x)} are closed, then

/\-1\/x Pn (x) = \/x ,/\n ®n ).

Similarly: the preceding equivalence holds if @,(x) = @,.,(x) and the sets
{x: @u(x)} are open.

14. A metric space is compact iff it is complete and totally bounded (comp.
Chapter XII, Exercise 8).

15. Prove the following generalized Cantor condition: if the subsets
F,, F,, ... of a compact metric space are closed and non-empty, then (comp.
Chapter X, Exercise 8)

Ls F, # O.
H—>00
_ 16. Prove that for each metric non-compact space there is a real-valued
bounded continuous function whose least upper bound is not attained.

Hint: Use Tietze Extension Theorem.

17. Prove that a compact metric space cannot be isometric to a proper
subset of itself.

18. Prove: A necessary and sufficient condition for the function f defined
on a metric space X (compact or not) to be uniformly continuous, is that
the condition

lim {x,—x;| =0
n—o0

implies the condition

lim |f(xp)—f(x)l = 0
n—oQ
for every pair of sequences x;, X, ... and xi, X3, ... of points belonging
to the space X.
19, Theorem 4’ of § 5 gives rise to the concept of equicontinuity of a family
of continuous mappings. We shall restrict ourselves to the case of X compact
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and Y metric.t Then we call a set @ < X equicontinuous if for each ¢> 0
there is an open cover Gy, ..., G, of X such that

S[f(G)l<e foreach i=1,..,n andeach fe@.

Show that

@) If @, and @, are equicontinuous, then so is @, U @,. In particular,
each finite @ is equicontinuous.

(ii) If @ is countable, ? = (f1, /2, ---), and lim f5(x) = f(x) for each «x,
then @ is equicontinuous iff the convergence f, — f is uniform.

(iii) (Generalized Ascoli-Arzeld Theorem). If @ is closed and Y compact,
then @ is equicontinuous iff @ is compact.

Hint: Suppose that @ is equicontinuous and let f;, /3, ... belong to D.
Choose p; e G; for each i < n and put

p=<pi,pweX® and gulp) =<filpr), ..., filpa)> € Y.

Since Y” is compact metric, there exist k; << k, < ... such that gx,(p), gx.(p), ...
is convergent. It remains to show that the sequence fk,, fk,, ... is uniformly
convergent.

Conversely, suppose that @ is compact. Let f;, ..., f;, be an e-net in @
(see § 5, Lemma 2) and let, according to (i), G, ..., G, be an open cover
of X such that 6[f;(G;)] < &/3 for each i < n and j < m.

20. Prove the following Banach Fixed Point Theorem (which holds in
an arbitrary complete space):

If fis a continuous mapping of the complete space X into itself, and if
for every pair of points x;, x, e X the inequality

f(e)—ftx2)] < klxy—x,)

holds, where k& is a constant satisfying the condition 0 < k < 1, then there
exists exactly one point xo € X such that f(xo) = xo. .

Hint: Construct inductively a sequence of points x;, x5, ... in the following
way: let x; be an arbitrary point of the space X and let x, = f(x,_1). Show
that a sequence constructed this way is a Cauchy sequence, and then, setting
Xxo = limx,, prove that f(xo) = xo.

n->00

21. Prove using Banach theorem the following theorem on the existence
of a solution of a differential equation:

Given the differential equation

@ dyldx = f(x, »),

where the function f is continuous in some plane region G and satisfies in
this region the Lipschitz condition with respect to y, i.e. there exists a constant
M such that the inequality

(i) 1fCes y0)—f(x, y2)] < Miyy—y.l

t For a more general approach, see J. L. Kelley, General Topology,
Chapter 7, p. 234; J. D. Weston, A Generalisation of Ascoli’s Theorem, Mathe-
matika 6 (1959), pp. 19-24; and H. Poppe, Stetige Konvergenz und der Satz
von Ascoli und Arzeld, Proceedings Japan Acad. 44 (1968), where further
references are given.
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holds for every pair of points <{x, y,>, {x, ¥2> € G. Furthermore, let {xo, yo>
e G be a given point. Then there exists a number d > 0 such that in the interval
xo— 0, xo+ 6 there exists exactly one function g satisfying equation (i), i.e.

(i) dg(x)]dx = f(x, g(x)),
and satisfying the initial condition
@iv) Yo = g(xo0).

Hint: Instead of the differential equation (i) we consider the equivalent
integral equation

) y = yo+ [ fx,3)dx.

X0

To each element g of the space of continuous functions & f, where
4 denotes the closed interval xo—J, xo-+6, we assign the function k, of
the variable x defined as follows:

(vi) hg(x) = yot- [ f(t, g(®)dr.
X0

Making use of (i) we prove that for sufficiently small > 0 the inequality
lhg,—hg,| < klg1—g2!, where 0<k<1,

holds.

Then applying Banach theorem (Exercise 20) to the space & 4 we deduce
that there exists exactly one function g such that b, = g; it is a solution of
equation (v), and consequently also of equation (i), and satisfies condition (iv).

22. Theorem on implicit definitions. Let g be a continuous function of two
variables x and y with a continuous partial derivative with respect to y in
some square with centre <{xg, yo); let, also,

g(xo,y0) =0 and gy(xo,y0) # 0.

Then there exists one and only one function f, continuous in a neighbour-
hood of the point xo, such that

&(x,f(x)) =0 and f(x0) = yo;

in other words, the curve {<x, y>: g(x, y) = 0} is locally, at the point {xo, ¥0),
the graph of a function.
Reduce the proof by means of the substitution

h(x, y) = y—yo—g(x, ) gy(xo, ¥o)

to the following theorem:

Let 4 be a function of the variables x and y, which is continuous and has
a continuous partial derivative with respect to y in a square K with centre
{x0, yo» and with side 2d; let, also,

h(xq,y0) =0 = h}’:(xo, Yo).

Then, there exists one and only one function f continuousin a neighbour-
hood of the point x,, such that

(vii) F&) = h(x, f())+yo and f(xo) = yo.
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Sketch of the proof. We can assume that the number d is so
small that

lhy(x, Ml <% for <x, ek

Let I, denote a closed interval with centre x, so small that
h(x,y0)l < 4d for xel,.

Let I, = {y: ly—yol <d}.

Let us assign to each function fe I7*, satisfying the condition f(xo) = o,
the function Fy of the variable x defined as follows:
Fy(x) = yo+hix,f(x)) for xel.
We obtain
[Fp, () —Fp ()| = Ih(x, f1(x))—h(x, f2(0))]
= /1) L2 () * 1hy(x, 2] < 41 /i) —f2(x),

where fi(x) < z, < £(x).

We deduce from this that

[Fr,—Fp,| < %Vl_le .

At the same time Fy e I1*, which we prove easily by using the inequality
Ih(x9 y)l < Ih(xy y)—h(X, }’o)l +Ih(x1 Yo)l- Finau}'9 Ff(xo) = Yo.

Hence we may apply Banach theorem. It follows that there exists a function
Ssuch that Fy = f, i.e. satisfying conditions (vii). '

23. Let X and Y be metric spaces. In the set Y¥ of all continuous i X->Y
introduce the topology as follows:

*) fordc }—”f let (fe ®) = [(fiIF)e @|F for every compact F < X],

where @|F denotes the set of all mappings of the form f|F, fe @, and the
topology in the space Y is defined as in § 6.

Prove that:

1°. If X is a compact space, then the topology introduced by the formula (*)
coincides with the topology considered in § 6.

2°, The topology introduced by (*) is compact-open.

3°, If X is an open subset of a compact space, then f belongs to @ iff there
exists in @ a sequence f,, f, ... uniformly converging to f on every compact
subset of X.

4°, The space Y’f with the topology defined by (*) is completely regular.

5° Let T denote the family of all compact subsets of X considered as
a directed family with respect to the relation Fo < Fy; let ¥ be the function
of the variable Fe T defined by the condition ¥p = Y ; let I" be the function
of two variables Fo and F, defined by the condition I'gop,(f) =f|F, for
feYFiand F, < F,.

Prove that {T, ¥, I'} is an inverse system (comp. Chapter VII, § 5).

6°. To every fe Y assign the element P(f)e JT FeT YT defined by the
condition:

Yr(f) =fIF;
prove that ¥: Y* - Lim {T,¥, 1}, ie. Y(eLim{T,¥,I'} and that
— <«

¥ is a homeomorphism.
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7°. Prove that the function g defined by the condition g(f, x) = f(x)
is continuous on YX x X. More generally: condition (*) implies the compact-
open topology of YX,

24. Let {T, F, g} be an inverse system, let F; be compact J,-spaces and
&1 1. continuous. Prove that the limit of this system is a compact space.

25, Let X be a compact metric space and let 2X denote the family of
all closed subsets of X. Prove that if the distance in 2% is defined as in Exercise
7 of Chapter XII, then 2X is compact (Hausdorff topology).

26. Let X be a topological space and 2X be the family of all closed subsets
of X.

Let the sets of the form 26 M 2X and those of the form 2X —2X-G (where
G is open) be taken as a subbase of the topology of 2X (called Vietoris topology).

Prove that: .

(i) A base of the space 2X is composed of sets of the form:

" BUo, Uy, e, U)={de2X: AcUpand ANU; #D for i =1,...,n},

where U,, ..., U, are open subsets of X.

(i) If X is 7 then so is 2X; X is regular iff 2X is a 7 ,-space.

(i) If X is a compact metric space, then Vietoris topology coincides
with Hausdorff topology.

27. Prove the following Dini theorem. Let X be compact, fre & X and
Jo < Jusx for n=1,2,... If limf,(x) = f(x) for each x and fis continuous
then the convergence is uniform.

Hint: Suppose that the convergence is not uniform. Then there is ¢ > 0
such that for each n =1, 2, ... there are k> n and x, such that f(xo) —fi(xo)
> &, Consider the set F, = {x: f(x)—f,(x) > ¢} and apply the Cantor con-
dition (§ 5, (ii)) to the sequence F,, F», ...

28. A space is called locally compact if for each point x there is an open

G such that x e G and G is compact.

Prove the Alexandrov One-point Compactification Theorem: Fach locally
compact J,-space X is homeomorphic to a subset X, of a compact ,-space
X; such that X; — X, consists of a single point; i.e. by adjoining a single point
to a locally compact space (like the point “at infinity” if X = &?) one
obtains a compact space.

Hint: Let p be a point not belonging to X. Put X; = X U {p} and define
the topology in X by taking as members of its open base the open subsets of
X and the sets of the form {p} . (X—C) where C = X is compact.



CHAPTER XVII
CONNECTED SPACES

§ 1. Definition. Separated sets

A topological space X is said to be connected if it is not the
union of two disjoint, closed and non-empty sets.
In other words, if the conditions

1) X=AUB, A=A, B=B, A#Q+#8B
imply
2) AN B# Q.

EXAMPLE. The space & of reals is connected.

Suppose it is not connected. Then & can be decomposed in
two disjoint, closed and non-empty sets 4 and B. Let a € 4 and
b e B. Since A n B= &, we may suppose that a << b. Let ¢ be
the last point of the interval a < x <C b which belongs to 4 (such
a point exists since A is closed). Hence for each x such that
¢ < x < b we have x ¢ 4 and therefore x € B. Since B is closed,
it follows that ce B. But then ce 4 n B, which contradicts
our hypothesis.

In a similar way one can show that each interval (closed or
open) is connected.

THEOREM 1. X is connected iff X contains no set A such that

(3) Ot A#£X
and
€)) AnX—A=@, ie Fr(4)=9.

Proof. 1. Let the set A satisfy conditions (3) and (4).

The sets A and B= X—A are then non-empty and closed,
and satisfy condition (1), but do not satisfy condition (2). Hence
X is not connected.

2. X is not connected. Let us assume that condition (1) is satisfied
but condition (2) is not, i.e.
(5) AnB=@.

223
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It follows from (1) and (5) that X—A4 = B, and hence condi-
tions (3) and (4) are fulfilled.

Remark 1. It follows from Theorem 1 that a space X is
connected iff it contains only two closed-open subsets: X and O.

Remark 2. The condition given in Theorem 1 can be for-
mulated in the following manner: a space is connected if for each
of its decompositions into two non-empty sets 4 and B at least
one of these sets contains a point which belongs to the closure
of the other set (i.e. in the case of metric spaces, if there exists
a point p of the form p = limp,, where pe A and p, e B,orpe B
and p, € A).

This condition leads to the following formulation of the defi-
nition of a connected set. .

A set is said to be connected if this set treated as a space forms
a connected space. Therefore, a set C is connected iff for each of
its decompositions into two nonvoid sets A and B:

6) C=AuUB,
we have
@) AnBuAnB#d.

In other words, if two sets 4 and B are said to be separated
provided that

®) AnBuAdnB =g,
a set C is connected if it cannot be decomposed into two nonvoid
separated sets.

We shall prove several properties of separated sets which will
be uscful in the sequel.

THEOREM 2. If the sets A and B are separated and A, < A
and By < B, then the sets A, and B, are separated.
This is true because

AinB)u (A nB)c(ANBu(dn B =0.
THEOREM 3. If the sets A and B are separated and the sets A and
C are separated, then the sets A and B U C are separated.
This follows from the formula
MdnBuUCluU[dn BuC]
=AABuUUNCUANBUAnC)=0.
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THEOREM 4. If the sets A and B are both closed or both open,
then the sets A—B and B—A are separated.

Proof. We have
A—B N (B—A)=An (X—B) n Bn (X—4)
cAnX—Bn Bn (X—A).
If A= A, then
ANX—B B n(X—A)cAn (X—4)=0.
If the set B is open, i.e. if the set X—B is closed, then
AnX—BnBn (X—4)c(X—B) nB=0.
In an analogous way we prove that under our assumptions
(A—B)n B—4A =@,
and hence the sets A—B and B—A are separated.

§ 2. Properties of connected spaces

THEOREM 1. The image under a continuous mapping of a connected
space is a connected space; in other words, connectedness is an in-
variant of continuous mappings.

Proof. Let f be a continuous mapping of the space X and
let f(X) =Y. Let us assume that the space Y is not connected.
We shall then prove that the space X is not connected.

Hence, let 4 and B be nonvoid closed sets such that

9 AuB=Y
and
(10) An B=0.

Then by virtue of (9) (cf. Chapter 1V, § 4, (16)):
[ uf~B)=rr=X.
The sets f~1(A) and f~1(B) are non-empty and, since f is conti-

nuous, they are also closed; making use of (10) (cf. Chapter IV,
§ 4, (17)), we have

A A) nf(B)=f"4n B)=0.

Thus, the space X has been decomposed into two nonvoid
disjoint closed sets. Hence, the space X is not connected.
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Remark 1. The only connected subsets of the space of real
numbers (other than the entire space, the void set and single points)
are closed or open rays, i.e. sets of the form

{x: x<a}, {x:1x<a}, {x:1x>=a}, {x:x>a}
closed or open intervals, and, finally, sets of the form
{xra<x<b}, {x:a<x<b}.

For, if the set A is not of one of these forms, then there exists
a number d ¢ A and numbers x,, x, € 4 such that x, < d < x,.
The set A is then the union of two non-empty sets M and N con-
tained in the separated sets

{x: x<d} and {x:x>d},

respectively, and hence A4 is the union of two non-empty sepa-
rated sets, 1.e. it is not a connected set.

Now let f be a real valued continuous function defined on the
connected space X. The set f(X) is then, by Theorem 1, a connected
subset of the set of real numbers and hence it is one of the sets
we indicated above.

If follows that if y, € f(X), y, €f(X) and y; << y,, then the
entire interval y, < y < y, is contained in the set f(X), or in other
words, if ¥, <y < y,, then y € f{X). This means that the function
[ has the Darboux property, i.e. it assumes all intermediate values
in passing from one value to another. We have thus proved the
following property of connected spaces:

THEOREM 2. Every real valued continuous function defined on
a connected space has the Darboux property.

We note further that this property is characteristic of a connected
space. For if a space X is not connected and 4 and B are non-
empty disjoint closed sets such that 4 U B = X, then the charac-
teristic function of the set 4, i.e. the function defined by the con-
ditions

1 for xeAd,
f &)=
0 for xeB,
is a real valued continuous function defined on the space X and
not having the Darboux property.
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THEOREM 3. If C is connected and C n A+ @ £ C—A, then
C n Fr(4) # 9.

In other words, if @ connected set C has points in common with
the set A and also with its complement, then it also has points in
common with the boundary of the set A.

Proof. By virtue of the connectedness of the set C and the
identity C = (C n 4) v (C—A), the sets C n 4 and C—4 are
not separated, i.e.

() [CnAn(C—A)u[C=4dn Cn A+ 0,
hence .
CAl(Cndn (X—A) u (C—4 nA)# 9.

We also have

CnAcAd, X—AcX—-A, C—AcX—A4A, AcA.

Therefore, by (11), we have
B#CnAdnX—A4=C n Fr(4).

THEOREM 4. If the set C is connected, and C <« M u N and the
sets M and N are separated, then C = M or C< N.

Proof Thesets C n Mand C n N are separated (see Theo-
rem 2, § )and (C n M) u (C n N) = C. Hence, because of the
connectedness of the set C, one of these two sets is void. fC n N
=@, then G=C n M, ie. C = M. Similarly, if C n M = @,
then C = N.

THEOREM 5. If the sets C and D are connected and are not sepa-
rated, then their union is connected.

Proof. Let C U D= M U N, where the sets M and N are
separated. We have to prove that one of them is void. By Theorem
4 we can assume that C < M. Similarly, D < M or D = N. The
inclusion D = N does not hold, because the sets C and D would
then be separated (by Theorem 2 of § 1), contrary to assumption.
Therefore D « M, whence C U D = M and hence N = @.

Theorem 5 can be generalized as follows.
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THEOREM 6. If {C,} is a family of connected sets and if one of
them, C,,, is not separated from any of the remaining sets, then the
union S = \U.C, is a connected set.

Proof. Let §= M u N, where the sets M and N are sepa-
rated. We shall show that M = G or N = J.

By virtue of Theorem 4, we can assume that C,, = M. Since
the sets C,, and C, are not separated for any ¢, we deduce from
Theorem 5 that the sets C,, U C, are connected, and hence C,, U
u C, = M for all t, whence S = M and therefore N = @.

Remark 2. It follows immediately from Theorem 6 that if
{C,} is a family of connected sets and (,C, # O, then the set
\U.C, is connected.

Theorem 6 can also be derived from the following:

* THEOREM 6'. Let {C,} be a directed family of connected sets,
i.e. for each pair t,,t, there is ty such that C;, = C,, and C,,
< Ci,. Then the union S = U:C, is also connected.

Proof. Letas before S= M U N where M and N are sepa-
rated sets. By Theorem 4, we have for each ¢ either C; =« M or
C: = N. Consider a C;, # 9. We may assume that C;, = M. We
shall show that N = @, which will complete the proof.

Let ¢ be arbitrary and ¢’ such that C,, = C»and C, < Cpr. The
first inclusion implies that C» ¢ N (since C,, ¢ N) and hence
Ci = M and consequently C, =« M (since C, = Cy). It follows
that S = M and thus N = @.

THEOREM 7. If C = A < C and C is connected, then so is A.

In particular, the closure of a connected set is connected.

Proof Let A= M u N where M and N are separated. We
may assume, according to Theorem 4, that C < M. Hence C « M
and consequently CAN=@, whence A n N=@ (since 4
< C). Finally N = @.

* THEOREM 8. If C is a connected subset of the connected space
X and

(12y X—C=MUN,

where the sets M and N are separated, then the sets C U M and
C u N are connected.
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Furthermore, if the set C is closed, the sets C U M and C U N
are also closed.

Proof. Let us assume that
(13) CuM=A4uv B,

where the sets 4 and B are separated. We have to show that
A= @ or B=@.

Since C = 4 u B (by virtue of (13)), we can therefore assume,
by Theorem 4, that C < B. If follows (seec Theorem 2 of § 1), that
the sets 4 and C are separated and in particular 4 n C= . But
since 4 <« C U M, hence A < M, and since the sets M and N
are separated, it follows that the sets 4 and N are separated. The
set A is therefore separated from’ B as well as from N; it is there-
fore separated from B U N (see Theorem 3 of § 1).

On the other hand, by (12) and (13) we have

(49 X=CuMUN=AUBUN=A4uU (BUN).

The space X is therefore the union of two separated sets 4 and
B U N. Since the space is connected, one of these two sets must
be void. Hence, either 4 = @ orelse B U N =, whence B = Q.

If, moreover, C = C, then by (14):

COM=CuUM=Cu[Mn (CuMuN)
=CuMu(MnN)=Cu M,
since M n N = @ (M and N being separated).
Hence the set C U M is closed.

The same argument proves that the set C U N is connected
and closed.

* THEOREM 9. Let C be a countably infinite open cover of a con-
nected space X. Then C can be represented as an infinite sequence
G, Gy, ... 50 that (G, U ... U G,) NG,y # D for each n (pro-
vided the members of C are nonvoid).

The easy proof is left to the reader.

§ 3. Components

The component of the point p is the union of all connected sets
which contain this point.
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THEOREM 1. Each component is a connected set.

Moreover, a component S is a maximal connected set, i.e. if
C is a connected set then

(15) (S = C)= (C = S).

Proof. Let S be the component of the point p. Therefore,
S is of the form

S= U!Ct,

where C, is a connected set containing the point p. By virtue of
Remark 2 following Theorem 6 of § 2, S is a connected set.

Moreover, if S < C, then p € C, and hence C is of the form
C = C,, whence C = S. Thus C= §.

THEOREM 2. Each component S is a closed set.

Proof. By Theorem 7, § 2, the set S is connected. But since
S = S, we have, making use of (15), S = S.

THEOREM 3. Two distinct components are always separated.

Proof. If the components S; and S, are not separated, then
the set S, U S, is connected (see Theorem 5 of § 2), and hence
Sl (W) S2 < Sl and Sl V) S2 c Sz, tha,t iS Sl == Sz-

ExaMPLE. Let I, denote the segment (situated in the plane)
consisting of points {x, y> such that x =1/, 0 <y <1 for
n=1,2,... Let I, denote the segment x =0, 0 <<y < 1. Let
A=1,u I, UL v .. The components of the space A are seg-
ments I, (m > 0). Let us note that the component I, is not an
open set in the space under consideration.

THEOREM 4. If A is a connected subset of a connected space
X and C is a component of the set X—A, then the set X—C is con-
nected.

Proof. Let X—C= M u N, where the sets M and N are
separated. We shall show that M = @ or N= @.
By assumption, we have C < X—4A4 and hence

(16) AcX—C=MUuUN.
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We can assume (see Theorem 4 of § 2) that 4 = M, whence
An N=@. Since

ANn(CUN)=ANCOUANN=9,
then C U N < X—A, whence
) CcCuNcX—4.

Since C is a component of the set X—A, and the set C U N is
connected (by Theorem 8 of § 2), formula (17) yields C= C U N
(cf. (15)). It follows that N < C. Since, by (16), we have N = X—C,
hence N = @.

§ 4. Cartesian products of connected spaces

THEOREM 1. The product XX Y of two connected spaces is con-
nected.

Proof. Itissufficient to show that each pair {x,, y;>, (X3, y>>
of points of XX Y belongs to a connected set — XX Y. Such
is in fact the set

(1) ({x1}xY) U (Xx{y}),
because it is the union of two connected sets which have the point
{Xy, Y,y in common.

Theorem 1 can be easily extended to a finite number of connec-
ted spaces. We are going to show that it can also be extended to
an arbitrary family of connected sets.

THeOREM 1’. If X, is connected for each t € T, then so is ”,X,.

Proof. We may, of course, assume that X, # @ for each
teT. Let f, be a fixed element of [ [, X, (call it “the origin of the
axes”; so we could choose, for example, the point 0,0, ... in the
case of the Hilbert cube). Let us assign to each finite system
o= (ty, ..., t,) of elements of T the product C, of the spaces
X; for t € « and of the one-element sets {fo(¢)} for ¢ ¢ a.

C, is connected because it can be obtained from the set X, X
X ... XX, (which is connected by Theorem 1) by means of the
continuous mapping 4 defined as follows:

1 for t=1t,

T, [h(tl’ tees t")] = =f0(t) for t ¢ o.
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One shows easily that (¢ = f) = (Cy = Cp), and it follows
that the family {C,} is directed, i.e. for each pair «; and o, there
is &5 such that C,, U C,, c C,, (e.8. o3 = 00 U o).

It follows by Theorem 6’ of § 2 that the set S = |J,C, is con-
nected, and so is S. It remains to be shown that S =[], X;; in
other words, that if Q@ < [], X; is open (# @), then S n Q # O.

We can, of course, assume that Q belongs to a base of ” X
Thus we may suppose that there are a system « = (¢, ..., t,)
and a system of sets G, open in X;, such that @ is the product of
these sets and of the axes X, for ¢ ¢ a, i.c.

Q= ]_[,G, where G, =X, for t ¢ a.

Let f be a point of Q such that f(#;) e G; for i=1, ..., n, and
J@t) = fo(t) for t ¢ o. Therefore fe C, and hence fe Sn Q.

§ 5. Continua
A continuum is a compact connected space.
For example, a closed interval is a continuum. Other examples
of continua are a circular disk together with its boundary and
the closed n-dimensional cube.

YA
1

)
FiG. 9

The set S of points in the plane defined by the following equa-
tions:

: {y=sin(1/x) for 0<|x]<1,
(M —1<y<tl for x=0

is a continuum (see Fig. 9).
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The set consisting of a single point and the void set are obviously
continua; closed intervals are the only other sets which are con-
tinua on the real line.

§ 6. Properties of continua

The following five theorems are immediate consequences of
the corresponding theorems in Chapters XVI and § 2 of this chap-
ter (these are specified precisely in parentheses).

THEOREM 1. The union of two continua which have a common
point is a continuum (cf. § 2, Theorem 5).

THEOREM 2. If the space X is a continuum, C is a continuum
contained in X, and X —C is the union of two disjoint open sets M
and N, then the sets C U M and C u N are continua (cf. § 2, The-
orem ).

THEOREM 3. A continuous image of a continuum is a continuum
(Chapter XVI, § 2, Theorem 3 and Chapter XVII, § 2, Theorem 1).

In particular, if C is a non-empty continuum and f is a continuous
real valued function defined on C, then f(C) is either a single point
or a closed interval.

This is a generalization of the known theorem from analysis,
statng that a continuous function defined on a closed interval
attains its bounds and passes through all intermediate points.

THEOREM 4. The cartesian product [ [, X, of continua X, is a con-
tinuum (cf. Chapter XVII, § 4, Theorem 1 and Chapter XVI, § 3,
Tychonov Theorem).

In particular, the cube #" and the Hilbert cube X are continua.

THEOREM 5. Every component of a compact space is a continuum
(cf. § 3, Theorems 1 and 2).

* THEOREM 6. If A and B are two distinct components of a compact

T ,-space X, then X can be decomposed into two disjoint closed
sets F and K which contain the sets A and B, respectively:

) X=FukK, FNnK=@d, AcF ad BcKk
In other words, there exists a closed-open set F which satisfies

the conditions A = F and F n B = & (we can, of course, take
K = X—F).
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LeMMA. The intersection C of all closed-open subsets of a compact
T ,-space, which contain a given point p, is connected.

In other words, the quasi-components (comp. Exercise 7) of
a compact T y-space are identical with its components.

Proof. Let us assume the contrary. Then let P and Q be two
closed sets such that

@ C=PvQ,
3) PnQ=0,
4 P+£@B+0,
5) peP.

By virtue of (3) and of the normality of the space (cf. Chapter
XVI, § 2, Theorem 4), there exist two open sets G and H such
that

6) PcG, QcH and Gn H=0.
Therefore, setting G° = X—G and H° = X—H, we have

M PnG =g,

(8) Qn H =0,

©) X=G" v H,

and the sets G° and H® are closed.
Let

(10 {D,}, where €T,

be the family of all closed-open sets which contain the point p.
By the definition of C we have

(11) C= szx-
Let
(12) F, =D, n G°n H".

By (11) we have
(13) MNE=CnG nH =@,
because by (2) and (6), C=(Pu Q) =G u H.
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Since the space is compact and the sets F; are closed, it follows
by (13) (comp. the Riesz condition, Chapter XVI, § 1) that there
exists a finite system #;, ..., ¢, such that

(4 FF,n...nF, =9, ie. Dyn..0nD, nGnH =@.

Since the set D, n ... n Dy, is closed-open and contains p,
there is ¢, € T such that

(15) D, =D, n..nD,.
It follows that
(16) D,nG°NnH =@, ie. D, ,nG cH.

The set D,, n G is closed-open. It is obviously open since it
is the intersection of two open sets. It is also closed because, by
(9) and (16), we have

an DiynG=D,nGn(G°VUH)= D nH",

and the set D,; N H° is the intersection of two closed sets.

As the closed-open set D,) n G contains the point p (cf. (5)
and (6)), it is therefore one of the terms of the family (10): D; n
N G = D,.. Hence, by (1) and (17), we have

CcD.=D,nG=D ,nH = H,
whence by (2):
QcCcHS ie. Q=0Q0nH'=0
by (8). But this contradicts the inequality (4).

Proof of Theorem 6. Let pe A4 and let C (as in the
lemma) be the intersection of all closed-open sets which contain
the point p. Each of these closed-open sets obviously contains
the set A, since 4 is connected (cf. § 2, Theorem 4); and therefore

(18) A c<C.
Since C is connected and A is a component of the space, inclu-
sion (18) yields
(19) C=4
(cf. § 3, (15)).

If every closed-open set containing 4 also contained B (contrary
to the hypothesis of Theorem 6), then we should have B < C,
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whence B = A (cf. (19)). But this is impossible, because the com-
ponents are disjoint (see § 3, Theorem 3). Therefore, there exists
a closed set F such that 4 = F and B—F # . Since the set B
is connected, the last inequality yields F n B = @.

COROLLARY. For every compact metric space there exists a con-
tinuous mapping of this space into the Cantor discontinuum %
which maps distinct components into distinct points.

Proof. Let D,, D,,... be the sequence of all closed-open
subsets of the given space (comp. Chapter XVI, § 5, Theorem 6).
We shall define the function f as follows:

S(x) = t,/3+4,/94 ... +-1./3"+ ...,

where t, =2 if x e D,, and ¢, = 0 if x ¢ D,. (This is the charac-
teristic function of the sequence D,, D,, ...)

Hence the values of f are points of %.

Since the set D, is closed-open a function assuming the value
2 on it and the value 0 on its complement is continuous. It easily
follows that f is continuous.

Finally, if 4 and B are two distinct components, then by virtue
of Theorem 6 there exists an n such that 4 = D, and B n D,
= J; and hence we have 1, =2 for xe 4 and ¢, = 0 for x € B.
Therefore the values of the function f on the sets 4 and B are
distinct.

Let us add that every component is mapped under this mapping
into some point (and distinct components map onto distinct
points); this follows from the fact that the continuous image of
a connected set is connected, and the Cantor discontinuum does
not contain nonvoid connected sets other than sets consisting of
single points.

*THEOREM 7. The intersection of a decreasing sequence of 7 ,-
continua is a continuum.

Proof LetC, (n=1,2,...) be 7,-continua and let

(20) C;io(C,o...oC, > ...
and
(21) C: m:O=1 Cn'

Let us assume that C is not a continuum. Then there exist two
closed sets P and Q which satisfy conditions (2)-(4). Let G and



XVII. CONNECTED SPACES 237

H be two open sets which satisfy conditions (6) and hence also
conditions (7)-(9) (with X = C,). Let us set

22) F,=C,nG°nH®.
Then, by (22) and (21), we have
me1tFa= (N1 CY)NG NH =CNnG nH =0

because formulas (2) and (6) yield C = (Pu Q) = (Gu H).

Since the sets F, are closed and form a decreasing sequence
(because of (20)), it follows (by the Cantor condition) that not
all these sets are non-empty; thus F, = & for some n, i.e.

(23) ConG nH =0,
At the same time, by (9), we have
249 C,cG°UHS ie. C,=(C,nG)v (C,nHY.

It follows from formulas (23) and (24) that C, is the union of
two disjoint closed ‘sets C, » G° and C, n H®. Since C, is a con-
tinuum, one of these two sets is void. Let, for instance, C, n G¢
=, i.e. C, = G, and therefore, because of (2) and (21), Q
cCcCC,c@G, ie. Q <G, hence by (6), Q «cGn H=0.
Thus Q = @, contradicting formula (4).

Exercises

1. Prove that every connected completely regular space which contains
more than one point has at least the power of the continuum,

2. Show that the Euclidean space 6" (n>>1) remains connected after
the removal of a countable number of points.

Hint: Let N be a countable subset of & and let p, ge €"—N. Further,
let L be a straight line which does not pass through the points p and g. Notice
that on the line L there exists a point x such that the segments px and xgq
are disjoint from the set N.

3. Let the sets 4 and B be either both closed or both open. Show that if
the sets A U B and A N B are connected, then so are the sets 4 and B.

Hint: Make use of Theorem 8 of § 2, setting X =A4A VB, C=A4 N B,
M =A—B, N=B—A, and of Theorem 4 of § 1.

4, Let

X=Uth

be a given open cover of the connected space X.
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Prove that every pair of points a, b of the space X can be joined by a chain
consisting of sets G;, i.e. that there exists a finite system of indices ¢,, ..., ¢
such that

n

aeGy, Gy,nG,#0, .., G, , 0G,#9D, be Gr,.

Hint: Let Z be the set of all points which can be joined by a chain with
the point a. Prove that the set Z is closed-open.

4a. Prove the following corollary to the theorem of Exercise 4.

If the family {G,} is countable and G, # @, it can be represented as an
infinite sequence G, G, ... (possibly with repetitions) so that G, N G, # @
for each n.

5. We say that the space X is connected between the sets A and B, if the
space cannot be decomposed into two disjoint closed sets one of which contains
A and the other contains B. Prove that if there is a system of sets 4o, ..., 4,
such that the space is connected between no pair A4;, A; (for i # j), then there
exists a system of disjoint closed sets Fo, ..., F, satisfying the conditions

X=F,V..UF,, Ai<F for i=0,...n.
6. Show that the relation
poq = (the space X is connected between the points p and q)

is an equivalence relation (cf. Chapter V, Exercise 9).

7. The equivalence sets determined by the above considered relation are
called quasi-components of the space.

Show that

(1) every quasi-component is the intersection of all closed-open sets con-
taining a given point;

(2) every component of the space is contained in a quasi-component
but the converse is not true;

(3) if X is connected between x, and x,, and Y is connected between y, and
2, then XX Y is connected between {(xj, y;> and <{xz, y.>;

(4) generalize the last statement to the case of a cartesian product of » factors,

8. Let 4 be a subset of a metric space. Establish the equivalence:

(A is connected between p and q)
= (each open G containing A is connected between p and q)

Hint: Use the theorem stated in Chapter XII, Exercise 11.

9. Prove that the relation ¢ defined in Exercise 6 is closed, i.e. the set of
points <{x, y> of XXX such that xpy is closed.

Show that the above theorem is not true for the relation “x and y belong
to a connected subset of the space” (construct the space having the required
property in the plane).

10. Show that a connected, metric and locally separable space is separable
(cf. Chapter XIV, Exercise 14).

11. Show that the Corollary to Theorem 6 of § 6 remains true for separable
spaces without the compactness hypothesis when components are replaced
by quasi-components.
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12. Prove that for every two points @ and b of the metric continuum
C and for every £ > 0, there exists in C a finite sequence of points

A =Pos P15 s Pn =
such that |pi—,—p;| < efor i =1, 2, ..., n. Show that this property is a char-
acterization of continua among compact spaces (Cantor’s definition).

13. Show by means of an example that in Theorem 7 of § 6 the compactness
assumption is essential: the intersection of a decreasing sequence of closed
connected sets does not need to be connected.



CHAPTER XVIII

LOCALLY CONNECTED SPACES

§ 1. Definitions and examples

A topological space X is said to be locally connected at the point
p if for each open set G containing p, p is an interior point of its
component in G.

X is said to be Jocally connected if it is connected at each of its
points.

ExAMPLES. 1. The set of all real numbers, the Euclidean n-space,
and the n-dimensional cube are locally connected spaces.

2. The set S defined in Chapter XVII, § 5, (1), is not locally
connected at the points of this set which are situated on the y-axis.

FiG. 10

3. The so-called “whisk-broom” set, shown in Fig. 10, is not
locally connected.

We obtain this set by joining the point {0, 1) with segments
to the point <0, 0> and to the points {1/n,0) for n=1,2, ...

This set is not locally connected at the points on the segment
on the y-axis, except at the point <0, 1.

§ 2. Properties of locally connected spaces
THEOREM 1. In a locally connected space every component C
is an open set.
For, we have, by definition, p € Int(C) for every p € C.
240
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The definition implies also the following:

THEOREM 2. 4 space is locally connected iff each component of
an open set is open.

THEOREM 3. If X is locally connected at p, then so is every open
G which contains p.

Proof Let pe H where H is open relative G; this means
that H is open and H < G. Let C be the component of p in H.
Since X is locally connected at p, we have p € Int(C), i.e.p ¢ X—C
and hence p e G—G—C, which means that p is an interior point
of C relative G. Thus, G is locally connected at p.

THEOREM 4. X is locally connected iff it has a base composed
of connected open sets.

Proof. 1. X is locally connected. Let {G,} be its base. Let
{S,»} be the family of components of G,. By Theorem 2 the sets
St,» are open and hence they form the required base.

2. X has an open base composed of connected sets. Then X is
locally connected by definition.

Remarks. A similar argument shows that, if a locally con-
nected space X ha$ a countable base, then it has a countable base
composed of connected sets. It follows that, in this case, every
open subset of X has a countable number of components.

COROLLARY 4'. Every open cover C of a locally connected space
X contains a refinement composed of open connected sets.

If, moreover, the space X is regular, then there is a cover of X
composed of open connected sets whose closures form a refinement
of C.

This follows from Theorem 4 by virtue of the Theorem of Chap-
ter X, § 11 and the Remark 2 of Chapter XI, § 4.

THEOREM 5. If S is a component of an open set G in a locally
connected space, then
Fr(S$)nG=@d.

Proof. Fr(S)= S—S because S is open. But since G—S is
the union of open sets, hence G—S is open and therefore S N
N{G—S)= S n (G—S) = O, which completes the proof.

In locally connected spaces the condition of normality can be
strengthened as follows.
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THEOREM 6. In a locally connected normal space X, let A and
B be two closed disjoint sets. If A is connected, then there is a con-
nected open set R such that A < R and Rn B = 0.

If both A and B are conmnected, then there are two open con-
nected sets R and S such that A <« R, B< Sand Rn S = 9.

Proof. Since X is normal, there is an open G such that 4 = G
and Gn B=0. The component of G which contains A4 is the
required open connected set R (comp. Theorem 2).

If B is connected, we denote by S its component in X—G.

THEOREM 7 (of Wilder). Let X be a metric separable and
locally connected space. Let G be an open connected subset of X.
Then there exist open connected sets Ry, R,, ... such that

) G=R,UR,uU... and R,c Ry}

Proof. By Theorem 4 (comp. Remark), X contains a count-
able base composed of open connected sets. Thus G is the union
of a countable family C of open connected sets whose closures
are contained in G (according to Remark 2 of Chapter XI, § 4).
Since G is connected, C can be represented (by Theorem 9 of
Chapter XVII, § 2) in the form

2 G=0,0u0,u.., ©Qv..v0)Nn0y,#9,
0. <G, Q.eC.

We define R, by induction. Since the sets Q; and X—G are
closed and disjoint, there exists by Theorem 6 an open connected
set R, such that

€N 0,<R, and R, cQG.
Now, let for a given n > 1, R, be open connected and
(3. Q,u..00,<R, and R,cG.

Since the set R, U O, is connected (according to the inequality
(2)) and disjoint from X—G@G, therefore there is by Theorem 6 an
open connected R, such that R, U Q.1 © R,;; and R, < G.

Thus condition (3,,,) is fulfilled and condition (1) follows.

T As shown by T. Przymusinski, “metric separable” can be replaced by
“perfectly normal” (to appear in Colloquium Math.).
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§ 3. Locally connected continua

THEOREM 1. 4 continuum X is locally connected iff for each
open cover C there is a finite refinement composed of continua:

¢)) X=C,uv..uC(,.

Proof. 1. Necessity. By Corollary 4’ of § 2, there is a cover
R of X composed of open connected sets whose closures form
a refinement of C. Since X is compact we may assume that R is
finite: R = (Qy, ..., @,). We put C; = Q;.

2. Sufficiency. Suppose that our condition is fulfilled. Let p € G
where G is open. We have to show that there exists a connected
neighbourhood E < G of p.

Consider the (open) cover C composed of two sets: G and
H = X—{p}. By assumption, (1) is fulfilled and C; is a continuum
contained either in G or in H.

Let us denote by Cy,, Cy,, ..., Ci, continua which contain the
point p and all the remaining ones by C,,, Cy,, ..., Cp,.

Let

@) E=C,uC,u...uCy,.
We therefore have

3) X—EcC,uC,u..uC,,

whence

4) X—EcCuuCpu...uCp,.

Thus pe X—X—E, ie. pelnt(E). The set E is therefore
a neighbourhood of the point p. It is a connected set, since it is
the union of connected sets which contain p. Finally F < G
because for i =1, ...,r, p € G, and hence C,, & H, ie. G, = G.

CoOROLLARY (Sierpinski Theorem). A metric continuum X is
locally comnected iff, for each ¢ > 0, X can be represented as the
union of a finite number of continua each of diameter less than e.

Proof. 1. Let X be a metric locally connected continuum.
Let C be a cover of X composed of open sets (for instance, of
balls) of diameters less than . By Theorem 1, X can be represented
in the form (1), where C,, ..., C, are continua, each contained
in a member of C. Hence 6(C;) < efori=1,...,n.
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2. Now suppose that our condition is fulfilled. Let C be an
open cover of X. According to Theorem 1, we have to show
that there is a finite refinement of C into continua whose union
is X. Since X is compact, it is legitimate to assume that C is finite,
and it only remains to denote by ¢ its coefficient (comp. Chapter
XVI, § 5, Theorem 7), because formula (1) represents by virtue
of the inequality §(C;) << ¢ a refinement of C.

THEOREM 2. Let X and Y be two I ,-spaces and f a continuous
mapping of X onto Y. If X is a locally connected continuum, then
so is Y.

Proof. Let {H,} be an open cover of Y. According to Theorem
1, we have to define a finite cover of Y which is a refinement of
{H,} and is composed of continua.

Now, Y = U.H, implies X = U,f™(H)). Since {f"1(H,)} is
an open cover of X, there is (by Theorem 1) a finite refinement of
this cover into continua:

&) X=C,u..uC, where C;cf(H)
It follows that
©) Y=ACHu..ufC) and SAC)<fIfT(H)] < H,,

This completes the proof.

Remark 1. A continuous image of a locally connected
space which is not compact is not necessarily a locally connected
space.

Let us coasider the example of the space S in Chapter XVII,
§ 5, (1) defined for x >0, and let us join the point <1, sinl}
with the point <0, 1> by means of an arc in such a manner that
the arc does not cut the set S at any point. The set thus obtained is,
as can easily be seen, a continuous image of the half-ray 0 << x
<+~ o0, but is not locally connected.

Remark 2, From Theorem 2 it follows in particular that
a continuous image of a closed segment or of a rectangle (together
with boundary) is a locally connected continuum. Therefore the
curves possessing continuous parametric representations on an
interval of the form

() x=x(@t), y=y@t), z=2z(), where a<t<b,



XVIII. LOCALLY CONNECTED SPACES 245

are locally connected continua, as well as surfaces of the form
®) x=x(,v), y=yu,v), z=1z(u,v),

where a <u<b,c<v<d
Thus, the geometric figures which appear most frequently
in analysis are locally connected.

§ 4. Arcs. Arcwise connectedness

Definition 1. An arc is a set which is homeomorphic
to the closed interval 0 < ¢ < 1.

Every arc is a locally connected continuum.

An arc with endpoints x and y is usually denoted by the symbol
xy (or yx).

THEOREM 1. If ab nbc = {b}, then the union abu be is an
arc ac.

For, we can define a continuous one-to-one mapping of the
closed interval [0, 1] onto the arc @b and a continuous one-to-one
mapping of the closed interval [4, 1] onto the arc bc in such
a way that both of these mappings map the point 3 onto the
point . In this manner we obtain a homeomorphic mapping
of the closed interval [0, 1] onto the set ab U bc.

THEOREM 2. If ab nbc # O, then the union abwu bc contains
an arc which comnnects a with c.

For, let d be the first point on the arc ab (ordered from a to b)
which lies on the arc be. Let ad denote the arc contained in ab,
and let dc be the arc contained in be. We therefore have ad n dc
= {d}. By Theorem 1 the set ad U dc is an arc ac.

Definition 2. A space is (integrally) arcwise connected
if every pair of its points belong to an arc. The space is said to
be locally arcwise connected, if for every point p and every open
G containing p there is an open H containing p such that every
point of H can be joined to p by an arc contained in G.

If the space is metric, this means that for every p and every
& > 0, there exists an n > 0 such that if [x—p] < %, then x can
be connected to p by an arc of diameter < «.

THEOREM 3. A space which is locally arcwise connected at the
point p is locally connected at p.
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For, if E denotes the union of all arcs containing p and contained
in G, E is a connected neighbourhood of p.

THEOREM 4. A connected space which is locally arcwise connected
is (integrally) arcwise connected.

Proof. Let p be a given point of the space X. Let us denote
by F the set of all points x which can be connected to p by an
arc. We have to prove that F= X or, equivalently (since the space
is connected), that the set F is closed and open.

Let g € X. There exists by assumption an open G containing
g such that for each x € G there is an arc xg < X.

Now, if g€ F, there is x€ F n G and hence an arc px and
(by Theorem 2) an arc pg = px U xq. Therefore qe F. Thus
F is closed. .

On the other hand, if g € F, then each x € G can be joined
to p by an arc contained in xg U gp. Thus g € G = F and hence
q € Int (F). Therefore F is open.

THEOREM 5. If a compact metric space is locally arcwise connected,
then for each & > 0 there exists an n > 0 such that if |x—x'| <79
then the points x and x' can be connected by means of an arc xx’
of diameter < e.

Thus uniformity holds for the choice of # corresponding to
¢ (independently of p). The proof is entirely analogous to the proof
of Theorem 4 in Chapter XVI, § 5.

§ 5. Continuous images of intervals

LemMA 1 (of A. Lelek). Consider a partition of the interval
J into closed intervals and single points. Let R denote the family
of members of this partition. Then there is a continuous function
g: S — S such that the family of all inverse images g~1(t), t € #,
coincides with R,

Moreover, if 0 e FoeR, 1€ F, € R and F, # F,, then g1 (0)
= F, and g7'(1) = F;.

Proof. Consider a countable subfamily of R: Fy, Fy, ...
such that the set F= F, v F; u ... is dense in #. Obviously,
if an interval belongs to R, it is a term of the sequence {F,}.

First we define g(x) for x € F. The definition is by induction.

Let g(x) = 0 for x € F, and g(x) = 1 for x € F;. Assume that,
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for a given n > 1, g(F)) is a single point for each i < n. Since
the sets Fy, ..., F, are disjoint and connected, they are ordered
in the interval .# in a natural way; so denote by F; and F, the
sets just preceding and just following F, (among the sets Fy, ...
vees Fy_y). Put

M g(x) =

M for each x € F,,.

Thus g is defined (by induction) for each point of F. In order
to extend its definition to the whole interval £, it is sufficient
to show that g is uniformly continuous on F.

Let ¢ >0 be given. Let 1/2m! < ¢. Since F =, then for
each pair F;, Fy, there is an F; lying between F; and F;. Hence,
for sufficiently large n, the set g(Fy, v ... u F,)contains all points
kj2", k =0, ...,2™ Denote by 5 the length of the smallest in-
terval contained in S —(Fp, U ... v F,). We have

) [xy—x,] < n = |g(x,)—g(x;)] < e for each pair x,, x, € F.

Because the condition |x; —x,| < % implies that no pair F;, F;,
where i < n and j < n (i # j), lies between x, and x,, and con-
sequently no pair of points of the form k/2™ can lie between
g(x,) and g(x,); this means that |g(x,)—g(x,)| < 2/2™ < «.

This completes the proof of the uniform continuity of g on F.
Hence g can be considered as being defined on the whole interval 4.
Obviously g(f) = 4.

It remains to show that the family {g™!(¢)} where ¢ € # coincides

with R.
- Obviously g|F is monotonic (not decreasing), and so is g.
Moreover, if x; < x, are two points in F, then g(x,) = g(x,)
if and only if they belong to the same set F,. This holds in general
(without assuming that x,, x, € F). For, suppose that x; € $—F
(the case x, € # —F is analogous). Then there are two sets F; # Fj
between x, and x,, and hence

(3 g(xy) < g(F) < g(Fy) < g(x2).
Thus, the single-element set {x,}, which is a member of R,
is an inverse image of an element of 4 (namely of g(xl)); since

the same is true for all the sets Fy, Fy, ..., this completes the proof
of the Lemma.
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THeOREM 1 (of G.T. Whyburn). Let f: # — Y be continuous,
let f(0) =a, f(1) = b and a # b. Suppose that the inverse image
() is, for each y € Y, either a closed interval or a single point
of J#. Then Y (which is supposed to be 7 ,) is an arc ab.

Proof. Denote by R the family of all inverse images f~*(y)
where y € Y and consider the function g satisfying the preceding
Lemma (we denote: Fy = f!(a) and F; = f~(b)). Since for each
te s, g 1(t) e R, then f[g™*(¢)] is a single point of Y. Put

G h(@t) =flg7'(t)] for teds.

h is the required homeomorphism of .# onto Y.

First, 4 is continuous. For let F = Y be closed. Then 4~*(F)
= g[f~1(F)] and since f~1(F) is closed, so also is g[f~* (F)] (because
g is a continuous mapping of a compact space).

Next, & is one-to-one. For let #; # t,. Then g7'(#,) # g7(t,)
and hence there are y, # y, such that g~'(t,) =f'(y,) and
g71(t2) = f71(32). Therefore h(ty) = yy # y, = h(t2).

Finally #(0) = a and A(1) = b. For

h0) = flg™* (0)] = f(Fo) =fIf ' (@)] = a.

Similarly A(1) = b.

LEMMA 2. Let A = F be a closed subset containing the points
Oand 1, andlet f: A — Y (which is T ,) be continuous and onto,
JO) =a, f(1) = b and a # b. Suppose that A has irreducibly the
Jollowing property:

) { the points O and 1 belong to A,

if uv is a component of F—A, then f(u) = f(v)

(the irreducibility means that no proper closed subset of A contain-
ing 0 and 1 has property (5)).
Then Y is an arc ab.

Proof.t Let us extend f to a mapping g: # — Y so that,
for each component uv of # —A4, g(t) = f(u) for u < t < 0. Then
g is obviously continuous and g(#) = Y. Moreover each inverse

t See an argument of J.L. Kelley mentioned by G. T. Whyburn, loc. cit.
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image g~1(y) for y € Y is either a closed interval or a single point.
For, suppose that g7*(y) is not a single point, and let ¢, and ¢, be
its first and last elements. Obviously ¢, and 7, belong to 4 and the
open interval ¢,¢, is disjoint from A. Because, otherwise, the set
A—t,t, would have property (5).

Thus g~!(y) = 1,1, and it follows by Theorem 1 that Y is an
arc ab.

THEOREM 2. A continuous image of an interval is arcwise con-
nected.

More precisely, if f: F — Y is continuous, Y is T , and f(0) = a,
J(1) = b and a # b, then there is a closed subset A of #, containing
the points 0 and 1 and having irreducibly the property (5).

Proof. According to the Brouwer reduction theorem (Chapter
X1V, § 1, Theorem 4) we have to show that the property (5) is
inducible; i.e. that if 4 = 4, n A, n ... where each A, has
property (5) and Ay o 4; > ..., then A also has property (5).
Let up be a component of £ —4. Since £ —A4 = (J,(F—4,),
s0 uw is the union of components u,v, of #—A4,, and since 4, has
property (5), so f(u,) = f(v,) and consequently f(u) = f(v).

COROLLARY. A metric continuous image of an interval is locally
arcwise connected.

For let f: & — Y be continuous and onto. Since f is uniformly
connected, there are intervals Iy, ..., I, such that #f = I, U ... U,
and f(I,) < e for k =1, ...,n. This clearly implies the required
conclusion.

THEOREM 3. Every locally arcwise connected metric continuum
C (# 9) is a continuous image of an interval.

Proof. By Theorem 3 of Chapter XVI, § 8, there exists
a continuous mapping f defined on some closed subset H of the
Cantor set and such that f(H) = C. Let « and § denote the initial
and terminal points of the set H. We shall extend f to the entire
segment «ff. The set aff—H, being open in «f, is the union of
a sequence of open intervals (a,b,), (a,b,), ...

Obviously,

lim(b,—a,) =0,

n—»ao
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whence

(6) lim|f(b,) —f(a)| = 0,

n—w

because of the uniform continuity of f.

According to Theorem 5 of § 4, there exists a sequence of
numbers 7, such that each two points p and q of the continuum
C satisfying the inequality |p—gq| << 7, can be joined by an arc
with diameter << 1/k. Therefore by virtue of (6) there exists
a sequence of arcs L, with endpoints f(a,) and f(b,) such that
@) timé(L,) = 0.

Let f, denote a homeomorphism of the (closed) segment a,b,
onto the arc L,, such that f,(a,) = f(a,) and f,(b,) = f(b,). Finally,
let

ft) for teH,
8t) = fi@) for a,<t<b,n=1,2,..

Hence g maps the segment of onto the continuum C. It is
a continuous function, as seen from formula (7).

Remark 1. The conditions of being:
(i) a locally connected continuum,
(ii) a locally arcwise connected continuum,
(iii) a continuous image of an interval,
are equivalent (for metric spaces).

Because every locally connected metric continuum is also
locally arcwise connected (this is the Mazurkiewicz-Moore theorem
which we state here without proof).

Remark 2. It follows from Theorem 3 in particular that .#2
is a continuous image of a segment ; the same is true of the n-dimen-
sional cube #", and even of the Hilbert cube .

This discovery made by Peano (in 1890) was considered to
be very paradoxical. For it means that the square #2 has a conti-
nuous parametric representation over a closed interval, contrary
to the opinion that this proparty applies only to curves. It follows
from this that the hypothesis of differentiability usually
made in analysis for parametric representations is essential from
this point of view.
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The following is a direct proof of the Peano theorem (given
by Sierpinski).

We divide the square into 9 equa! squares and draw in each
of them the diagonal as shown in Fig. 11. We divide the segment

R

e/

FiG. 11

[0, 1] into 9 equal segments and we transform (linearly) each
of them into the corresponding diagonal in the order given in
Fig. 11. We denote by f; the function thus defined, mapping
the segment [0, 1] continuously into the polygonal line consisting

FiG. 12

of 9 diagonals. We call the squares considered squares of first
approximation.

Next, we divide each of the 9 squares into 9 equal squares;
they are the second approximation squares. We draw a diagonal
D in each of them; here in second approximation squares lying
on a diagonal of a first approximation square we draw the diagonal
lying on the diagonal D. Thus the first square of the first approx-
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imation appears as in Fig. 11 after the corresponding reduction;
the second square of the first approximation is given in Fig. 12,

We divide each of the intervals (n—1)/9, n/9, where n=1, 2,
..., 9, onto 9 equal parts and we map each of these parts into
the diagonal of the corresponding square of the second subdivision.
This defines the function f, which maps the interval [0, 1] con-
tinuously onto the polygonal arc made up of 92 intervals.

Continuing thus, we define an infinite sequence of continuous
functions f1, /2, ..« fus ... It is easy to prove that this sequence
is uniformly convergent; and therefore its limit function f is
continuous (see Chapter XII, § 3, Theorem 3). Furthermore,
every point of the square is a value of the function f; in fact,
in each square of the nth approximation there are values of the
function f, and consequently

Unfu(F) =52  whence f(F) =2

Remark 3. Let us notice that the proof of Theorem 3 in
the case where C = .#" can be somewhat simplified. Namely,
in this case we can take the interval with endpoints f(a,) and f(b,)
for the arc L,; hence, we can define the function f, as the linear
transformation of the interval q,b, into the interval f(a,)f(b,).

This theorem can also be deduced directly from Theorem 3,
Chapter XVI, § 8, and Tietze theorem (Chapter XII, § 5, Corol-
lary 1).

Exercises

1. Let E be an open subset of the interval a < x < b. Prove that the
components of the set E are open intervals. Morcover, if there are an infinite
number of these components then their diameters tend to zero.

2. Let p € A N B. If the sets 4 and B are locally connected at the point p,
then the set 4 U B is also locally connected at this point.

3. If the spaces X and Y are locally connecied at the points @ and b respec-
tively, then the cartesian product X X Y is locally connected at the point <a, b>.

4. Let E be an arbitrary subset of a locally connected space. If C is a con-
nected subset of E and is open in E, then there exists an open connected set
H such that C = E N H,

Hint: Use Theorem 2, § 2.

5. If a locally connected space can be represented as the union of two
closed sets 4 and B with locally connected intersection, then the sets 4 and B
are locally connected.

Hint: Use Exercises 2 and 4, above, and Exercise 3 of Chapter XVIIL.
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6. Let X be a locally connected space. If F is a closed locally connected
set and C is a component of the set X—F, then the sets X—C and CUF
are locally connected.

Hint: Use Exercise 5.

7. Let E be an arbitrary subset of a locally connected space and let E
=8, US; U... be the decomposition of E into components. Then

Int (E) = U, Int (S,).

8. Let E; be an arbitrary subset of a locally connected space. Prove that

Fr(U,E,) < UtFr(Et)-
Hint: Use Theorem 3 of Chapter XVII, § 2.

9, Let E be an arbitrary subset of a locally connected space and let S be
a component of E. Prove that Fr(S) < Fr(E).

10. Let E be an arbitrary subset of a locally connected space. If the set
Fr(E) is locally connected, then E is locally connected.

Hint: Use Exercise 5.

11. Let G be an open connected subset of a locally connected regular
space. Then every pair of points of G can be joined by an open connected
set R such that R < G.

12. Let X be a locally connected metric continuum. Prove that each of

its subcontinua C is the intersection of a decreasing sequence of locally con-
nected continua:

C={WiCyy Ci>Cp>..



CHAPTER XIX

THE CONCEPT OF DIMENSION

The space under consideration in this chapter is metric separable
(however, many definitions and theorems can be applied to more
general spaces?).

§ 1. O-dimensional spaces

Definition. A nonvoid space X is said to be O-dimensional,
i.e. dimX = 0, iff for every finite open cover

8] X=6Gyu..uvG,

there is-a refinement in closed disjoint sets:

@ X=FouU..UF,,

3) F,cG, for i=0,..,m,

(4o) FinF,=@ for i#j

(thus the sets F; are closed-open).
Furthermore, we agree that dim@ = —1.

ExampLES. The space of integers, the space of irrational numbers,
the Cantor discontinuum are O-dimensional.

An interval, as well as any connected space (which does not
reduce to a single point), is not 0-dimensional; for it does not
contain non-empty closed-open sets which are distinct from the
entire space.

§ 2. Properties of O-dimensional metric separable spaces
We state here without proof the most important properties of
0-dimensional metric separable spaces. We could already have
observed some of these properties in the Cantor set €.
THEOREM 1. Every 0-dimensional space has a countable base
consisting of open-closed sets.

* See J. Nagata, Modern Dimension Theory, Noordhoff, 1965.
254
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THEOREM 2. Every O-dimensional space is topologically contained
in € (i.e. it is homeomorphic to some subset of €).

THEOREM 3. Every O-dimensional compact space can be decom-
posed into disjoint closed sets of diameter < ¢ for each ¢ > 0,

THEOREM 4 (Sharpened normality property). For every pair of
disjoint closed sets A and B, there exists an closed-open set G such
that A= G and G~ B= @.

THEOREM 5. In a metric separable space the union of a finite
or infinite sequence of O-dimensional closed sets is a O-dimensional
set.

§ 3. n-dimensional spaces

Definition.dimX < nifffor every finite open cover (see (1))
there is a refinement in closed sets satisfying (besides (2) and (3))
the following condition

4, F,nF

O NFo=8  for iy <iy < ... <lpy1,
which means that no point of X belongs to n+2 sets F;.

The definition of 0-dimensional spaces given in § 1 is obviously
a particular case of the above definition.

THEOREM. Let X be a compact metric space. X is of dimension
< n iff there is for each ¢ >0 a closed cover satisfying condi-
tions (2), (4,) and

%) 0F)<e for i=0,1,..,m

Proof. 1. Necessity. Let dimX <<n and ¢ > 0. Let G,
..., G, be an open cover of X such that 6(G;) < e. By definition
there is a closed refinement satisfying conditions (2), (3) and
(4,). Condition (5) follows from (3).

2. Sufficiency. Let G, ..., G,, be an open cover of X. Let ¢
be its coefficient (see Chapter XVI, § 5, Corollary to Theorem 7),
and let F¥, ..., F* be a closed cover of X satisfying conditions
(2), (4,) and (5) (where F; has to be replaced by F}). Since the
cover F¥, ..., F* is a refinement of the cover Gy, ..., Gy, the
sets F¥ (j=1, ..., r) can be distributed in m-1 disjoint families
Co, ..., C, in the following manner: to C, belong all F§ con-
tained in Gy, to C; belong all Ff¥ which do not belong to C, and
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are contained in G and so on; finally C, is composed of those
F¥ which are contained in G, and do not belong to any C; with
i << m. Denote by F; the union of members of C;. It follows that
conditions (2), (3) and (4,) are fulfilled, and hence dim X < n.

Theorem 3 of § 2 is obviously a particular case of the preceding
one.

COROLLARY. dim 4" < n.

In particular, # can be decomposed into arbitrarily small
segments with the aid of a finite system of points; thus no point
belongs to any three of these segments.

Fic. 13

A rectangle can be decomposed into small rectangles by a system
of “bricks” as shown in Fig. 13 (no point belongs to 4 “bricks”).
Similarly, the cube 4" can be decomposed into “bricks” satisfying
formulas (4,) and (5), and hence dim " <{ n.

The proof of the formula dim.#" > n is less elementary (see
Chapter XX).

Remark. The dimension can also be defined inductively
in the following manner (which is equivalent for metric separable
spaces):

1) the dimension of the void set is —1;

2) the dimension of a set X at the point p is << #, i.e.

(6) dim, X < n,
if there exists in every neighbourhood of p open sets containing

p and having boundaries which are at most (n—1)-dimensional;

3) a set X which has dimension <C n at every point is at most
of dimension .
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Furthermore, we assume that dim, X = co if formula (6) does
not hold for any natural n, and that the dimension of X is oo if
it is not finite.

It follows, in particular that dim, X = 0 iff every neighbourhood
of p contains closed-open subsets containing p. For example
the set consisting of the intervals

(1/3,1/2), (1/5,1/4), ..., (1/@n+1), 1/21), ...

and of the point 0, is 0-dimensional at the point 0 and only at
that point.

§ 4. Properties of n-dimensional metric separable spaces

The - following theorems on the dimension of metric separable
spaces will be stated without proof.

THEOREM 1. Every n-dimensional space has a base consisting
of open sets with boundary of dimension at most n—1,

THEOREM 2. Every n-dimensional space is topologically contained
in the cube SF*"*1.

In particular, every l-dimensional set (and hence every curve)
is contained topologically in the cube #2 and every 2-dimensional

Fi. 14 Fia. 15

set (in particular the surfaces considered in analysis) are contained
in the cube 3.

These exponents cannot be made smaller, i.e. for every n there
exists an n-dimensional set which is not contained topologically
in the cube #2". For example, a polygonal line consisting of the
edges of a tetrahedron and the segment connecting two disjoint
edges (see Fig. 14) is not contained topologically in the plane
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(this follows easily from the Jordan theorem given in Chapter
XXI, § 8).

The polygonal line shown in Fig. 15 has the same property.
It consists of 6 edges of a tetrahedron and of 4 segments connecting
the centre of gravity of the tetrahedron with the vertices.

Remark 1. Every polygonal line which cannot be embedded
topologically in the plane contains topologically one of the two
polygonal lines shown in Figs. 14 and 15.

Remark 2. If dimX < n, then the set of homeomorphisms
is dense in the function space (S2"+1)X,

THEOREM 3 (Sharpened normality property). For every pair of
disjoint closed sets A and B, there exists an open set G such that

A<G, GnB=@, dimFr(G)<n—1.

THEOREM 4. The union of a ( finite or infinite) sequence of n-dimen-
sional closed sets is an n-dimensional set.

THEOREM 5. For every compact n-dimensional space X, there
exists a closed subset T of the Cantor discontinuum € and a con-
tinuous mapping of T onto X which does not assume any value
more than n+1 times.

For example, a closed interval can be obtained from % with
the aid of a continuous function which does not assume any
value more than twice (such a function is the step function
defined in Chapter XVI, § 9, Fig. 8).

Remark. The existence of a set 7 and of a mapping having
the properties stated in Theorem 5 forms a condition which is
not only necessary but also sufficient in order that dimX < n.

Exercises

1. Prove that every set of real numbers which contains no interval is
0-dimensional.

2. Prove that the set of points in the plane, one coordinate of which is
rational and the other irrational, is 0-dimensional.

3. Prove that the set of points in Euclidean space &" all of whose coordinates
are irrational is O-dimensional.

4. Hint to the proof of Theorem 1 of § 2. Consider, for given n, all the
closed-open sets with diameter < 1/n and apply the Lindelof property (Chapter
X1V, § 1, Theorem 2).

5. Hint to the proof of Theorem 2 of § 2. Consider the characteristic func-
tion of a base consisting of closed-open sets.



CHAPTER XX

SIMPLEXES AND THEIR PROPERTIES

§ 1. Simplexes

Definition. Let py,...,p, be a given system of n+1
points in Euclidean space. By the simplex p,, ... p, we mean the
set of all points p of the form

m P = Aopot ... +pa,
where

@ lot o+ =1,
(3) >0,

and where the multiplication of the point by a scalar and the
addition of points is to be understood as in the algebra of points
(or vectors), i.e.

A (){1, v X)) = (Axy, oon, AXy),
(xla (RS ] xn)"‘(}’u "'3yn) = (x1+.}’1, '“,xn—}_yn)'T

In this connection we shall always assume that the points
Pos .., Dn are linearly independent, i.e. that the conditions Aop,
+ ... +4,p, = 0 (= the origin of the axes) and A+ ... +4, =0
imply that 4, = ... = A, = 0 (whatever are A, ..., 4,); in other
words, the points p,, ..., p, do not lie in the same (n—1)-dimen-
sional hyperplane. This means, in the case n = 2, that the points
Do» P1, P2 do not lie on a line, or that pyp, p, is a triangle (without
boundary); similarly, when # = 3, pop,p,p; is the interior of
a nondegenerate tetrahedron (i.e. the points p,, p,p, and p;
do not lie in one plane).

t Of course, if p = (x;, ..., x5) and q = (4, ..., ¥y, then the distance
of p from g equals the norm |p—q| of the vector p—gq; let us recall that |p|
= ]/ x}+ ... +x2; this fact motivates the use of the symbol |u—v| for denoting
the distance between two arbitrary points « and .

259
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Each of the points py, ..., p, is said to be a vertex of the simplex
Do --- Pu; €ach of the simplexes p;, ... p;,, Where ip < ... < i, < n,
is said to be a face (or edge) of the simplex.

We include the vertices as well as the entire simplex S in the
faces of the simplex S = p, ... p, (for k assumes the values from
0 to n). S; < S, means that S; is a face of S,.

Let us note that

“ S=Ubpi - i

for all possible systems of numbers iy, ..., iy, where k assumes
all integral values from 0 to ».

Finally, let us note that:
1. the simplexes p;, ... p;, in (4) are disjoint,

2. the point p belongs to S when and only when it fulfils con-
ditions (1), (2) and

®) A >0.

The coefficients Ao, ..., 4, are the barycentric coordinates of
the point p € S; they can be interpreted as masses which must
be distributed at the points py, ..., p., respectively (retaining
conditions (2) and (3)), in order that the point p be the centre
of mass.

THEOREM 1. Each barycentric coordinate is a continuous function
of the point p.

Proof. Let T denote the set of points A == (4o, ..., 4,) of
&"+! which satisfy conditions (2) and (5). The mapping f: T — S
defined by the condition f(1) = p, where p satisfies (1), is con-
tinuous, one-to-one and onto. Since 7" is compact (because it is
closed and bounded), the mapping f is a homeomorphism
(by Corollary 2 of Chapter XVI, § 2), and thus the mapping
f™': § > T is continuous. Since a barycentric coordinate is the
composition of f~! and a projection of £"*! on an axis, it is also
continuous.

According to the above argument the following is true.

THEOREM 2. The closure of a simplex is compact.
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§ 2. Simplicial subdivision
Let
S=po...Da-

By a simplicial subdivision of S is understood its subdivision
into simplexes such that the intersection of the closures of each
pair of simplexes is the closure of their common face or is empty.
Figures 16 and 16a show simplicial subdivisions of a triangle.

FiG, 16 Fic. 16a

If in Figure 16 the edges of the shaded triangle were omitted,
then the figure would no longer represent a simplicial subdivision.

The centre of gravity of S is the point

1 1
ml’o‘f‘ ‘*“mlh.-

Obviously 5(S) belongs to S but belongs to no face of S of dimen-
sion < n. '

THEOREM 1. The family B of all simplexes of the form b(So) ...
... b(S) where S = Sy > ... > S, yields a simplicial subdivision
of S.

Proof. FEach of the above considered sequences of faces
can be extended to a sequence S = S, > S; > ... > 5,, where

(© b(S) =

(7) SO:pio"'pi,,s Sl =pi1 "'pi,,’ ey Sn:pi,‘
and where iy, ..., i, is a permutation of the set 0, ..., n.

First, we shall show that the points 5(S,), ..., b(S,) are linearly
independent. Let us consider the linear combination

Bob(So)+ - +uab(Sh).
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Put

® b= )
I par n+-D—k

It follows by (6) that

® #ob(So)+ ... +pab(S) = i pit+ .. +4i,p1,.
Furthermore

(10) Z hy = 2 2 (n+1) k
21 Z (n+1)—z - g;!‘i-

If pob(So)+ ... +p.b(S,) =0 and po+ ... +us =0, then it
follows by (9) and (10) and by virtue of the linear independence
of pi,, ..., pi, that 4;, = 0 for j = 0, ..., n. Consequently (by (8))
u; =0 for i=0,...,n Thus the points b(Sy), ..., b(S,) are
linearly independent.

If follows from (10) that the closure of the simplex b(S,) ... b(S,)

is contained in S. We shall show that it is identical to the set

1an {xes: Ay () < .. < A ()}

According to (8) it is sufficient to show that if 4, (x) <
< A4, (x), then there are uq, ..., 4, satisfying conditions
X =

tob(So)+ ... +pab(Ss), o+ ... +us=1 and u;>=0.
In fact we may take
(12) po = @+ 12 (x)  and  g; = (r+1—) (4,0 —2,_ (%))

for j=1,...,n

It follows from (12) that the closures of faces of the simplex
b(S,) ... b(S,) are obtained by adding to the condition 4;(x)
< ... < 4;,(x) a number of conditions of the form 4,(x) = 4;_,(x)
and perhaps of the form A;(x) = 0. Since the intersection of a set
of that kind with a similar set in the simplex b(Sg) ... 5(Sy), i.e
in a simplex corresponding to another permutation jo, ..., J,
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of the system 0, ..., n, is also of the same form (it may be void),
so the intersection of the closures of any two simplexes belonging
to B is the closure of their common face or is empty. Finally,
since each point of S belongs to some set of the form (1), it
follows that B represents a simplicial subdivision of S.

The above simplicial subdivision is called the (first) barycentric
subdivision of S (such is the barycentric subdivision of the triangle
represented in Fig. 16a). The further barycentric subdivisions
are defined inductively. If {Sy, ..., Sy} is the (k—1)th subdi-
vision, the kth subdivision is obtained by means of barycentric
subdivision of each of the sets S, ..., S,. Since the barycentric
subdivision of S; yields a barycentric subdivision of the closure
of each of the faces of the simplex S;, the final effect is a simplicial
subdivision of S.

LemMMA 1. The diameter of the simplex py ... p, equals the dia-
meter of the set of its vertices, i.e.

(13) 6(Po---Pn)= 6{p05~~-apn}-

Proof. Let p and p’ be two points of S. We shall first show
that

(14) lp—p'| < max|p,—p'|.

Let us represent p in the form (1), where (2) and (3) are fulfilled.
We get

lp—p'l = | Z: Aipi— 1—20 Ap'|= l ;: li(pi—p’)i

< D Mp—rpI< max|p;—p’|.
i=0

It follows from (14) that [p’—p;| < max|p;—p:|, and hence
J
[p—p’| < max|p;—pjl.
LJ

LEMMA 2. The diameters of the simplexes of the barycentric sub-

" _8(S).

divisi S are less tha i
vision Of are less n or equai 1o n+l
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Proof. It is sufficient to prove that for an arbitrary permu-
tation i, ..., i, of the system O, ..., n and for j << k << n we have

(15) Ib(S;) —b(Sy)] < ;,%‘3(5)’

where b(S;) = jT}I—T(p'b_}— o +pi) and b(Sy) = ——(pi,+ ...

+plk)
By (14) we have [b(S;))—b(Sy)| < |p;,—b(S)| for some [ < j <k,
and hence

k—H

16(S;) —b(S)| < [pi,—b(SK)| = 1[’:‘, 1 -(piy+ ...+ [)zk)i
N Loy
k+1 im (Pi.‘Pi,,.) < TET ,,,2:{) [ Pi,—Pil
. k n
< ra < as).

This implies at once the following theorem.

THEOREM 2. For each € > 0 there is a simplicial subdivision of
S into simplexes with diameter less than e, namely the nth bary-
centric subdivision.

TuEOREM 3 (of Sperner). Let S be subdivided simplicially and
let the function m(s) assign to each vertex of the simplexes of this
subdivision an integer m(s) which satisfies the following condition:

(16) if's e pi, ... pi,» then m(s) is one of the integers iy, ..., iy.

Then there exists among the simplexes of the subdivision under
consideration at least one simplex on whose vertices the function m(s)
assumes all the values from 0 to n. '

(The shaded simplex in Fig. 16 is such a simplex.)

We shall carry out the proof by induction. We shall prove
a stronger assertion, namely that the number r of simplexes on
whose vertices the function m(s) assumes all the values from 0 to
n, is odd.

For n = 0 this is obvious; for then S = {po} and r = 1.

Let us assume that the theorem (in the stronger formulation)
is valid for n—1. We shall prove that it is valid for n.
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We take into consideration the family of all simplexes of (n—1)-
dimension which appear in the given simplicial subdivision (for
the subdivision represented in the figure this is the family of all
sides of triangles). Among them we distinguish those simplexes
on whose vertices the function m(s) assumes all the values from 0
to n—1. We denote by R the family of these distinguished simplexes.
Finally, in the family R we consider those simplexes which lie
on the face pg ... p,—; (in the figure this is the segment {0, 1] lying
at the base of the triangle); we denote by u the number of these
simplexes. By our assumption, u is an odd number.

Let us write down the sequence

A17A2s ey Ats At+13 ey Aw

of all the simplexes appearing in the simplicial subdivision under
consideration; let the simplexes Ay, ..., A, have the dimension
n and let the remaining have dimension < n.

We denote by v; for j < ¢ the number of faces of the simplex
4; belonging to R. Denoting by W, the set of values which the
function m(s) assumes on the vertices of the simplex 4;, we easily
prove that

1if W;=(0,1,...,n), then v; =1, _
2.if 0,1,...,n—=) =« W;# (0,1, ...,n), then v; =2,
3.if (0,1,...,n—1) & W;, then v; = 0.
Therefore'

r= (vy,+v,+ ... +9;) mod 2.

On the other hand, if to each j < ¢ we assign the faces of the
simplex A4; belonging to R (provided that such faces exist), then
every simplex belonging to R will be assigned to one or two indices
J depending on whether or not it lies on the face pg ... p.; .- Hence,
we have-

Vi+9,+F ... +v, = umod?2, whence r=umod?2,
and therefore r is an odd number (because u is odd).

§ 3. Dimension of a simplex -

THEOREM 1. If the system of compact sets F,, ..., F, satisfies
the condition

a7n Piy - Pi, © Fi,u ... U F;

tic
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for each face of the simplex S = pq ... p,, then
(18) Fon..nF,#9.

Proof. Let us assume the contrary, i.e. that Fy n ... 0 F,
= J, and denote by & the Lebesgue coefficient of the cover G,, ...,
G, where G; = S—F; (comp. Corollary to Theorem 7 of Chapter
XVI, § 5).

Let there be given a simplicial subdivision of S into simplexes
of diameter < ¢. Let s be a vertex of some simplex of this sub-
division. By virtue of formula (4) and because of the fact that
the faces of the simplex S are disjoint (see § 1, 1), there exists
only one face p;, ... pi, which contains s; and therefore, by (17),
there exists an index i; such that s € F;.

Let us set

m(sy=1i;, ie. §€Fuy.

The function m(s) thus defined satisfies condition (16). Hence
there exists, by virtue of Sperner theorem, a simplex s, ... s, such
that for i=20, ..., n,

m(s;) =i, and hence s;e F;, ie. sy...85, "F;# O,
contrary to the formula 6(so ... 5,) < e.

THEOREM 2. Let P; be the union of all the faces of the simplex
S having p; for a vertex (in other words, P; is the set of all the
points of S for which A; > 0). Let the system of closed sets F, ..., F,
satisfy the conditions:

(19) §=F,u..UF,
Then condition (17) is satisfied and hence (by virtue of Theorem
1) condition (18) also.

Proof. Letpep, ... p;,. Therefore, for every j distinct from
each of the numbers iy, ..., i, we have 4; =0, i.e. p ¢ P;, whence
p ¢ F; by virtue of (20). By (12)

peFou...u F)—F;.

Since this formula holds for each j such that j# iy, ...,J # ik,
it follows that p eF,u..UF,.
Thus, inclusion (17) is proved.
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THEOREM 3. dim S = n.

Proof. By the Sorollary of § 3 of Chapter XIX we have
dim #™ < n. Since S is homeomorphic to 4", it follows that
dimS < n.

We must prove that dimS > n—1.

Let us note that the family of sets P; considered in Theorem 2

is an open cover of S, i.e. S= Py ...U P,.

Now suppose contrary to our assumption that dimS < n—1.
Then there exists (according to the definition of dimension, see
Chapter XIX, § 3) a system of closed sets F,, ..., F, satisfying
conditions (19), (20) and (4,_,) of Chapter XIX, § 3. But then
condition (9) is not fulfilled, contradicting Theorem 2.

§ 4. The fixed point theorem
Let S be, as before, the simplex p, ... p,.

BROUWER THEOREM. For every continuous mapping f: S-S
there exists a fixed point, i.e. a point p such that

@1 o) =p.
Proof. We shall use the following notation: for an arbitrary
peS we write

(22) f(p) = 8po+ ... +4Ipn,
where (analogously to (2) and (5)):
23) A ... +AF =1,
49 A¥>0.

We have to prove that there exists a point p such that
5) A¥ = 1; for every i.

Let us denote by F; the set of all points p for which
(26) AF < A

By virtue of the continuity of the barycentric coordinates and
of the function f, the sets F; are closed. We shall prove that con-
dition (17) is satisfied.

Letp ep;, ... p;,. This means that

(27) Zi°+ e +15,‘ = 1.
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But since by (23):
(28) 4 2L,
hence from (27) and (28) it follows that

M4 A< At .+ A,

and therefore (cf. (24)) for some j < k we have AL < Ay,. By (26)
this means that p € F;,. And therefore inclusion (17) is proved.

Owing to Theorem 1, § 3, inequality (18) is satisfied. Hence let
peFyn .. n F, This means that

Z'g < }“0’

2y

Adding these inequalities we obtain
ot e FAF < Aot el F Ay,
which yields, by (23) and (2),
A+ ... +AF = Ao+ ... + 4.

Therefore in the system of inequalities (29) there cannot appear
any strict inequality of the form A} < 4;. In other words, formula
(25) holds.

Remarks. 1. The Brouwer theorem for n =1 states that
for every continuous mapping f of a closed interval into any one
of its subsets there exists a fixed point. This is an immediate con-
sequence of the Darboux property of the function f(x)—x.

2. The Brouwer theorem is obviously also applicable to the
n-dimensional cube as well as to any set homeomorphic to S. It
is interesting to note that this theorem can be generalized also to
the Hilbert cube s and to some function spaces.

This generalization has numerous applications in the theory
of differential equations in proving the existence theorems.? For,
a theorem on the existence of a solution of a differential equation
can be formulated as a theorem on the existence of a fixed point
of some mapping of the space of continuous functions into itself
(under suitable hypotheses which we shall not give here).

t J. Schauder, Der Fixpunktsatz in Funktionalriumen, Studia Mathe-
matica 2 (1930).
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Let us illustrate this by an example (cf. Chapter XVI, Exercise
21).

To solve the differential equation
(30) dyldx = f(x, y)
with initial values x,, yo, means to find a function g of the variable
x such that

dg(x)/dx = f(x,8(x)) and  g(xo) = yo.
In other words, we must find a function g such that

31) g0 = yo+ [ flt, g(0))dr.

Let us denote by 4 the mapping which assigns to each function
@ the function 4, of the variable x defined by the condition

ho(x) = o+ [ f(t, p(t))dt.

The fixed point of this mapping is a function g such that
hy=1g, ie  h(x)= g(x) for every x,
. which means that the function g satisfies equality (31).

Thus the proof of the existence of a solution of equation (30)
reduces to the proof of the existence of a fixed point for the map-
ping A (which maps a certain function space into itself).

COROLLARY. The surface &, of the set A ,., = {z: |z| < 1}

is not a retract of it; i.e. there does not exist a continuous function
[ Hppy > &, such that

(32) f&x)=x for xe&P,.
Proof. If such a function f existed, then the function
(33) g(x) = —f(x)

would map 4 ,,, onto g(H¥ ,,,) < A ., without a fixed point,
contrary to Brouwer’s theorem (see Remark 2).

In fact, if x e Ay —, then g(x) # x, since g(x) € &¥,. But
if x e %, then g(x) = —x by virtue of (33) and (32), and hence
we also have g(x) # x.

This completes the proof of the corollary.
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We shall now give another formulation of this corollary, using
the concept of homotopy.

Definition. Let there be given two continuous mappings
of the space X into the space Y, ie. f, g € Y*. We say that these
two functions are homotopic if there exists a continuous function
4 of two variables x and ¢, where 0 < ¢ <{ 1 such that

(34 h(x,t)eY, h(x,0)=f(x) and h(x,1)=g(x).

We can state this in more intuitive manner: there exists a
continuous transition from the mapping f to the mapping g (we
interpret the parameter ¢ to be time).

Let us note that if Y =& (or more generally, ¥ = &"), then
the functions f and g are always homotopic.

For it suftices to set

h(x, 1) = f(x)+t(g(x)—f(x).-
If, however, ¥ = &,, then this is no longer true. Namely, the
identity and a constant are not homotopic. This means that if
X=Y=%, f=x, gx)=c¢, ce%,,
then there does not exist a continuous function % satisfying con-

ditions (34). .
For let us assume that such a function % exists and set

S¥x)=h(x,1—t) for xeP,and 0Lt <<1.

Since every point of #",,, can be represented uniquely in the
form z = zx (with the exception of the point z = 0), therefore
the function f* is continuous, i.e. f* € (. V,,)f"“. And at the same
time we have

S*(x) = h(x,0) = f(x) = x,

i.e. the function f* is a retract of o,,, to its surface. But this is
impossible by the last corollary.

Exercises

1. Let S be an n-dimensional simplex lying in the space &". Prove that the
boundary of the simplex S is the union of all its faces of dimension < n.

2. The continuum C consists of the closure of the graph of the function
¥ =sin(1/x) for 0 < |x| < 1/ and of an arc joining the points (—1/m, 0),
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(1/x=, 0) outside of the rest of the continuum C. Prove that under every con-
tinuous mapping of the set C onto a subset there exists a fixed point.

3. Let S = po ... py be a given simplex and let X be a given metric space
covered with open sets: X =G U ... UG,

Consider the mapping

x(x) = lo(x) *Pot .- +}.,,(X) *Pn,

where
;*i(x) = Q(x’ X_Gl)/{g(xa X~GO)+ +Q(x9 X—Gn)}

(this is the so-called kappa mapping).
Prove that

(a) x(x) e S where 4;(x) is the ith barycentric coordinate of the point
#(x) (i.e. conditions (2) and (5) are satisfied);

(b) » *(P:) = G;, where P; has the same meaning as in Theorem 2 of § 3;

©) % Y (pig--- Pir) = Gig N ... N Gi,—\_JiGi, where the union is over
all indices 7 different from iy, ..., i}

d) #(X—G)) N P; = O;

(e) if every intersection of m+-2 of the sets Gy, ..., G, is void, then dim »(X®
< m.

i. Let S = pg ... p, be a given simplex and let f be a continuous mapping
of S into itself. We assume that, if p e Fr(S), then f(p) e Fr(S) and that
f(p) # p. Prove that f($) = S.

Hint: Assuming that f(S) # S we denote by r the point belonging to S—£(S)
and by g(p) the projection of the point f(p) from r into Fr(S). We then arrive
at a contradiction of Brouwer theorem.

5. Lgt S = po ... pyand let the sets Go, ..., G,, Open in S, satisfy the con-
ditions S =Go V... UGyand Gy < Pifori =0, ...,n Then Go N ... N G,
# 0.

Hint: Make use of Theorem 2 of § 3, and of Exercise 9 of Chapter XIII,

6. Let T; denote the closure of the face lying opposite the vertex p;. Prove
that if the closed sets Fo, ..., F, satisfy the conditions S = F, U ... U F,
and T3 € F;, then Fon...Nn F, # 9.

Hint: Use Exercise 5.

7. Let S =po ... pp and let f be a continuous mapping of S into itself
such that f(T;) < T; for i =0, ..., n. Then f(S) = S.

Hint: Argue as in the solution of Exercise 4 and set F; = g7 '(T;). Then
apply Exercise 5.

8. Show that the relation “fis homotopic to g” is an equivalence relation.

9. If the homotopic mappings f, and f; have values in the space Y and if go
and g, are homotopic and defined on Y, then the composed mappings go° fo
and g, o f; are homotopic.

10. The spaces X and Y are said to have the same homotopy type if there
are continuous mappings f: X — Y and g: Y —>X such that gof and f-g
are homotopic with the identity mappings. Show that the relation “X and

Y have the same homotopy type” is an equivalence relation.
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Show that 6" and ™ have the same homotopy type, while #" and &,_,
have not.

11. Let X and Y be metric. Let X be compact. Then the mappings f, ge YX
are homotopic iff they can be joined in YX by a continuum which is a conti-
nuous image of S,

Hint: Use Exercise 8 of Chapter XVI.

Remark. Using the Theorem 2 of Chapter XVIII, § 5, one can replace
the above condition by the existence of an arc joining f to g in Y&,

12. Show that the Corollary of § 4 follows from the theorem (shown above)
stating that on &, the identity is not homotopic to a constant.

Show also that this Corollary implies the fixed point theorem.

Hint. Supposing that f: A,.; = X .1 has no fixed point, consider for
each x the intersection of %, with the ray containing the points f(x) and x,
the first being its vertex.



CHAPTER XXI

CUTTINGS OF THE PLANE

§ 1. Auxiliary properties of polygonal arcs

As usual, we shall denote the plane of complex numbers by
&% By &, we denote the plane &2 extended by the point at
infinity (called the Gauss plane); topologically &, does not differ
from the surface of a three-dimensional ball.

THEOREM 1. Any two points of a connected open set R (i.e. of
a region) situated on &, can be joined by a polygonal arc.

The proof is completely analogous to the proof of Theorem 4
of Chapter XVIII, § 4: by F we denote the set of all points of the
region R which can be joined by a polygonal arc with the fixed
point p € R and then we prove that this set is nonvoid and open
and that the set R—F is open; the connectedness” of the set R
implies that F = R.

THEOREM 2. If L is a polygonal arc = &,, then the set &, —L
is homeomorphic to the plane &2.

The proof is by induction on the number » of links in the poly-
gonal arc.

For n = 1 we have to prove that the Gauss plane minus a seg-
ment is homeomorphic with the Gauss plane minus a point.

To this end, we describe about the centre of the segment L a
sequence of concentric circles K, K,, ... with radii tending to 0.
Let E;, E,, ... be a sequence of ellipses (together with their in-
teriors) whose intersection is the segment L; we may assume here
that £, = K, (Fig. 17).

We define the required homeomorphism / as follows: on the
exterior of the circle E; we set A(z) = z. Next we map the annulus
E,—E, homeomorphically onto the annulus K, —K, without
affecting the values of & on Fr(E;); in general, we mao the annulus

273
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E,—E,., onto K,—K,,, without affecting the values of % on
Fr(E,).
The theorem is thus proved for n = 1.

E, K,
K,
E, Ky
=
FiG. 17

For n =2 the polygonal arc L consists of two segments A;
and A4,. We carry out a homeomorphic mapping of &, onto &,
which leaves the segment A invariant, but maps 4, into a recti-
linear extension of the segment A,. The proof thus reduces to
the case n = 1.

A similar method allows us, in the case where L consists of
n+1 segments, to “straighten out” the last segment (perhaps
contracting it) in order to obtain a polygonal arc consisting of n
sides.

Remarks., Theorems 1 and 2 are valid in the space &" for
arbitrary n. For n = 2 Theorem 2 can be sharpened by replacing
the polygonal arc L by an arbitrary arc; namely, the complement
of an arc contained in &2 is homeomorphic to the complement
of a point. On the other hand, for » = 3 the theorem thus sharp-
ened is not valid: there exists in &3 an arc, the so-called An-
toine’s arc, whose complement is not homeomorphic to the com-
plement of a point.

L
§ 2. Cuttings

We say that the (closed or open) set A is a cutting of the space
&, (or: that it separates or cuts this space) if the set &, —4 is
not connected.,
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A separates &, between the points p and q if these points belong
to distinct components of &, —A.

THEOREM. If the closed set A cuts &, between p and q, then there
exist two closed sets R and Q such that

Fy,=RuQ, peR, qeQ and RnNQ=A4.
Proof. Let M be a component of the set %,—A which con-
tains the point p, and let N be the union of all the remaining com-
ponents of this set. Since the components of &,—A are open
(see Chapter XVIII, § 2, Theorem 2) and the sets M, N and A4 are

disjoint, then the sets R=M u 4 and Q = N U 4 are closed
and, as can easily be seen, they satisfy the desired conditions.

§ 3. Complex functions which vanish nowhere. Existence of the
logarithm
We shall denote by the letter & the plane minus the point 0, i.e.
P = §>—{0}.
We say that the function fe 24 (i.e. continuous, defined on

A, complex valued and everywhere different from 0) has a single-
valued continuous branch of the logarithm if it is of the form

m flz) = e*®,  where ue (&4
(the function u is this branch). We then write
f~1.
More generally: if fe 24 and B — A4, then we write
f~1 on B,

if there exists a function u € (£2?)® such that
)] f@) =¢e"® for zeB.

A fundamental theorem for the topology of the plane, which
is our nearest goal, is the following theorem:

FILENBERG THEOREM. Let A be a compact or open subset of
the space P. A necessary and sufficient condition that the set A
does not separate & , between the points 0 and co is, that the identity
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has, on the set A, a single-valued continuous branch of the logarithm,
i.e. that there exists a function u € (%)4 such that

z=¢e"® for zeAd.

§ 4. Auxiliary theorems

THEOREM 1. Let R denote a ray lying in the plane and emanating
Jfrom the point 0. Then z ~ 1 on the set §*—R.

Proof. Let ¢ be the angle between R and the positive direc-
tion of the x-axis; we assume that 0 < ¢ < 2.

Since every point z of the plane is of the form z = |z|e'*, we
can assume that ¢—2n << « < ¢ for points z not belonging to R.
The function

3) u(z) = logz = log|z|+iu
is continuous on &%-—R and satisfies the identity
z=1¢"® for ze&*—R.

From this we obtain the following theorem.
THEOREM 2. If f€ (6§*—R) then f ~ 1 (whatever X is).
For, the function u(f(x)) is continuous on the set X and

f(x) =V for xeX

(where u is the function defined by the formula (3)).

THEOREM 3. Let e PX. To every point x € X there corresponds
a certain neighbourhood G such that

@) f~1 on G.

Proof. Let R be a ray emanating from the point 0 and not
containing the point f(x) (such a ray exists because f(x) # 0).
Owing to the continuity of f we have

Rn f(G)=9, ie. f(G)< &*—-R

for some neighbourhood G of the point x.

This means that the function f restricted to G satisfies the
assumption of Theorem 2. Hence, we have formula (4).
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THEOREM 4. Let fe PX, let a € X and let ¢ be one of the values
of logf(a). If f ~ 1, we can choose the function u satisfying for-
mula (1) in such a way that it satisfies the “initial” condition:

5) u(a) = c.

Proof. Since f ~ 1, the function f is of the form

f(x) =e'®  where v e (82X

Let us set
(6) u(x) = v(x)—ov(@)+c.
Hence, we have

et X} —— gv(X) . o=v(a) . e =f(x),
since
e '@ =1/fla) and e = /@ = f(a).

Hence the function u satisfies condition (1). Moreover, formula
(6) immediately implies formula (5).

Remark. The initial condition (5) in general does not de-
termine the function » uniquely. We have uniqueness, however,

under the assumption that X is connected. This follows from the
following theorem:

THEOREM 5. If X is connected and
) fx) = ) = o9,
then ©v(x) = u(x)-+constant.

P r o o f. By virtue of (7), ¢*™~%*) = 1, and therefore for every x
there exists an integer k(x) such that v(x) —u(x) = 2k(x)ri. Hence,
the function k(x) is continuous. Since k(x) is defined on a connec-
ted set and has integral values, it is therefore constant (for the
continuous image of a connected set is connected (cf. Chapter
XVII, § 2, Theorem 1)).

THEOREM 6. If F is a closed subset of a metric space X and the
Junction feP* satisfies the condition f ~ 1, then there exists
a function g € PX which is an extension of the function f and which
satisfies the condition g ~ 1.

Proof. By assumption, formula (1) is satisfied, and because
of the Tietze Extension Theorem (Chapter XII, § 5, Corollary 1)
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the function u can be extended to the entire space X. Let v be this
extension. Hence, we have

ve(€? and o(x)==u(x) for xeF.
The function g(x) = *™ is the desired function.
THEOREM 7. Let A and B be two closed or two open sets with
connected intersection. Let fe PAVB, If f~ 1 on A and on B,
then f~ 1 on A U B.

Proof. By assumption there exist two functions u e (§%)4
and v € (6%)? such that

o e for xe€Ad,
®) S = e’®  for xeB.

let An B# @, and ae€ A n B. We can assume that o has
been so chosen that v(a) = u(a) (cf. Theorem 4). Since the set
A n B is connected, it follows (by virtue of Theorem 5) that
o(x) = u(x) for every x € A n B. Hence, if we assume that
& fu(x) for xed,
@) WO =lo) for xeB,

then—as can easily be verified (see Exercise 1 of Chapter XII)—the
function w is continuous, i.e. w € (§2)4vB. As f(x) = e for
xeA u B (cf. (8), hence f~ 1.

We arrive at the same conclusion if 4 N B= Q.

THEOREM 8. Let fe X and let C,, C,, ..., Cy, ... be a sequence
of connected sets such that
¢)) X=CiuC,u..vuCu..,
and
(10) C, cInt(C,y,) for n=1,2,..

If f ~ 1 0n C, for every n, then f ~ 1 (on X).
Proof. Let ae C,. By assumption we have
(11) f(x)=ew» for xeC, and u, € (§*)°~.

We can assume (see Theorem 4) that u,(a) = u,(a). It follows,
by virtue of the connectedness of the set C;, that u,(x) = u,(x)
for x € Cy, and since u,, (@) = u,(a), we have similarly

(12) Uy () = u(x) for xeC,.
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Let
(13) u(x) = u,(x) for xedC,.

Because of (12) and (9), formula (13) defines the function u
uniquely for every x € G. This is a continuous function. For,
if x4 € Cy, then by virtue of (10) x, € Int (C,,,); but since u(x)
= U,,1(x) for x € C,, the continuity of the function u,,, at the
point x, implies the continuity of the function u at this point (cf.
Chapter XII, Exercise 2). Finally, formulas (11) and (12) yield

f(x)=e® for xeX, ie [f~1.

THEOREM 9. Let G be an open subset of a metric separable (or,
more generally, perfectly normal, see footnote on p. 242) and
locally connected space. Let feP¢. If

14 f~1 on C

Jor every closed connected subset of G, then f ~ 1 (on G).

Proof. 1. Let us first assume that G is connected. Then by
Theorem 7 of Chapter XVIII, § 2, there exists a sequence Ry, R,, ...
of open connected sets such that

(15) G=R,UR,u.. and R,cR,,.

Put C, = R,. Obviously conditions (9) and (10) are fulfilled
(replacing X by G and C by Rin (9)), and therefore f ~ 1 on G.

2. If G is not connected, we consider its decomposition into
components

(16) G=G1UG2U...UGHU...

Since G, is connected and open (by virtue of Theorem 2 of
Chapter XVIII, § 2), it follows from the part of the theorem al-
ready proved that

f~1 on G,
ie. f(x) = e»® for x € G,, and v, € (§2)%.
Let v(x) = v,(x) for x € G,. Since the sets G, are open, it fol-

lows (cf. Chapter XII, Exercise 2) that the function v is conti-
nuous. Hence we have

an f(x) = e*™®), where v e (£?)° ie. [~ 1.



280 SET THEORY AND TOPOLOGY

§ 5. Corollaries to the auxiliary theorems

COROLLARY 1. If F=F < 5 and feP¥, then f ~ 1.

Proof. By Theorem 3 of § 4, there is an open cover {G,},
teF, of F such that te G, and f~ 1 on Fn G,. Since F is
compact, we may assume that this cover is finite. Accordingly
there exists a system of points 0 = aqy, < a; < ... <da, =1 such
that f ~ 1 on the intersection F n (a,_ya;) for k=1,2,...,n.

The intersection [F n (@oa;)] n [F N (a,a,)] being contained
in {a,} is connected (perhaps void). Hence we have f~ 1 on
F n (apa, v aia;) = F n (aya,) by virtue of Theorem 7 of § 4.

Similarly, f~ 1 on Fn (aya, U a,a3) = F n (agas).

By induction we prove that f ~ 1 on F n (aqa,) = F.

COROLLARY 2. Let K be a square (with interior) < &2. Every
Sfunction f e PX satisfies the formula f ~ 1.

Proof. Let us decompose the square K into a finite number
of squares 4,, A4,, ..., A,, enumerating them in such a way that
the intersection

(18) Arn 4y U .U A4y)
is connected for k = 2,3, ...,n (cf. Fig. 18). We assume that

these squares are so small that f ~ 1 on each of them individually
(according to Theorem 3 of § 4).

16 | 15 | 14 | 13

9 10 | 11 | 12

8 7 6 5

1 2 3 4

FiG. 18

Since f ~ 1 on 4, and on A4, and since the intersection A; N A,
is connected, we have f ~ 1 on 4; U A4,. Reasoning by induction
and using the fact that the intersection (18) is connected, we de-
duce that f~ 1 on 4, U ... U 4,, i.e. on K.

COROLLARY 3. Every function f € P satisfies the formula f ~ 1.
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Proof. Let K, be a square with side # and with centre O.
Since

=K, uK,u..uK,u..

and since f~ 1 on K, by virtue of the preceding theorem, we
deduce from Theorem 8 of § 4, that f ~ 1 on &2.

Remark. Corellaries 1-3 hold not enly for the sets #, K
and &2, but also for arbitrary sets which are homeomorphic to
these sets; in particular, for arbitrary arcs, for a circular disk,
for the complement (with respect to &,) of a polygonal arc.

Let us carry out the proof for the arc.

Let & be a homeomorphic mapping of the segment £ onto
the arc A. Let fe 24, Substituting z = h(x) for x € £, we there-
fore have

f(2) = fh(x) = ) = evh ™' = v,

where ©(z) = uh™!(z), z € A.

COROLLARY 4. Let C denote the circumference |z| = r. There
does not exist a single-valued branch of the logarithm on C; that is,
z not ~ 1 on C.

Proof Let zo=1(r,0), and 4 = C—{z,}. For ze 4 we
have

(19) z=re™®, where 0 < afz)<2r.

Obviously the function « is continuous on A.
Let us assume that our theorem is false. Then

z = re'f @,

where f is a real valued function continuous on C.
Since A is connected we have (seec Theorem 5 of § 4):

(20) o(z) = p(z)+constant.

It would then follow from this that the function « can be
extended in a continuous manner onto C. But this is impossible.
For, let limz, = z,. If the points z, lie above the x-axis, then

n-—»w

lima(z,) = 0, and if they lic below the x-axis, then lima(z,) = 2x.

n—»o0 n—»0
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§ 6. Theorems on the cuttings of the plane

Proof of Eilenberg theorem (see§3). Letd = 2.
We shall consider separately the case where A4 is a closed subset
of &, and the case where A4 is an open set.

1. A4 is closed. Let us assume that 4 does not separate &, be-
tween the points p = 0 and ¢ = oo. We have to prove that

@2y z~1 on A.

Since the points p and ¢ lie in one of the components of the
set &,—A, there exists a polygonal arc L (cf. Theorem 1 of § 1)
such that

By Theorem 2 of § 1, the set &,—L is homeomorphic to the
plane &2, and hence by virtue of Corollary 3 of § 5 (cf. Remark)
we have z ~ 1 on &,—L, whence formula (21) follows, for A
c&,—L by (22).

Let us assume next that A4 separates &, between the points
p = 0 and g = co. Hence, there exist (see § 2) two closed sets R
and Q such that

(23) ) y2=RUQ9 PER’ qus
(24) RnQ=A.

We shall show that the assumption (21) leads to a contradiction.
In fact, from (21) it follows that (cf. Theorem 6 of § 4)

25) z=2¢€"" on A, where ue é"’)y z,
Let us set
'@ if zeQ,
(26) f(z)={z if zeRand z# 0.

By (24) and (25), the function f is defined and continuous for
every z % 0 (cf. Chapter XII, Exercise 1), i.e.

27 . feg’y"‘o’, whence f~1

by virtue of Corollary 3 of § 5 (cf. Remark).
Since the point 0 does not belong to Q, there exists a disk
with centre at the point 0 which is disjoint from Q and hence
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contained in R. Let C be the circumference of this disk. Hence
we have (cf. (27)) f ~ 1 on C, i.e. by (26) z ~ 1 on C. But this
contradicts Corollary 4 of § 5.

2. A is open. Let us assume that the set A does not separate
the plane &, between the points p =0 and ¢ = oo, i.e. that
these points lie in the same component T of the set &, —A4. Hence,
if F=F c A, then the points p and ¢ lie in one component of
the set &, —F (namely in the one that contains the set 7). As
already proved, we therefore have z ~ 1 on F. From this, by
virtue of Theorem 9 of § 4, we obtain formula (21).

Let us assume next that the set 4 separates the plane &, between
the points p = 0 and g = <o, i.e. that these points belong to
distinct components of the set &, —A. Therefore, there exist two
closed sets M and N (see Chapter XVII, § 6, Theorem 6) such that

(28) Fr—A=MuUN, peM, gqeN,
(29) MnN=©@.

Since the space &, is normal (see Chapter XII, § 4, Theorem 6)
and because of formula (29), there exist two open sets R and
O such that

(30) McR, Nco,

31 RnQ=0.
Let

(32) F=¢%,—(R v Q).

The set F is therefore closed. Because of (30) and (28), we have

peR and geQ.

Thus &, —F is the union of two open disjoint sets R and Q of
which one contains p and the other contains g (cf. (32)). The set
F therefore separates &, between these points. By virtue of the
part of the theorem already proved, we have z not ~ 1 on F.

But since F = A (because of (33)) we have a fortiori z not ~ 1
on A.
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§ 7. Janiszewski theorems

THEOREM 1. Let A and B be two closed or two open subsets
of &,. If neither of these sets separates & , between the points p and
g and if the intersection A n B is connected, then the union A U B
also does not separate &, between these points.

Proof. By means of the homographic transformation

(34) h(z) = (z—p)/(z—9q)
we reduce the proof to the case where
(35) p=0, g=o0.

Hence let us assume that the equalities (35) hold.
Since neither 4 nor B separates the plane &, between the points
p and ¢, the relations

z~1lonA and z~1on B

hold, by the Eilenberg theorem.

It follows from this, by virtue of Theorem 7 of § 4, that z ~ 1
on A v B. And therefore, by the Eilenberg theorem, 4 U B
does not separate &, between p and gq.

THEOREM 2. As before, let A and B be two open or two closed
Subsets of &,. If the sets A and B are connected but the intersection
A n B is not connected, then the union A U B separates & , between
some pair of points.

Proof. We use the usual notation

A°=%,—A, B°=¢,—B.

Let us assume—contrary to our theorem—that the set 4 U B
does not separate &,, i.e. that the set ¥,—(4 U B) = A° n B°
is connected. We shall prove that then the assumptions of Theo-
rem 1 are satisfied by the sets A and B° where p, ¢ is an arbitrary
pair of points belonging to 4 n B.

In fact, both 4° and B¢ are open or both are closed, and their
intersection 4° n B¢ is connected. It remains to prove that neither
the set 4 nor the set B separates &, bztween the points p and g,
i.e. that these points belong to some component of the complement
of the set 4°, i.e. to some component of the set 4, and, similarly,
to some component of the set B. But this follows immediately
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from the assumption that the sets A and B are connected and
contain the points p and gq.

Applying the first Janiszewski theorem to the sets 4° and B,
we deduce that the union A° v B° does not separate &, between
p and g, i.e. that p and g belong to the same component of the
set (4° v B°)° = 4 n B. Butsince the points p and g are arbitrary
points belonging to 4 N B, it follows from this that the set 4 n B
is connected, contrary to assumption.

§ 8. Jordan theorem

Every simple closed curve C = &, (i.e. every set homeomorphic
to &) decomposes &, into two regions and is their common boun-
dary.

We precede the proof with the following lemma.

LEMMA. No arc or closed subset of an arc separates & ,.

Proof. Let us assume, on the contrary, that some closed
subset F of the arc L separates &, between the points p and gq.
Applying the homographic transformation (34) we can assume
that these points are p = 0 and g = 0. By the Eilenberg theorem
we have z not ~ 1 on F. But this contradicts Corollary 1 of § 5
(see § 5, Remark).

Proof of the Jordan theorem. Since the curve C’
can be represented as the union of two arcs whose intersection
is not connected (namely consisting of two points) we deduce
from the second Janiszewski theorem that C separates &,.

Let

(36) Ry, R, ...

denote the sequence of components of the set &,—C. We have
proved that this sequence contains at least two terms. It remains
to prove that it does not contain more than two terms and that

(37 Fr(R,) = C = Fr(R,).

We shall begin with the proof of formula (37). By virtue of
Theorem 5 of Chapter XVIII, § 2, we have

(3%) Fr(R,) = C.



286 SET THEORY AND TOPOLOGY

If formula (37) did not hold, then the set Fr(R,) would be
a closed subset of some arc (contained in C) and therefore, by
the lemma, it would not separate &,. But this is impossible
because Fr(R,) obviously separates ., between every point
of R, and every point of R,.

Hence the first of the identities (37) is proved and the second
is obtained by symmetry.

It remains to prove that the sequence (36) consists of two terms.

Let us assume the contrary, i.e. that there exist at least three
regions R;, R,, R,. Let

39) pijeR; for j=1,2,3.
Let us assume that the region R, is bounded. Let Z be a straight
line passing through the point p;. This straight line therefore

contains a segment L = ap,b lying in R; with the exception
of the endpoints which belong to C:

(40) L<cRyu {a} v {b).

Let aq.b and aq,b be the arcs of the curve C determined by
the points @ and b (see Fig. 19).
Hence we have

“4n aq.b v agq,b=C,
and
42 ag1b N aq,b = {a, b}.
Let
43) Ay =aq;bu L, A,=aq,bvu L.

It follows from formulas (42) and (43) that
“44) Ay n A, = L.

Since ¢4, g, € C, we therefore deduce from (37) that the sets
R; U {q:} U R, and R, U {g,} U R, are connected, and from
(39) that they contain the points p, and p,. Since these sets are
disjoint from A4, and A, respectively (cf. (40) and (43)), the
sets A; and A4, do not separate &, between p; and p,. From
formula (44) we deduce by virtue of the first Janiszewski theorem
that 4, U A, does not separate &, between p, and p, either.



XXI. CUTTINGS OF THE PLANE 287

But this is impossible because (cf.(41)and (43)) 4, U 4, = CU L,
and C separates &, between p, and p,.

FiG. 19

*Remark 1. We can sharpen the Jordan theorem by intro-
ducing the interesting concept of accessible point. Namely, we
say that a point p lying on the boundary of the region R is accessible
from this region if there exists an arc containing the point p and
lying entirely—with the exception of the point p—in the region R.

An example of a point which is not accessible is the following.
Let C be the closure of the curve y = sin(1/x), 0 < |x] < 1, and
let R be the complement of the continuum C; the point {0, 0)
is not accessible from the region R.

One can prove that every point of a simple closed curve is
accessible from both regions into which the curve separates the plane.

In the general case of an arbitrary region R = 8", the points
which are accessible from R form a dense set on its boundary.

For let p e Fr(R). For ¢ > 0 there exists a point ge R at a
distance << ¢ from p. On the segment gp let r be the first point
(starting from g) of the set Fr(R). Therefore the segment gr
lies—with the exception of the point r—entirely in the region R.
Hence, the point r is accessible from R. At the same time [r—p|
<lg—pl <e.

*Remark 2. Another generalization of the Jordan theorem
is the following theorem (of Schonflies):

Let C be a simple closed curve contained in & ,. Every homeo-
morphism h of &, onto C can be extended to a homeomorphism
h* of the entire plane &, onto itself; i.e. W*(¥,) = &, and h*(p)
= h(p) for pe &,.
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On the basis of this theorem one can prove that every topo-
logical property of &; with respect to the plane &, (such as the
number of components in &, —&; and the accessibility of points
on the circumference) also holds for any simple closed curve.

An analogous theorem concerns arcs lying in &, every homeo-
morphism defined on the segment 5 can be extended to a homeo-
morphism of &, onto & ,.

However, this theorem is not valid for arcs (nor for simple
closed curves) lying in &3. The Antoine arc referred to in the
remark at the end of § 1 is a counter-example.

*Remark 3.Jordan theorem is a special case of the following
theorem on the invariance of the number of components of the
complement of a closed set lying on the sphere &, (i.e. on the
surface of the unit ball of Euclidean space é”"“): ifF=Fc %,
and if the set &,—F has k components, then for every homeo-
morphism h: F—> &, the set &,—h(F) also has k components.

The proof of this theorem can be carried out making use of
the concept of homology extended to arbitrary compact sets.!

As for polyhedra, one proves that the Betti numbers are
topological invariants and that the (n—1)th Betti number of
the closed set F lying in &, equals the number of components
of the set &,—F minus 1.

For sets lying in &, the proof of the above theorem can be
carried out considering the function space ¥ to be a group.
Namely, the group operation is defined as follows.

Let f1, f> and f; be three elements of the space 2F. We assume
that f3 = f1 - f, when f3(z) = f1(2) - f2(z) for every z€F.

The functions f satisfying the condition f ~ 1 form a subgroup
of the group 2, as can easily be verified. Let us denote it by
G and let us consider the quotient group B(F) = 2#¥/G.

The rank of this group (the maximal number of linearly in-
dependent elements) equals the number of components of the
set &,—F less one.

Let us note finally that the proof of the invariance of the property

t Another proof was given by K. Borsuk. This proof requires an apparatus
which goes significantly beyond the scope of this book. See Fundamenta
Mathematicae 37 (1950), pp. 217-241, and my Topology, vol. II, p. 495.
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of a closed subset F of &, of separating &, can be carried out
without the use of homology. For, the connectedness of &,—F
and of &f_, are equivalent.’

Exercises

1. Prove that z" is not ~ 1 for #n # 0 on the circumference of a circle with
centre 0.

2. Prove that if fe P then f ~ 1.

Hint: Decompose &, by the equator and apply Corollary 2 of § 5.

3. Prove that the star-shaped curve consisting of » arcs having one end
in common, and having no other points in common, does not decompose the
plane.

4. Prove that a curve consisting of three arcs having common endpoints,
and having no other points in common (see Fig. 19), decomposes the plane
into three regions.

5. A connected space is said to be unicoherent if A N B is connected
for every decomposition of the space into two closed connected sets 4 and B.
Prove that the circular disk and the space &, are unicoherent.

6. Prove that if C is a subcontinuum of the plane %, (or more generally,
of a connected unicoherent space), and R is a component of the complement
of C, then Fr(R) is a continuum.

Hint: Use Theorem 4 of Chapter XVII, § 3.

7. Let the space X be a locally connected unicoherent continuum, If the
closed set F separates this space between the points a and b, then it contains
a subcontinuum which also separates the space between these points.

Hint: Consider the component R of the set X—F which contains the
point a and the component P of the set X—R which contains the point b,
and apply Exercise 4, above, and Exercise 9 of Chapter XVIIIL.

8. Under the preceding assumptions on the space X, let 4 and B be two
disjoint closed sets neither one of which separates X between p and g. Prove
that 4 U B does not separate the space between p and q either.

__9. Show by an example that without the unicoherence assumption the
theorems of Exercises 6-8 do not hold.

10. Let the function fe &7 satisfy the condition f(—z) = —f(z) for
every z e & ;. Then the condition f ~ 1 is not satisfied.

11. The Borsuk-Ulam theorem on antipodes. For every function fe (& z),SP 2
there exists a point z, such that f(zo) = f(—zo).

Hint: For every point p belonging to the disk J; with radius 1 and centre 0,
let us denote by p+ the point belonging to the “upper half” of &,, whose
projection is p. Let h(p) = f(pt)—f(—p*). Let us assume, contrary to the
assertion of the theorem, that A(p) # O for every p. Show (making use of

T Borsuk theorem, see Monatshefte fiir Mathematik und Physik 38 (1931),.
p. 218, and Mathematische Annalen 106 (1932), p. 239. Cf. also P. Alek-
sandrov, Dimensionstheorie, § 5, Mathematische Annalen 106 (1932), p. 218
or my Topology, vol. I1, p. 470.
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Corollary 2, § 5, and of the remark immediately following it) that this as-
sumption leads to a contradiction to the theorem of Exercise 10.

12. A region R © &, is said to be szmply connected if the set & ,—R
is connected.

Prove that if a simply connected region R < .7 , contains a simple closed
curve C, then it also contains one of the two components of its complement.
In particular, if R does not contain the point at infinity, then it contalns
a bounded component of the set &, —

Hint: Note that the set ,—R is contained in one of the components
of the set &,—

Remark. The property of simply connected regions formulated in the
above theorem is also a sufficient condition for simple connectedness, as can
be proved.

13. Let R be a simply connected region contained in & ,, and let L be an
arc which, except for its endpoints, lies in R. Prove that the arc L separates
the region R (i.e. that R—L is not connected).

14. Prove the following more general theorem: let R be an arbitrary region
contained in & ,, and let L be an arc which, except for its endpoints,
lies in R;a necessary and sufficient condition for this arc to separate the region
R, is that both its endpoints belong to the same component of the set &, —R.

Hint: In the proof of the necessity of the above condition make use of
Theorem 6 of Chapter XVII, § 6, and of the first Janiszewski theorem. Make
use of the second Janiszewski theorem in the proof of its sufficiency. Compare
my Topology, vol. 11, pp. 438 and 562.

15. If C is a continuum contained in & ,, then each of the components

of the set &,—C is a simply connected region.
Hint: Cf. Theorem 4 of Chapter XVII, § 3.
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ELEMENTS OF ALGEBRAIC TOPOLOGY

Introduction

This Supplement contains an introduction to homology theory,
which constitutes one of two basic branches of algebraic topology
(the other being homotopy theory). We continue the consider-
ations of Chapter XX, where the concepts of simplex, simplicial
subdivision, etc., were defined; unlike the other parts of this book,
however, the Supplement makes use of algebraic concepts, notably
those of group theory. This explains the name “algebraic” as
opposed to “point set” topology.

We shall restrict the presentation to the definition and funda-
mental properties of homology groups of polyhedra; this, however,
will suffice to introduce a number of important concepts and
illustrate the role of algebraic tools. The interplay of various
branches of mathematics which we encounter here is worth
noting: topology is a powerful tool in classical analysis, which,
in turn, is connected with technology and natural sciences via
its applications, while topology itself uses methods of algebra
and set theory.

When writing this Supplement we utilized Chapter XXI
(complexes, chains, homologies) of the previous edition of this
book; the text was enlarged and supplemented.

The reader who would like to extend his knowledge of algebraic
topology is referred to the following list of most popular books
on the subject. Some of these books are primarily of historical
interest, but those by Spanier and by Hilton and Wylie merit
particular attention. The author of this Supplement is particularly
indebted to the latter.

P.S. Alexandrov, Combinatorial Topology, Graylock,
Rochester, 1956 and 1957.
D.G. Bourgin, Modern Algebraic Topology, MacMillan,
New York, 1963.
S. Eilenberg, and N.Steenr od, Foundations of Algebraic
Topology, Princeton University Press, Princeton, 1952.
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P.J. Hilton, and S. Wylie, Homology Theory, Cambridge
University Press, Cambridge, 1960.

S. T. Hu, Homotopy Theory, Academic Press, New York, 1959.

—— Homology Theory: A First Course in Algebraic Topology,
Holden-Day, San Francisco, 1966.

L.S. Pontryagin, Foundations of Combinatorial Topology,
Graylock, Rochester, 1952.

H. Seifert and W. Threlfall, Lehrbuch der Topologie,
Teubner, Leipzig, 1934, and Chelsea, New York, 1947.

A.H. Spanier, Algebraic Topology, McGraw-Hill, New York,
1966.

A.H. Wallace, An Introduction to Algebraic Topology,
Pergamon Press, Oxford, 1957.

§ 1. Complexes. Polyhedra. Simplicial approximation

A simplicial complex (or shortly: a complex) will be defined
as a finite family of simplexes (lying in a Euclidean space of
a fixed dimension) containing all the faces of its simplexes, and
such that the intersection of the closures of each two of its elements -
is either empty or equal to the closure of their common face.
The dimension of a complex will be defined as the least upper
bound of the dimensions of its simplexes.

The family of all the faces of an arbitrary simplex is an example
of a simplicial complex; the family of all the triangles in Fig. 16
—their sides and vertices constitute another example—is a two-
dimensional complex.

THEOREM 1. A family of simplexes lying in a Euclidean space
of a fixed dimension, containing with each simplex all its faces,
Jorms a simplicial complex if, and only if, its elements are disjoint.

Proof. If simplexes S and S” belong to a complex K and
SN S # @, then S and S’ have a common face S’ such that
S n S = S8". If §" were a proper face of one of these simplexes,
we would have either S” N S = @ or S n S8’ = B (see formula
(4), Chapter XX, § 1), and "' n (S n S") = @, contrary to the
condition SN S =S5" and S~ S’ # @. We have, therefore,
S=8"=5".

In view of the quoted formula, the fact that the elements of
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the family in question are disjoint implies that the intersection
of the closures of any pair of its elements is either empty or equal
to the closure of their common face.

The union of all simplexes of a complex K will be called the
underlying polyhedron of K and will be denoted by |K]|. It follows
from the definition of a complex that if S € K, then S< [K|, and

(1 K| = Usex S;

consequently, every polyhedron is compact.

The representation of a polyhedron in the form of |K| is not
unique. Each complex K for which |K| is a given polyhedron
will be called a triangulation (or simplicial subdivision) of this
polyhedron.

A subset of a complex K which itself is a complex (i.e. it
contains all the faces of its simplexes) will be called a subcomplex
of K. An example of a subcomplex is provided by the set of all
simplexes of a given complex which are of dimension < n; this
subcomplex will be called the n-dimensional skeleton of the complex
in question. The elements of the 0-dimensional skeleton are
called vertices of the complex. We easily verify that the union
and the intersection of the subcomplexes K, and K, are sub-
complexes and that

1Ky U Kol = |Ky| u |K;]  and Ky 0 K| = (K] 0 [Kyl.

Any subset K, of a polyhedron K such that for a certain trian-
gulation K of K there exists a subcomplex K, whose underlying
polyhedron is K, will be called a subpolyhedron. Subpolyhedra
are closed sets. :

Let K be a given simplicial complex. For each S € K the bary-
centric subdivision K(S) of the set S is a simplicial complex.
We shall show that the family

() K’ = U sk K(S)

is also a simplicial complex.

Note first that all simplexes of the family K’ lie in a Euclidean
space, the same as that in which lie the elements of the complex K.
Next, if a simplex belongs to K’, the same holds for all its faces,



294 SET THEORY AND TOPOLOGY

since each of the complexes K(S) has this property. Let us now
consider a pair S7, S; of elements of K’ such that S{ n S3 # O.
Let S € K(S;), where S; € K,i=1,2, and let S; be the common
face of Sy and S2 such that S, n Sz = S3 We have, therefore,
F£ S, nS,<S, and Sl NSy# D#S,n S5 Since the
barycentric subdivision of S determines the barycentric subdivision
of the closure of every face of S, we have Si, S; € K(S;) and
S = S3. In view of Theorem 1 it follows that K’ is a simplicial
complex.

The complex K = K’ will be called the (first) barycentric
subdivision of the complex K. Further barycentric subdivisions
are defined by the relation

K("): (K(n_l))l for n=2:3’

It can easily be seen that if L is a subcomplex of K, then L™
is a subcomplex of K™,
From (1) and (2) it follows that

IK'| = UsrerrS" = Usex Usrersy S = Usex S = |K],

hence the underlying polyhedra of a complex K and all its bary-
centric subdivisions coincide. Theorem 2, Chapter XX, § 2,
implies:

THEOREM 2. For any simplicial complex K and any & > 0 there
exists a natural number n such that the simplexes of the barycentiic
subdivision K™ have diameters < .

COROLLARY. Every polyhedron has, for any ¢ > 0, a triangulation
with simplexes of diameters < e.

A mapping ¢ of the set of vertices of a complex K into the
set of vertices of a complex L will be called a simplicial map,
if for every simplex pq ... p, € K the points @(po), ..., p(p,) are
vertices of a certain simplex in L; this simplex can have dimension
smaller than n, since different vertices of K can be mapped into
the same vertex of L. By assigning to each simplex py...p, e K
the simplex in L whose set of vertices is {@(po), ..., p(pn); we
define a mapping of the complex K into the complex L; this
mapping is an extension of ¢ and will be denoted by the same
letter @. The term “simplicial map” will be used both for the
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mapping of the set of vertices, as well as for the corresponding
mapping of the complex. We easily verify that the composition
of simplicial maps is again a simplicial map.

Simplicial maps @, y: K — L will be called contiguous if for
every S € K there exists a simplex 7(S) € L such that ¢(S) and
p(S) are faces of T(S).

Let K be an arbitrary simplicial complex. Let us assign to
every vertex b(S) of the complex K’ one of the vertices of the
simplex S € K. If b(S,) ... b(S,) is a simplex in K’, we may assume
that S, > ... > S,, which implies that all the vertices of the
simplexes S, ..., S, are vertices of S,, and, consequently, our
mapping is a simplicial map. Mappings obtained in this manner
will be called standard translations of K’ in K. Every two standard
translations are contiguous. Iterations of standard translations
will be called standard maps.

The set

StK(P) = Up<SeKS < K|

will be called the star of the vertex p € K. Since the family

{Se K: (p < S)'} is a subcomplex of K, the complement of a

star is a subpolyhedron of | K|, and stars are open sets in |K|.
Note that

€)) ifp < S eK, then Stg(b(S)) = Stg(p).

Indeed, if a simplex b(S,) ... b(S,) € K’, where So > ... > S,
contains b(S) among its vertices, then p < S, and b(Sy) ... b(Sy)
c SO [ StK(P).

THEOREM 3. The intersection of stars Stx(po) N ... N Stx(pn),
where p; # p; for i # j is non-empty if, and only if, po ... py € K.

Proof. If Stk(po) n ... n Ste(p,) # O, then there exist
simplexes Sy, ..., S, € K such that p; < S; for i=0,1,...,n
and a point p € S, N ... N S,. Since the simplexes of the complex
K are pairwise disjoint, we have S, =S, =...=S5,=S and
pi<<Sfori=0,1,...,n Thus, po ... p, is a face of the simplex
S and, consequently, is an element of K.

If po...ps e K, then pg ... p, = Stg(p)) for i=0,...,n, and
Stx(po) N ... N Stx(p,) # .
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Let f be a continuous mapping of a polyhedron K into a poly-
hedron L. We shall define a simplicial approximation of f as
atriple (K, L, ¢) where K and L are triangulations of K and L and
@ is a function mapping the set of vertices of X into the set of
vertices of L, such that for every p e K

Stx(p) = f7 (Stz(¢(p)))-

Applying Theorem 3 twice we show that for any simplicial
approximation (K, L, ¢) of a continuous mapping f, the function ¢
is a simplicial map; we will call it also a simplicial approximation
of f.

THeOREM 4. If (K, L, ¢) and (K, L, y) are simplicial approxi-
mations of a mapping {2 K — L, then ¢ and vy are contiguous.

Proof. For every simplex S=p,... p,€ K we have for
i=0,..,n

Sta(p) = /7 (Ste(9(p))) 0 S (Ste(v(p)))
=f —I(StL(OD (p) N Sty (W(Pi)))-
Consequently,
@ # MioStr(p) = f7(Mi-oSte(p(p)) 0 Ste(y(p)))

and

Stz(p(po)) N Ste(p(po)) N ... 0 Ste(p(pn) N Ste(y(pn) # .
As T(S) e L we may take the simplex with the set of vertices

{9(po), v(po), ---» P(pn), w(pn)} .

THEOREM 5. If (K, L, ¢) is a simplicial approximation of a map-
ping f, and (L, M, v) is a simplicial approximation of a mapping g,
then (K, M, yg) is a simplicial approximation of the composition gf.

Proof. Foran arbitrary vertex p € K we have

Stx(p) = f7(Ste(9(p)))

and

Stz((p)) = g7 (Stu(ve(p))).



ELEMENTS OF ALGEBRAIC TOPOLOGY 297

Therefore
Stk (p) = 7' (Stm(ve(p)) = &) (Stm(ve(0))).

It follows from (3) that standard translations are simplicial
approximations of the identity. This fact, together with Theorem
5, implies the following two theorems:

TueoReM 6. If (K, L', ¢) is a simplicial approximation of a map-
ping f, and o is a standard translation of L' in L, then (K, L, o)
is also a simplicial approximation of f.

TueoreM 7. If (K, L, @) is a simplicial approximation of a
mapping f and ¢ is a standard translation of K’ in K, then (K', L, o)
is also a simplicial approximation of f.

Theorems 4 and 7 imply:

TueoreM 8. If (K, L, ¢) and (K™, L,vy) are simplicial ap-
proximations of the same mapping, and o: K™ — K is a standard
map, then @o and v are contiguous.

THEOREM 9. For every polyhedron L = |L| there exists an ¢ > 0
such that if f and g are continuous mappings of an arbitrary poly-
hedron K = |K| into L, and | f—g| < &, then f and g have a common
simplicial approximation (K™, L, @) for a certain m > 1.

Proof. The family of sets {St.(g)}, where g is a vertex of L,
forms an open cover of the space L; let ¢ be the Lebesgue
coefficient of this cover (see Theorem 7, Chapter XVI, § 5).
If|f—g| < &, then the family of sets of the form f~* (Stz(g)) N
n g1 (StL(g)), where g is a vertex of L, forms an open cover of K.
Indeed, for every x € K there exists a vertex g € L such that
{f(x), g} < Stalg), ie. x €f}(Stu(@)) A g (St(q)). By Theo-
rem 2 and the theorem on the Lebesgue coefficient there exists
a natural number m such that for every vertex p of the complex
K™ one can find a vertex ¢(p) € L such that

Stgem (p) < £~ (Ste(9(p))) N g7 (Ste(e()))-

The mapping ¢ is a simplicial approximation of f'and g.
COROLLARY. Every continuous mapping of a polyhedron into
a polyhedron has a simplicial approximation.
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§ 2. Abelian groups

In this section we shall present those notions and theorems of
the theory of groups which will be used in the construction of
homology groups of simplicial complexes.

Definition 1. LetG be a given set, and suppose that a
binary operation (to be called addition) is defined, which to every
pair a, b of elements of G assigns an element a+b of G (to be
called the sum of a and b). We say that G is a commutative (or
Abelian) group if the following conditions (axioms of group theory)
are satisfied:

() (@+b)+-c = a+(b+c),

(ii) a+b = b+a,

(iii) there exists a unique element of G (denoted by 0) such that
a+90 = a for every a in G,

(iv) for every a in G there exists a unique inverse element (denoted
by —a) such that a+(—a) = 0.

Given a € G and a natural number m we denote by ma the ele-
ment of G obtained as the result of m-fold addition of a (in view
of (i) this element is well defined). Moreover, we put O0a =0
and (—m)a = m(—a). We easily verify that

ma-+na = (m-+n)a

for any integers m and n.

ExAMPLE 1. The set of all integers forms a group with respect
to the operation of addition, but does not form a group with
respect to the operation of multiplication, since axiom (iv) does
not hold in the latter case.

ExAMPLE 2. The set of complex numbers z such that [z =1
(i.e. numbers of the form e*) forms a commutative group with
respect to multiplication.

ExampLE 3. The set of continuous non-vanishing complex-
valued functions f defined on a space X forms a commutative
group if the group operation is defined as '

(s=rfi-fi) = /\x[f3(x) = f1(%) - (x)].
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Definition 2. If a subset G, of G forms a group with
respect to the operation in G, i.e. if 0 € Gy and a, b € G, implies
(a-+b) € Go, (—a) € Gy, we say that G, is a subgroup of G.

The equivalence relation mod G, for elements of the group G
is defined as

4 l[a ~ b (mod Go)] = [(a—b) € Gy).

THEOREM 1. Relation (4) is an equivalence relation, i.e. it is re-
flexive, symmetric and transitive.

Proof. a ~ a(modG,),ie. a—a=0eG, (since Gy is a sub-
group of G). Next, ‘

[a ~ b (mod Gy)] = [(a—b) € G,] = [(b—a) € Gy)
[6 ~ a(mod Gy)].

Let a ~ b (mod Gy) and b ~ ¢ (mod Gy), i.e. (a—b) e G, and
(b—c) € Gy. Then (a—b)+(b—c) € G,, whence a ~ ¢ (mod Gy).

Relation (4) induces a partition of the elements of G into dis-
joint sets of equivalent elements. These sets are called cosets
mod Gy; thus, cosets mod G, are equivalence sets of the rela-
tion @ ~ b (mod G,) (see Exercise 19, Chapter IV).

Let p(a) denote the set of elements equivalent to a mod Gy,
i.e. the coset mod G, containing a. We have

[p(a) = p(b)] = [a ~ b (mod G,)].

In the class of cosets mod Gy we define addition by the relation

) p(@)+p(b) = p(a+b).

We easily prove that addition of cosets as defined by (5) does
not depend on the choice of elements of these cosets, and that
the class of cosets with addition as defined by (5) forms a commu-
tative group.

Definition 3. The group of cosets mod G, will be called
the quotient group of G with respect to Gg, and will be denoted
by G/G,. The zero of the group G/G, is Gy.

Definition 4. Let G and H be two commutative groups.
A transformation f: G — H will be called a homomorphism if

(6) f(a+b) = fla)+f(b).
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If, in addition, f is one-to-one, we call f a monomorphism. If f(G)
= H, we say that fis an epimorphism. Transformations which are
at the same time monomorphisms and epimorphisms are called
isomorphisms.

Compositions of homomorphisms (monomorphisms, epimor-
phisms, isomorphisms) are homomorphisms (monomorphisms,
epimorphisms, isomorphisms). A homomorphism f is an isomor-
phism if, and only if, it has an inverse; then the inverse is also an
isomorphism.

ExampLE 4. The transformation mapping a group G into the
zero of a group H is obviously a homomorphism; we call it the
zero-homomorphism of G into H and denote it by 0. The transfor-
mation of the group of integers into the group of complex numbers
of the form e defined by assigning the complex number ¢™ to
the integer m is a monomorphism. For any group G the identity,
i.e. the transformation defined by the relation f(a) =a is an
isomorphism of G onto itself; this isomorphism will be denoted
by 1g.

If there exists an isomorphism of G onto H, we say that these
groups are isomorphic, and write

IG~ H.

Clearly, the relation of isomorphism is reflexive, symmetric and
transitive, i.e. it is an equivalence relation.

In much the same way as topology deals with invariants of
homeomorphisms, the theory of groups deals with invariants of
isomorphisms. From the point of view of the theory of groups,
two isomorphic groups have the same properties. The role of
continuous functions in topology is played in the theory of groups
by homomorphisms,

THEOREM 2. If f is a homomorphism of a group G into a group H,
then

1°. f(0) =0,

2°. f{(—a) = —fla),

3° the image Imf = f(G) is a subgroup of H

(on the left-hand side of 1° the symbol O denotes the zero element
of the group G and on the right-hand side that of the group H).
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Indeed, f(0) = f(0+0) = f(0)+f(0), whence f(0)=0. Thus,
0 = fla+(—a)] = fla)+f(—a), and f(—a) = —f(@). Relation 3°
follows from (6) and 2°.

THEOREM 3. For any subgroup G, of a group G, the function map-
ping a € G into p(a) € G|G, is an epimorphism.

We shall call it the natural epimorphism p: G — G/G,.

Definition 5. The kernel of a homeomorphism f+ G - H
is defined as the set

Kerf = {x: f(x) = 0}.

THEOREM 4. If f is a homeomorphism of a group G into a group H,
then

1°. Kerf is a subgroup of G,

2°. fis a monomorphism if, and only if, Kerf = 0,

3°. the groups G[Kerf and Imf are isomorphic.

Proof. If fla) =0 and f(b) =0, then fla+b) = 0; if f(a)
=0, then f{—a) = —f(a) = 0, which proves that the kernel is
a subgroup.

If f is a monomorphism, then Kerf = 0. If Kerf = 0, and f(x)
= f(), then fx—y) = f(x)—f(y) =0 and x = y.

The isomorphism between the groups G/Kerf and Imf can be
obtained by assigning to the element p(@) € G/Kerf the element
f(@) € H (note that if p(a) = p(@’), then f(a) = f(@)).

Suppose now that we are given a homeomorphism f: G - H
and subgroups G, =G and H, = H such that f(G,) = H,. If
a ~ b (mod G,), then f(a) ~ f(b) (mod Hy), since fla)—f(b)
= fla—b) € f(G,) = H,. The image under f of every equivalence
set of the relation a ~ b (mod G,) is thus contained in a certain
equivalence set of the relation of equivalence mod H,. If we
assign to cosets mod G, the cosets mod H,, containing their images
under f, we define in fact the transformation f’: G/G, - H[H,,
such that pf = f'p, i.e. that the diagram

'’

\
G/ Go R H I H 0
IS commutative.
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Since
f'(p(@)+p(®b)) = f'p(a+b) = pfla-+b) = pfa)+pf(b)
=f"(p(@)+f"(p()),

the transformation f” is a homomorphism, called the homomorphism
induced by f. We note that if fis an isomorphism, and f(G,) = H,,
then f” is an isomorphism of the group G/G, onto H/H,.

Iff, g: G - H are homomorphisms, the functions f+g: G - H
and f—g: G - H defined as .

(M (f+8) (@) = fla)+g(@, (f—g) (@) = fla)—g(a)
are also homomorphisms, to be called the sum and the difference
of the homomorphisms f and g respectively.

Definition 6. The Cartesian product G, X ... XG, of
groups G, ..., G, with the addition defined as

(@, ..., an)+ by, ..., b)) = (ay+by, ..., a,+b,)
will be called the direct sum of the groups G4, ..., G,.

We can easily see that the operation defined above satisfies
conditions (i)-(iv); the zero element is (0, ..., 0), the inverse of
(ay, ...,a)is (—ay, ..., —ay).

Definition 7. We shall define the free group generated by
a non-empty set 4 as the set of all integer-valued functions defined
on A each of which assume non-zero values only for a finite number
of elements of 4, with the addition of functions (satisfying (i)-
(iv)) defined by the first of formulas (7). Elements of A will be
called generators of the free group. In addition, we assume that
the empty set generates the zero group, i.e. the group containing

only the element 0.
If we introduce for every a € A a function 4 defined as

) 1 for x=a,

a(x) = {0 for x#a
we can represent elements of the free group generated by A in
a unique way as

myd,+ ... +m,d,, where a,,...,a,€4,

addition of elements being performed by adding coefficients at
the corresponding functions.
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In the sequel we shall indentify the function 4 with the gener-
ator a, and the elements of the free group generated by 4 will be
identified with formal linear combinations of the form

mya,;+ ... +m,a, where a;,..,a,€A4.

Addition of such linear combinations consists in adding coeffi-
cients at the correponding generators. Thus, the free group con-
tains its generators. We can easily see that any free group with »n
generators is isomorphic with the direct sum of n copies of the
group of integers.

THEOREM 5. Every mapping of the set of generators of a free
group into any group H can be uniquely extended to a homomorphism
of this group into the group H.

Proof. Let A be the set of generators of a free group G, and
let f be a mapping of 4 into a group H. The required extension
of fis given by the homomorphism f: G — H defined as

fimia,+ ... + m,a,) = mf@a)+ ... + muf(a,).

§ 3. Categories and functors

In mathematics we often study a certain class of objects—which
are generally sets satisfying certain additional conditions, such
as the performability of certain operations in them under definite
axioms—and a suitably chosen class of transformations of those
objects, for instance transformations preserving the operations
in question. We encounter such situations in the set theory (ob-
Jjects—all sets, transformations—all functions), in topology (ob-
Jjects—topological spaces, transformations—continuous functions)
or in group theory (objects—groups, transformations—homo-
morphisms). The concept of category supplies an abstract descrip-
tion of such a situation.

Definition 1. A category will be defined as a class € (sec
Chapter III, § 7)—whose elements will be called objects—given
together with

(i) a set M(4, B) assigned to each pair of objects 4, Be@;
elements of M(A, B) will be called morphisms of A into B;

(ii) the operation of composition of morphisms, which assigns
to each triple 4, B, C € € a mapping of the Cartesian product
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M(A4, B)x M(B, C) into M(A, C). The composition of morphisms
feM(A, B) and g e M(B, C) will be denoted by gof (we shall
also write gf); the morphism g o f belongs to M(4, C).

We shall assume that

(iii) if fe M(A, B), g € M(B, C) and h € M(C, D), then

ho(gef)=(hog)of;

(iv) for each object A € G there exists a morphism e, € M(A, A),
called the identity morphism, such that

foe,=ffor fe M(A, B) and e of = f for f € M(B, A).

ExampLE 1. Taking as € the class of all sets, and as M(4, B)
the class of all functions f: A — B, we define the category of all
sets. The composition of morphisms is here the usual composi-
tion of functions, and the identity morphism is e (x) = x.

ExamrLE 2, The category of topological spaces is defined by
taking as & the class of all topological spaces, and as M(4, B)
the class of continuous functions f: 4 — B. This category will
be denoted by T. Restricting the class € to more special topolo-
gical spaces we obtain the category M of metric spaces, the cate-
gory H of Hausdorff spaces, the category C of compact spaces,
etc.

The category P of polyhedra is defined by taking as € the class
of all polyhedra, and their continuous mappings as morphisms.

ExaMPLE 3. The objects of the category SC of simplicial com-
plexes are simplicial complexes, and the morphisms of this cate-
gory are simplicial maps of complexes.

EXAMPLE 4. We define the category G of Abelian groups taking
as § the class of all Abelian groups, and as M(4, B) the set of
all homomorphisms of 4 into B. The composition of morphisms
in G is defined as the usual composition of functions, and the
identity morphism of a group 4 is the isomorphism 1.

The basic concept of category theory is that of functor.

Definition 2. A function which to each object 4 of a
category K assigns an object F(4) of a category L, and to each
morphism fe M(A4, B), where A, B are objects of the category
K, assigns a morphism F(f) e M(F(4), F(B)) will be called a co-
variant functor if
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(v) Fle) = €rd)>

(Vi) F(gof) = F(g) o F(f).

If F(f)e M(F(B), F(4)) for fe M(4, B) and condition (vi) is
replaced by

(vi') F(gof)= F(f) F(g)
we shall speak of a contravariant functor.

Functors can be composed: the composition of two covariant
or two contravariant functors is a covariant functor, while the
composition of a covariant functor with a contravariant one is
a contravariant functor.

ExAMPLE 5. Let T be a fixed set. Let us assign to each set X
the Cartesian product XX 7, and to a function f: X — Y the
function f': XXT — YXT defined as f'(x,t) = (f(x),1). We
easily show (see Exercises 17 and 23, Chapter IV) that such assign-
ing is a covariant functor from the category of all sets into itself.
From Theorem 4, Chapter XIII, § 2, it follows that if T is a topo-
logical space, then the mapping defined above is a functor from
the category of topological spaces into itself.

EXAMPLE 6. Let T be a fixed set. Let us assign to each set X
the set of all functions defined on X with values in T, i.e. the set
T*. To a function f: X — Y, let us assign the function d;: TY - T*
defined as dy(g) = gf, where g € TY. The reader will verify (see
Exercise 22, Chapter IV) that such assigning is a contravariant
functor from the category of all sets into itself. Let us now assume
that 7T is a topological space. For each topological space X, con-
sider the compact-opzn topology in the set TX (see Chapter XVI,
§ 7). We shall show that the above assigning is a functor from the
category T of topological spaces into itself.

It suffices to verify that, for any continuous mapping /: X - Y,
the mapping d,: T¥ - TX is also continuous. This, however,
follows from Corollary 3 to Theorem 2, Chapter XII, § 1, since
for any set I'(C, H) from the subbase of the space 7X (C is a com-
pact subset of X and H is an opzn set in T), we have

d7\(I(C, H)) = {g: &f(C) = H} = I'(f(C), H)
and f(C) c Y is compact by Theorem 3, Chapter XVI, § 2.



306 SET THEORY AND TOPOLOGY

ExaMpLE 7. The Cech-Stone compactification is an important
example of a covariant functor from the category of all com-
pletely regular J ,-spaces to the category of compact spaces. This
functor assigns to each space X its compactification SX, and to
each mapping f: X > Y < Y its extension g: X — BY; the
latter exists in view of the theorem from Chapter XVI, § 4.

§ 4. Homology groups of simplicial complexes

We shall now describe a sequence of covariant functors (ho-
mology groups and induced homomorphisms) from the category
SC of complexes and simplicial maps to the category G of Abelian
groups.

The first step in the construction of homology groups will con-
sist in the orientation of a simplicial complex. We start with the
definition of an oriented simplex. Let S = p, ... p, be an n-di-
mensional simplex, where n > 1. Each sequence p;, ..., p;, con-
sisting of n+1 of its vertices (without repetition) will be called
a n-dimensional oriented simplex; we shall identify two oriented
simplexes if one of them can be obtained from the other by an
even permutation (we say in this case that these simplexes have
the same orientation); for instance

(Po>P1sP2) = (P1,P2,P0) = (P2, Po>P1)s
(Po»> P15, P2) # (P1,Po> P2)-

Thus, each simplex S of dimension > 1 determines two oriented
simplexes. The simplex with an orientation opposite to that of
the simplex (pq, ..., p.) Will be denoted by —(pg, ..., Pn)-

We shall say that the oriented (n—1)-dimensional face (py, ...,
D) of the oriented simplex (po, Py, ..., Pn) i8 coherently oriented
with this simplex. For instance, (po,p,) has coherent orienta-
tion with the simplex (p,, po, p1) = (Po, P1,P2), While (po, p2) is
not coherently oriented with (po, p1, p,) (but coherently oriented
Wlth (pl »Pos p2))

Thus, given an oriented n-dimensional simplex and its oriented
(n—1)-dimensional face (n > 2), we can decide whether or not
it is coherently oriented with this simplex. We easily verify that
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the orientation of the face resulting from omitting the vertex p;,,
coherent with the orientation of simplex (p;,, ..., p;,) is

(_l)i(pjo’ cevs Pjicis Pjiios ""pjn)'
Moreover, that definition of coherent orientation of a face does

not depend on the choice of the sequence of vertices which gives
the considered oriented n-dimensional simplex in question.

Remark. The notions of oriented simplex and coherent
orientation have a geometrical interpretation. The n-dimensional
simplex S = p, ... p, situated in the space &™ determines in this
space the n-dimensional hyperplane C(S), called the carrier of S,
defined as the set of all points of the form

P = Aopot ... +2upn,

where Ao+ ... +4, = 1. Formally, an oriented simplex is a pair
consisting of S and one of two possible orientations of its carrier,
i.e. one of the two classes of bases of the vector space C(S). Each
sequence (pj,, ..., p;,) of vertices of the simplex S determines
a certain base of the space C(S), namely the base consisting of

3

VECtOIS Pjos Pj,» Piys Pins -+ s Pinys P, One can verify that sequen-
ces of vertices which give the same orientation of the simplex S
lead to the same orientation of the space C(S), while sequences
giving different orientations lead to different orientations of C(S).
Thus, instead of considering pairs consisting of a simplex and
a basis of its carrier, one can consider sequences of vertices of
the simplex, identifying those sequences which lead to the same
orientation of the carrier.

If we are given an n-dimensional simplex S (z > 2) and its
(n—1)-dimensional face S’, then from each base of C(S’) one
can obtain a base of C(S) by adding one vector from C(S) which
is not parallel to C(S’). Our definition of the coherent orientations
is equivalent to the agreement that if we start from an arbitrary
base which determines a given orientation of C(S’) and add to it
at the first place an arbitrary vector which pierces the face S’
from inside S, we obtain a base of the space C(S) which gives
the desired orientation of this space. This is illustrated in Fig. 20.

An orientation of a simplicial complex K will be defined as
a function o which to every simplex S e K of dimension n > 1




308 SET THEORY AND TOPOLOGY

assigns one of the oriented simplexes determined by it. An oriented
(simplicial) complex will be defined as a pair (K, «) where K is
the simplicial complex and o is its orientation. For the sake of

Fic. 20

unified notation we shall assume that «(p) = (p) = p for every
vertex p.

For an arbitrary oriented complex (K, «) and an integer n 2> 0
we shall denote by C,(K, «) the free group generated by the set
of all oriented simplexes «(S), where S is an n-dimensional simplex
of K. This group will be called the group of n-dimensional chains
of the complex (K, a). According to our convention concerning
the representation of elements of the free group as linear combi-
nations of generators, elements of C,(K, o) i.e. n-dimensional
chains, have the form

kyo(S)+ ... +kna(Sy),

where S|, ..., S,, are n-dimensional simplexes of the complex K.
In particular, zero-dimensjonal chains are linear combinations

kipi+ ... +knpPm

of vertices of the complex K, while C,(K, o) = 0 for n exceeding
the dimension of the complex K.

For each n-dimensional simplex S = pg ... p, € K, where n > 1,
the oriented simplex «(S) is an element of the group C,(K, ).
Thus, the group C,(K, a) contains some sequences of the form
(pj,s ---» Pj,), namely those which determine the orientation «(S);
each of these sequences is the same element of the group. For
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reasons of computational convenience, we assume that sequences
giving the orientation opposite to a(S) also belong to C, (K, «);
each of these sequences denotes the element — «(S). This con-
vention explains why we have denoted the simplex oriented oppo-
site 10 (pg, --s Pn) DY — (Do «ovs Dn)-

We now define the homomorphisms ¢,: C,(K, a) - C,_,(K, &)
for n>2 by assigning to each generator a(S) of the group
C.(K, «) the sum of its {(n—1)-dimensional faces oriented coher-
ently with «(S) (see Theorem 5, § 2). We thus have

@ 8u(t(S) = 8u(Pos s ) = D, (—1Pos vy Bis s Pa)s
i=0

where the symbol ~ over a vertex signifies that this vertex is omitted,
and (pg, -.., ps) 18 an arbitrary representation of the generator
o(S). Since each generator of the group C;(K, a) has exactly
one representation in the form (p,, py), the formula

© 91(Po, 1) = P1—Po

defines a homomorphism J;: C,(K, a) = Co(K, «). Note that
formula (8) for n = 1 reduces to formula (9). The homomorphisms
d.,n=1,2,... are called boundary operators.

THEOREM 1. For every n 2> 2 we have
(10) an—lan = 0.

Proof. It suffices to verify that d,_,d.(«(S)) =0, since
the extension of the mapping d,_,d, from the set of generators
to the homomorphism of the whole group C,(K, «) is uniquely
determined. Let «(S) = (pq, ..., p»). We then have

One12(2(S)) = Buy (D) (=1 Pos s Py -2 1))
i=0

n i—1
= (——1)'[ (—l)j(p09"',ﬁj3""i)i,""pn)
i=o j=0
+ Z (—l)j_l(pOa'-',:ﬁi:---,i)js"wpn)]'
J=i+1
The simplex (po, ..., Pis --» Dis ---» Ps) appears in the above
linear combination twice: first with the coefficient (—1)'(—1)*
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and then with the coefficient (—1)*(—1)'-. Since the sum of
these coefficients is zero, we have d,_;2,(2(S)) = 0.

The group Z,(K, o) = Kerd, < C,(K, o), where n > 1, will
be called the group of n-dimensional cycles of the complex (K, «);
we assume in addition that Zy(K, ) = Co(K, «). The group
B(K, «) =1md,,, = C,(K, «), where n =0 will be called the
group of n-dimensional boundaries of the complex (K, «). It
follows from (10) that B,(K, «) = Z,(K, a); the quotient group
H(K, o) = Z,(K, 0)/B(K, ) is called the nth homology group
of the oriented complex (K, «). The index n runs through the
numbers 0, 1, 2, ..., but all groups H,(K, o) with indices exceeding
the dimensions of K are zero groups.

In the terminology of § 2, two n-dimensional cycles z; and z,
are equivalent mod B,(K, a) if (z;—z,) € B,(K, a). In this case
we say that z, and z, are homologous to each other in (K, o);
instead of writing z, ~ z,(mod B,(K, «)) we write

z; &z, in (K, a).

In particular, the condition z = 3,,,(/) means that the cycle z is
homologous to zero in (K, a).

We shall show that the groups H,(K, o) depend only on the
complex K, and not on the choice of the orientation «. For
every pair of orientations «,  of K define the homomorphisms
62 C,(K,a) - C, (K, f), putting for n >0

(e(S) 2{ BS) if a(S) = B(S),
—B(S) if a(S)= —H(S).

We can easily see that 08%62f and 6%P65* are identity isomorphisms
of the groups C,(K, «) and C,(K, f) respectively, whence 63 is
an isomorphism of the group C,(K, «) onto C,(K, ). Moreover,
transformations 6% leave invariant every sequence (pg, .-, Pu);
thus, the diagram

6%
Cn(Ka a) —_= Cn(K9 ﬁ)
n an
B

! 1 3
Cn_i (K, o) _’Cn—l(K’ [3)

is commutative, i.e. 9,0 = 0%, 0, forn = 1,2, ... Consequently,
under the isomorphism 62 cycles are mapped into cycles and
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boundaries into boundaries, which implies that the quotient
groups H,(K, «) and H,(K, p) are isomorphic. The nth homology
group of the (unoriented) complex K will be defined as the group
H,(K, x) where o is an arbitrary orientation of the complex K;
this group will be denoted by H,(K). Since in determining the
homology, the choice of orientation is irrelevant, when considering
groups of chains, cycles and boundaries, we shall, occasionally
write C,(K), Z,(K) and B,(K), even though we shall always
consider a fixed orientation of K. Moreover, we shall agree that
in considering complexes with numbered vertices, the generators

2

Fic. 21

of groups of chains will be taken as sequences of vertices with
increasing indices. ’

. ExaMmpLE 1. Let K be the complex consisting of all simplexes
(0,1 and 2-dimensional) given in Fig. 21, except the simplexes
012 and 345 (for simplicity we write k instead of p;). The chains

zp = (0, )+(1,2)+(2,0) and z;=(3,49)+(45+(6,3)

are cycles not homologous to zero in K, but homologous to one
another.
Indeed, let

1=(0,4,3)+0,1,49+(1,549+1,2,5+(2,3,5+(0,3,2);
then 2y —2Z, = azl.

ExAMPLE 2. A complex K will be called connected if it cannot
be decomposed into two complexes without common vertices;
in other words, if for every pair p, g of its vertices, there exists
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a finite system of vertices p = pq, pi, ...s Pr = q such that the
simplexes p;_(p; belong to K for i=1,2, ..., r. Clearly, the
connectedness of K is equivalent to the connectedness of its
underlying polyhedron |K|.

We shall prove that

(11) if a non-empty complex K is connected, then Hy(K) ~ Z,

where Z is the group of integers.
Every element of the group Z,(K) = Co(K) is of the form

kopot - +kmpDm;

by assigning to it the sum ko ... +k, we define an epimor-
phism of the group Z,(K) onto the group Z. To prove (11) it
suffices to show that

(12) Bo(K) - {k0p0+ eas +kmpm: ko"}‘ ces +km == O}.

Since d1(po, p1) == p; —Po, the sum of the coefficients of every
element in By(K) is zero, i.e. the left-hand side of (12) is contained
in the right-hand side. Let g be a fixed vertex of K. To prove the
reverse inclusion it suffices to show that

koPot --- +kmbm = (Zki)q in K,
i=0
which in turn reduces to showing that for an arbitrary vertex
p € K and a number k € Z we have kp ~ kq in K.

Let us consider a system of vertices p = po,P1s--s0r = ¢
such that p;_,p;e Kfori=1,2, ..., rand the chain I = k(p,, po)
+k(p2, p1)+ ... +k(p,, p,—1) € C1(K). Since 9,/ = kpo—kp,
+kps—kpy+ ... +kp,y—kp, = kpo—kp, = kp—kq, we get
kp =~ kq in K, and the proof of (12) is complete.

We shall now introduce the concept of a cone on a chain,
which will be used in the next example and in § 6.

Let (K, a) be an arbitrary oriented complex, let p be a vertex
in K, and let «(S) = (po, ..., p») be a generator of the group
C.(K, ). If the simplex pp, ... p, belongs to K we say that p can
be joined with «(S) (or with S); it follows that p # p; for
i=0,1,..,n If p can be joined with «(S), then the oriented
simplex (p, po, ..., ps) belongs to the group C,. (K, «); this
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simplex will be denoted by pa(S). If p can be joined with every
simplex appearing in the chain / € C,(K), with non-zero coefficient,
we say that p can be joined with the chain l. For an arbitrary
vertex p € K which can be joined with a chain / = k,a(S|)+ ...
o +hkmot(Sn) € Co(K, o), the cone on [ with vertex p will be de-
fined as the chain

pl=kypa(S)+ ... +knpa(Sn) € Cpiy(K, ).
We can easily see that
13) Ona(pl) =1—pc,I for n=0,

where J,/ denotes the sum of the coeflicients of the zero-dimen-
sional chain / and pk = kp.

ExampLE 3. If a complex K has a vertex p such that for any
simplex py ... p, € K either p is one of its vertices or ppg ... p, € K,
we say that K is a cone; p is called the vertex of this cone, and
the subcomplex K, < K consisting of all simplexes which do
not contain p as a vertex will be called the base of this cone. Thus
for instance, the complex K" consisting of all faces (including
the improper one) of an arbitrary n-dimensional simplex is a cone;
any vertex can serve in this case as the vertex of the cone, while
the base will be the subcomplex consisting of the (n—1)-dimen-
sional face opposite to the vertex of the cone (i.e. the face which
does not contain the selected vertex), and of all its faces.

Let K be a cone with vertex p and base K,. Let us select an
orientation o, of the complex K, and define the orientation & of
the complex K taking as generators of the group C,(K, «), where
n > 1, the generators of the group C,(K,, o,) and simplexes
of the form pay(S), where «,(S) is a generator of the group
Co-1(Ko, %o).

Any n-dimensional chain of the complex (K, «) has, for n > 1,
the form

I=pli+1,, where I eC,_ (Ko, %), I»€Cy(Ko, o).
In view of (13) the boundary of the chain [ is the chain
Onl=1—poy 11+ 0,1, = —pdy 1 1, + (1 +0,15).
If leZ(K, ), then 8,_,], =0 and d,l, = —I;; for the chain
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! =pl, € C, (K, 2) we have
Opirl' = Oy plh = LL—p0, 1, = ply+1, = 1,
ie.
(14) ZK,oa)=B,(K,x) for n=1.
Since every cone is a connected complex, (14) and (11) imply:
(15)  for an arbitrary cone K we have
H(K)=0 forn=1 and Hy(K) =~ Z.

In particular, for the complex K” consisting of all the faces of
a certain n-dimensional simplex, we have

(16) H.(K"Y=0 for m>1, HyK")~ Z.

ExaMpLE 4. Consider the complex S" consisting of all the faces
of dimension < n of an (n--1)-dimensional simplex, where n > 1.
Sincz C,(8") = C,(K**!) and Z,(S") = Z,(K"*') for m<n
and B,(S8") = B,(K"*') for m<n—1, we have Hy(S") ~ Z
and H,(S") =0 for m <n—1. Let us find the nth homology
group of 8"; clearly, H,(S") = Z,(S"), since S$" has no simplexes,
and hence no non-trivial chains, of dimension n--1. Let / bea
generator of the group C, . (K**'); the chain 8,,./ € C,(S")
= C,(K"*') is a non-zero cycle in S". Moreover, every n-dimen-
sional cycle in 8" is of the form kd,.4/, since it is also a cycle
in K"*1, and in view of (16) it is a boundary of a certain (n-1)-
dimensional chain. But every (n--1)-dimensional chain is of the
form kl. Thus, for the complex S” consisting of all the faces of
dimension << n of an (n+1)-dimensional simplex (n>=>1), we
have

a7 HSY =~ Z, H,(S")=0form>nand n>mz=1,
and Hy(S") ~ Z.

Let us now consider complexes K and L and a simplicial map
¢: K— L. Let o and o’ be orientations of K and L respectively.
Assuming for any generator a(S) = (po, ..., p,) of the group
Cu(K, a)

(9(Po), -, ppw))  if  @(p) # @(ps) for j# k,
0 otherwise,

95 (a(S)) = {
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we define a homomorphism ¢%: C (K, a) > C,(L, ") for n
=0,1,..

THEOREM 2. For every n > 1 the diagram

2

g C)I(L’ a')

O
- )
d 1_) Cn—l(L7 a,)

C.(K, a)
i
n
4
Cn-—l (K, “)

is commutative, i.e. ¢5_10, = 0,¢%.

Proof. It suffices to show that for every generator a(S)
= (P, .-, Pn) of the group C,(K, o) we have
(18) #2-19n(Pos -, Pn) = On@a(Po> +- > Pr)-

Equality (18) is obvious if ¢(p;) # ¢(p,) for j # k.
Suppose now that ¢(p;) = ¢(p;) for j > k. We then have

(p:-l an(l’O’ ---apn) = ¢:—1[2(_1)i(p0’ ‘--,27!: 9Pn)]
i=0

= @31 [(—=D o, .o Pus s P)F+(—1Y (Do ovs Bjs v Pu) 1,
where /e Kereg_,.

If (Po, ..., Di» ---» Pu) € Kerge_y, i.e. if a certain pair of vertices
is mapped into the same vertex of the complex L, then also

(Pos s Djs ---» Pw) € Kerg?_, and ¢5_184(Po, ..., Ps) = 0. On the
other hand, if (po, ..., Dk, ..., Pa) ¢ Kergg_,, then

P31Pos -oos B o2 Pr) = (@(P0)s 0> PBs > $(PW))
and
N
P2-1(Pos s Djs o5 Pu) = (@(Po), ---» @B ..., @(Pn)-
In view of the equality @(p;) = @(p;) it follows that
@3- 1(Pos s Pis oo os Pu) = (— 1% 298_1(Pos -.v» Pis -++» Pu)
and
@3- 19a(Pos -5 P) = @3- 1 [(— 1o, ..., Ps - PRI+
+@3_ 1 [(=1Y (Do, s Dj» > Pu)}
= (—1*@3_1(Pos s Dis --» P)F
(=12 %12 (Do, -5 Prs -+ »Pn) = 0.
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Under the assumption that ¢(p;) = ¢(p,) for j# k, the left-
hand side of (18) is thus equal to zero; in this case, the vanishing
of the right-hand side is obvious, which proves (18).

It follows from Theorem 2 that the homomorphism ¢S maps
cycles into cycles and boundaries into boundaries, hence it deter-
mines the homomorphism ¢¥: H,(K, «) > H,(L, «'); we call ¢¥
the homomorphism induced by the simplicial map .

We easily observe that for other orientations § and p’ of the
complexes K and L respectively, we have

(19 05" g3 = 3037,
i.e. the diagram

CK, ) ", L, o)
g8 g+

4 (174 l
Cn(K’ ﬁ) > Cn(L’ :3’)

is commutative. Consequently, the homomorphism ¢¥ of the
group H,(K) into the group H,(L) induced by ¢: K — L does
not depend on the choice of orientations « and o' which served
in defining the homology groups of non-oriented complexes.

Simple verification yields

THEOREM 3. By assigning to simplicial complexes their nth
homology groups (n=20,1,2,...) and to simplicial maps the
induced homomorphisms, we define a covariant functor from the
category SC to the category G, i.e. for simplicial maps ¢: K — L
and y: L - M we have

(o)t = vk

and for the identity map : K — K we have

L,f = 11.1"(1() .

§ 5. Chain complexes

The construction of homology groups described in the preceding
section can be split into two stages; more precisely, the functor
which assigns homology groups to simplicial complexes, and
induced homomorphisms to simplicial maps, can be represented
as a composition of two functors. Such a decomposition allows
a more thorough analysis of this functor and leads to computational
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simplifications. Defining the pair of functors, whose composition
yields the homology functor requires introducing a new category.

Definition 1. By a chain complex we shall mean an
infinite sequence

d, On
(20) Coe—Cp < oo <= Cpy = Cpy <

of Abelian groups C, and homomorphisms d,: C, = C,_;, to
be called boundary operators, such that 6,_,0, = O0forn =2, 3, ...
The chain complex (20) will be denoted by C = {C,, 2,}.

Definition 2. A chain homomorphism of a chain complex
C = {C,, 0,} into a chain complex D = {D,, d,} will be defined
as an infinite sequence of homomorphisms f= {f,}, where
fa: C, = D, and the diagram

C, *f—"» D,
|
On P | On
N
Ca-1 1"’ n—1

is commutative, i.e.
@n Jo10n = 0Oufn for nZ=1.

The category whose objects are chain complexes and whose
morphisms are chain homomorphisms will be called the category
of chain complexes, and will be denoted by CC. The composition
of morphisms = {f,}: C > D and g = {g,}: D — E is defined
as the chain homorphism gf = h = {h,}: C — E where h, = g,fu;
the identity morphism of a complex C = {C,, d,} is the sequence
{1¢,}, denoted by 1c.

A morphisms f= {f,} of the category CC will be called
a monomorphisms (epimorphisms, isomorphisms) if every homo-
morphism f, is a monomorphism (epimorphism, isomorphism).
The concept of chain subcomplexes can be carried from the
category G to the category CC.

A complex C = {C,, 9;} is a chain subcomplex of D = {D,, .}
if C, is a subgroup of D, and 9, = 2,|C, for each n.

An example of a chain complex is provided by the sequence
of groups of chains and boundary operators C(K, @)
= {C,(K, @), 3,} of an oriented simplicial complex (K, ).
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Taking another orientation S of the complex K we obtain
a chain complex C(K, ) isomorphic to C(K, o); this means not
only that the corresponding groups of complexes C(K, «) and
C(K, p) are isomorphic, but also that the boundary operators
act in the same manner in both complexes. Thus, we may treat
chain complexes as assigned to non-oriented complexes; the chain
complex assigned to a complex K will be denoted by C(K). It
follows from Theorem 2 of the last section and from formula
(19) that to every simplicial map ¢: K — L corresponds the chain
homomorphism ¢° = {¢3}: C(K) > C(L). We easily note that
if p: K— L and y: L - M are simplicial maps, then (yg)°
= p°@°, and that to the identity map :: K — K corresponds
the identity 1° = lc(]() = {IC,,(K)}-

We thus obtain

THEOREM 1. By assigning to every simplicial complex K the
chain complex C(K) and to every simplicial map ¢: K — L the
chain homomorphism ¢°. C(K)— C(L), we define a covariant
functor from the category SC to the category CC.

As in the case of complexes C(K), for any chain complex
C = {C,, d,} one can define the group of n-dimensional cycles
Z(C)=Kerd, for n =1, Zy(C) = Cp, and the group of n-di-
mensional boundaries B,(C) =1Imd,,,. The equality 6, ,0, =0
implies that B,(C) < Z,(C) for n=0,1,2,...; the quotient
group H,(C) = Z,(C)/B,(C) will be called the nth homology
group of the chain complex C.

It follows from (21) that a chain homomorphism f: C— D
maps cycles into cycles and boundaries into boundaries; hence
for each » it determines f¥: H,(C) - H,(D), the induced homo-
morphism. We easily verify that if f C > D and g: D —» E are
chain homomorphisms, then (gf)¥ = g#*/* and that the identity
I¢: C— C induces the identity (1¢)¥ = lg, ). We thus obtain

THEOREM 2. By assigning to chain complexes their nth homology
groups (n=0,1,2,...) and to the chain homomorphisms the in-
duced homomorphisms of the nth homology groups, we define a co-
variant functor from the category CC to the category G.

It is not difficult to see that the homology functor constructed
in the preceding section is identical with the composition of func-
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tors described in Theorems 1 and 2. The passage from topology
to algebra is described by the first of these functors, while the
second has a purely algebraic character.

Definition 3. Two chain homomorphisms f,g: C - D
where f = {f,}, 8 = {g.}, C = {C,, 8,} and D = {D,, 3,} will be
called chain homotopic, and denoted by f ~ g, if there exists
a sequence of homomorphisms 4 = {4,}, where 4,: C, > D,

orn= 0,1, ... such that

22) Jn—8n = Onp1da+4,_106, for n=1,2,..
and
(23) Jo—8o = 0:14,.

The sequence of homomorphisms A will be called the chain
homotopy between f and g; note that it is not a chain homo-
morphism of C into D, since A4, maps C, into D,,,.

We easily verify that the relation of chain homotopy is reflexive,
symmetric and transitive, i.e. it is an equivalence relation.

THEOREM 3. If chain homomorphisms f,g: C - D are chain
homotopic, then f¥ = g¥ for n=20,1, ...

Proof. Let k be an arbitrary element of the group H,(C)
and z e k; we then have d,z = 0, and in view of (22) and (23)

fn(z) —gn(z) = an+1An(Z)'

Thus, f,(z) ~ gx(z) (mod B,(D)) and f¥(k) = gk(k).

We shall now describe a certain method of obtaining chain
homotopies. This method will play a fundamental role in the
construction of the homology functor from the category P of
polyhedra and continuous mappings to the category G.

A chain complex C = {C,, d,} will be called geometric if all
groups C, are free groups with a finite number of generators,
and for each n a certain system cf%, ..., ¢, of generators of C,
is selected. If in the representation of the boundary Ju.,c*' as
a linear combination of generators ¢}, ..., ¢y, , the generator
¢ appears with a coefficient different fromzero, we write ¢ << ¢j*'.
By assigning to the element ¢ = kyc9+ ... +kpyen, of Co the

mo
integer do(c) = 2 k;, we define a homomorphism of the group C,
i=1

into the group Z of integers.
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A chain homomorphism f: C — D, where C and D are geometric
will be called geometric if do(fo(c)) = do(c) for every c e C,,
i.e. if the diagram

Co __{.(1_) DO
2 o
N T
AR /

is commutative.

Chain complexes assigned to oriented simplicial complexes
are geometric, and so are chain homomorphisms assigned to
simplicial maps.

A geometric chain complex C will be called acyclic, if B,(C)
= Kerd, and H,(C) = 0 for n == 1. From (12) and (15) it follows
that

24) if K is a cone, then C(K, o) is an acyclic complex.

Let f= {f,}: C —> D be a chain homomorphism of geometric
complexes; a carrier of f will be defined as a function assigning
to each generator ¢} of the group C, (for m =0,1,...) a sub-
complex D(cf") = {D,(c["), 2,} of the complex D, where the group
D,(c?) is generated by a certain subset of the distinguished set
of generators of D, (which implies that the operator d, in the
complex D(c") is the restriction of the operator o in D), such
that

25) D(cp) is a subcomplex of D(c]*!) if ¢f < c}*!
and
(26) Su(cl) € Dy(cl).

All the complexes D(c") are geometric chain complexes.

The carrier will be called acyclic if each of the complexes D{(cl")
is acyclic.

THEOREM 4. If C and D are geometric chain complexes, and
f and g are geometric chain homomorphisms of C into D with
a common acyclic carrier, then f and g are chain homotopic.

Proof. Let the function assigning to each generator ¢ of
the group C,, the subcomplex D(c!") of the complex D be an acyclic
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carrier of fand g. We shall define recursively the homomorphisms
A, satisfying (22) and (23). Since f and g are geometric, for each
generator ¢ of C, we have

‘ao(fo(cy)_go(c?)) =0
and since the complex D(cf) is acyclic, there exists an element
Ao(c?) € Dy(cY) such that
@7 So(e))—go(cd) = 0140(c)).

Since the group C, is free, the choice of the element Ay(cy) for
each of its generators determines the homomorphism Aq: Coy — D,
satisfying, in view of (27), condition (23).

Assume that a homomorphism 4,: C, - D,,; is defined for
n < m and satisfies (22) or (23) if n =0, and
(28) A,,(C;') € Du+1 (C'J')

for every genmerator ¢} of the group C,.

Let ¢*! be an arbitrary generator of the group Cp;. The
boundary OmiicT*! is an element of C,, and A,(dmic]*")
is an element of the group D,..;. Moreover, for every ¢f < c7+?
we have An(cf) € Dpiy(cf) © Dpya(c7*1), whence

d; =fm+1("7+1)—gm+1(07'+1) —A(Omss C?“) € Dpyy (C?H)-
If m > 1, then from (22) for » = m we deduce that
Om1(d;) = fu(Oms1 T+ ) —Em(OmsscT*?)
—[fm(am+107+1)—gm(am+16'7'+l)—Am-lamamHC}"“] =0;
on the other hand, if m = 0, relation (23) yields
31("’1‘) = fo(9, c})—g0(31 C})—[fo(31 C})—go(31 C})] =0.
Since the complex D(c7+') is acyclic, there exists an element

Am+1(07+1) € Dm+2(°‘7+1)
such that

(29) f,,,H(cT“)——g,,,H(c?*1)—Am(8m+1 CT“) = am+2Am+1(cT+1)'

Since the group C,,, is free, the choicz of the element 4,,.,(c7+*)
for each of its generators determines the homomorphism
Apyy: Cpyy = Dy, satisfying, in view of (29), relation (22)
for n = m+1. The condition (28) is also satisfied for n = m4-1,
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which completes the construction of the chain homotopy 4 = {4,}
between f and g.
Using Theorem 4 we shall prove

THEOREM 5. If simplicial maps ¢,vy: K — L are contiguous,
then for every n they induce the same homomorphism of the group
H,(K) into the group H,(L).

Proof. Let a« and p be arbitrary orientations of complexes
K and L. For every simplex S € K the simplexes ¢(S) and w(S)
are faces of a certain simplex 7(S) € L. Let us assign to a generator
a(S) of the group C,(K, a) the subcomplex D(a(S)) = C(L(S))
of the complex D = C(L, f), where L(S) is the subcomplex
consisting of all faces of that simplex in L, whose set of vertices
equals the union of the sets of vertices of p(S) and p(S). We note
that in this way we define an acyclic carrier of mappings ¢° and
y°; therefore ¢° &~ y° and ¢¥ = p¥ in virtue of Theorem 3.

§ 6. Homology groups of polyhedra

We shall show now that homology groups of a simplicial
complex depend only on the underlying polyhedron of that com-
plex, and we shall describe homomorphisms of those groups
induced by continuous mappings of polyhedra. This will lead
to defining homology groups of polyhedra.

We start by showing that homology groups of an arbitrary sim-
plicial complex and of its barycentric subdivision are isomorphic.

Suppose that we are given an arbitrary simplicial complex
K and let o be its orientation. We assign an orientation to the
barycentric subdivision K’ by taking as generators of the nth
group of chains decreasing sequences of vertices, i.e. sequences
(6(So), -.., b(S,)) where S, > ... > S,. Denote the orientation
so defined by 8. The simplex S, € K will be called the carrier of the
simplex (b(Sy), ..., b(S,)); we can easily see that b(So) ... b(S,)
< S,. If a simplex Sy € K is the carrier of each of the simplexes
appearing with non-zero coefficient in a certain chain / € C,(K’, 8),
we say that S, is the carrier of that chain.

In the first section we defined a class of simplicial maps of K’
into K, called standard translations; let o: K’ — K be one of them.
It induces the chain homomorphism ¢°: C(K’, f)— C(K,«). We shall



ELEMENTS OF ALGEBRAIC TOPOLOGY 323

now define a chain homomorphism s = {s,}: C(K, «) - C(K’, )
such that s¥* is the inverse of o* This will imply that o* is an
isomorphism.

We define s = {s,} by induction. For n =0, 1, 2, ... we shall
construct a homomorphism s,: C(K, o) = C,(K', f) such that

(30) Sp1On = Osy for n>=1
and
(31) S is the carrier of s,(a(S)) for every

n-dimensional simplex S e K.

The group of zero-dimensional chains of K is a subgroup of
the group of zero-dimensional chains of K’. For s, we take the
embedding, i.c. the monomorphism assigning to an element of
Co(K, o) the same element in Co(K’, ); evidently s, satisfies
condition (31) for n = 0.

Suppose now that homomorphisms s,: C,(K, o) - C,(K', f)
are defined for # < m and satisfy conditions (30) and (31).

Let «(S) be an arbitrary generator of the group Cp.y(K, ).
The chain 3,.,2(S) belongs to the group C,(K, «). By (31) for
n = m, the carrier of any simplex in X’ which appears with a non-
vanishing coefficient in the chain s5,,0,..,2%(S) coincides with a face
of S. Thus, the vertex b(S) can be joined with the chain $,0p..12(S)
and the cone b(S)s,0,.12(S) is a well defined element of the
group C,.,(KX’, §). Putting

32) Smr1(2(S)) = b(S)S Omy1 %(S)
for every generator a(S) of the group C,..(K, ), we define the
homomorphism $,y1: Cppi (K, @) = Cpryy(K', f) satisfying con-
dition (31) for » = m+1. Using (13) we obtain

Omi1Smi1 (“(S)) = S Oy 10(S) —b(S) 0 Sm am+1°‘(S):
which implies that
(33) Omt1 Sme1 (“(S)) = SmIm+10(S)

in view of (30) for n =m if m > 1, or in view of the definition
of 5o and the easily verifiable identity 0,8, = 0 if m = 0. It follows
from (33) that condition (30) holds for » = m-+1, which com-
pletes the construction of the sequence {s,}.
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We shall now make a remark which will be used in the proof
of Theorem 1. Suppose we are given simplicial complexes K and
L and a simplicial map ¢: K — L. If p is a vertex of K joined
with a simplex S, then @(p) either can be joined with ¢(S) or is
one of its vertices. To simplify the formulation of the relation
between chains in K and L we shall treat p as joined with every
oriented simplex «(S) which contains p, and define the cone pa(S)
as the zero of the corresponding group of chains. We note easily
that (under the above convention), if p can be joined with
l e C,,(K), then ¢(p) can be joined with ¢,(/) and

(34) Pa+1(pD) = e g5 ().

TueoreM 1. If o: K' - K is a standard translation and s
= {s,}: C(K, «) - C(K', p) is the chain homomorphism constructed
above, then for every n

(35) oSy = 1C,,(K,a), hence o¥ S,T = lH,,(K,a)
and
(36) s0° & IC(K',p); hence s,’,"o‘,f = IH,.(K’.ﬁ)-

Proof. We shall prove (35) by induction. The validity of o8s,
= l¢ &k follows from the fact that o keeps still all the vertices
of the complex K’ which belong to K.

Suppose that (35) holds for n < m. Let a(S) = (Po, ---» Pms1)
be a generator of the group C,,,(K, «). Using (32), (34) and (35)
for n = m we have

(37) ops15mat (“(S)) = 0941 [0(S)Sm Oms12(S)]
= 0(b(S)) 685m Ims12(S) = 0 (H(S)) Opnsy1 4(S).
Since a(b(S)) = p; for a certain j << m+1, we obtain

m+1

38) 0(B(S)) dms12(S) =3 D) (—1)(Pos -.-s Pis s Prus)

i=0
= (—-l)i(p_prs --',ﬁj’ ---7Pm+l)
= (_1)2j(p09 --~7pm+1) = “(S)

Equations (37) and (38) imply the validity of (35) for n = m+-1,
which completes the proof of the first part of the theorem.
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To prove the second assertion, it suffices to define a common
acyclic carrier of s0° and lcg,p). Let ¢ = (b(So), ..., b(S,)) be
an arbitrary generator of the group C,(K’, §). Denote by S, the
subcomplex of K’ consisting of all the faces of the simplex S, and
take as D(c]") the subcomplex C(Sg, ) of the complex C(K’, f).
Using (31) we easily verify that the function so defined is a carrier
of s0°; the fact that it is also a carrier of l¢k-, ) is obvious. The
acyclicity follows from the fact that the complex Sy is a cone with
vertex b(Sy).

When defining homomorphisms s, we used a certain orientation
of the complex K; one can verify that homomorphisms s, defined
in the same manner for another oricntation o’ of the complex K
satisfy the condition s, = 5,05 It follows that s} can be treated
as a homomorphism of the group H,(K) into the group H,(K’)
since it does not depend on the choice of the orientation, which
served for determining the homology group of the non-oriented
complex K. The same conclusion can be reached from Theorem 1
since the homomorphism s¥* is inverse to the homomorphism
o} induced by a simplicial map, and such homomorphisms do
not depend on orientation.

One considers also compositions of homomorphisms sy¥. If
K is an arbitrary simplicial complex, and K™ is its mth bary-
centric subdivision, then composing the homomorphisms

st: HUK) > H(K), st H(K)-> H,K®), ..,
skt H(K™ D) > H,(K™),
we obtain a homomorphism
sym*: Hy(K) — H,(K™).
Theorem 1 and Theorem 3 of § 4 imply the following

COROLLARY. If o: K" — K is a standard map, and s{™*: H,(K)
— H,(K'™) is the composition of the corresponding homomorphisms
s¥, then for every n

G:S,(,m)* = lH,,(K) and S,(,m)* O',f = lH,,(K("'))-

Suppose now that we are given two simplicial complexes K
and L and a continuous mapping f: |K| — |L|. We shall assign to
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this mapping a homomorphism f,: H,(K)— H,(L)forn=0,1, ...
The definition of f, is illustrated by the following diagram:

S{m* SiR*
— - H (K™ == H(K")

| g”f

Hn(K) -

Let ¢: K™ — L be a simplicial approximation of f, existing by
virtue of the coroliary to Theorem 9 of § 1, and let @, = @¥sim*,
We shall show that the homomorphism of H,(K) into H,(L)
defined in the above manner does not depend on the choice of
a simplicial approximation ¢. Let us consider another simplicial
approximation y: K® — L of f. Without loss of generality we
may assume /> m, ie. [ = m+tk with k > 0. Let o: K& —» K™
be a standard map; from Theorem 8 of § 1 it follows that maps
@o and y are contiguous, whence by Theorem 3 of § 4 and
Theorem 5 of § 5 we have

(39) gxon = (po)y = yi.
From the corollary to Theorem 1 we obtain
(40) . O',TS,(,k)* = IH,,(K("'))-

Using (39) and (40) we get
Yu = PrsO* = prsEsME = gX ok sIO*sF = @rsiM* =g,

which shows that the homomorphism of H,(K) into H,(L) defined
above depends only on f; we shall denote this homomorphism

by f¥.
THEOREM 2. If f: |K| > |L| and g: |L| —» |M|, then

(gf)n :gr? :lk for n20
Proof. The following diagram illustrates the proof:
H,(K) H,(L)
4
c¥ ‘s,(,’”)*
* ; *

¥ ' $ Y
Hy Ky~ S H L) H (M)

s'(l’)*
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Let y: L™ — M be a simplicial approximation of g, and let
@: KO > L™ be a simplicial approximation of the mapping
f: |K] > |L™| = |L|. From Theorem 6 of § 1 it follows that
op, where o: L™ — L is a standard map, is a simplicial appro-
ximation of f, whence

¥ = (op)F s = o¥ p¥s*.

Since g¥ = p¥s{m* it follows from the Corollary to Theorem 1
that

grf¥ = pEsiM* o} pks(* = ek orsD* = (o)t si*,

and we infer that g#f¥ == (gf)¥, since g is a simplicial approxi-
mation of gf (see Theorem 5 of § 1).

Let us also note that for the identity transformation i: [K| - |K|
we have i} = 1y «,for n=10,1, ... Indeed, as a simplicial ap-
proximation of { we can take the identity of K, which is a simpli-
cial map of X into K.

THEOREM 3. If f: |K|— |L| is a homeomorphism, then
f¥: H(K)— H,(L) is an isomorphism for n=20,1, ...

Proof Letg: [L| - |K]| be the inverse of /. Thus, gf and fg
are identity mappings of the polyhedra K| and |L| respectively.
Using Theorem 2 we get

gxfy = (@t = lg, & and fEer = (Ox = lu,w»

which implies that the homomorphism g¥ is inverse to f¥, and
f¥* is an isomorphism. '

It follows from Theorem 3 that if the underlying polyhedra
of two complexes are homeomorphic, then the complexes have
the same homology groups. This allows us to define homology
groups of polyhedra and, more generally, homology groups of
spaces homeomorphic with polyhedra. A topological space ho-
meomorphic to a polyhedron will be called a curvilinear polyhedron
(or a triangulable space). Thus, X is a curvilinear polyhedron if, and
only if, there exists a simplicial complex K and a homeomorphism
t: |K|— X. The pair (K, t) will be called a triangulation of the
triangulable space X. Triangulable spaces and their continuous
maps form the category TS. The nth homology group H,(X) of
a triangulable space X will be defined as the group H,(K) where
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(K, t) is a certain triangulation of X. Theorem 3 implies that this
definition is independent of the choice of triangulation, for if
(K., t,) is another triangulation of X, then (¢7!£)¥ is an isomor-
phism of the group H,(K) onto the group H,(K,).

Suppose now that we are given two curvilinear polyhedra X
and Y and let (K, ¢) and (L, u) be their triangulations; moreover,
let f X > Y be an arbitrary continuous mapping. The map
u'ft: |K| — |L| induces a homomorphism of the group H,(K) into
the group H,(L) forn =0,1,2, ... This homomorphism, to be de-
noted by f*, will be regarded as a homomorphism of H,(X) into
H,(Y) and will be called the homomorphism induced by f. We
easily note that for other triangulations (Kj, #,) and (L, u,) of
the spaces X and Y the diagram

(urft)¥
- H,(L,)
T

(ur'u)}

Hn(Kl)
1

Gk

is commutative, i.e. the homomorphism f,: H,(X)— H,(Y)
does not depend on the choice of the triangulations of the spaces
X and ¥, which served for its definition.

From Theorem 2 and the above definition we obtain

THEOREM 4. By assigning to triangulable spaces the nth homology
group (n =0,1,... ) and to continuous mappings of triangulable
spaces the induced homomorphisms, we define a covariant functor
from the category TS to the category G.

ExampLE 1. The unit n-ball &£, of the space " is homeomorphic
to the closurc of the n-dimensional simplex, whence its triangula-
tion is given by the complex K" consisting of all the faces of that
simplex (together with a certain homeomorphism). Therefore,
by (16) we have

“n H(xt)=0 for m=1, Hy(X)~Z.

A triangulation of the n-sphere &,, i.e. the surface of the ball
A 'ny1, s given by the complex described in Example 4 of § 4
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(together with a certain homeomorphism). Thus, in view of (17)
we have for n > 1

(42) H(%,) ~ Hy (&) ~Z and
H,(%,) =0 for other m.

THEOREM 5. Homotopic continuous mappings of triangulable
spaces induce the same homomorphism of homology groups.

Proof. It suffices to prove that if f, g: |K| — |L| are homo-
topic, then f* = g* for every n. Note that if two maps of K| into
|L| have a common simplicial approximation, then they induce
the same homomorphism of H,(K) into H,(L), since this simpli-
cial approximation can be used for defining homomorphisms
induced by those maps.

Let us take a continuous function h: |K|{XJ# — |L| satisfying
the condition

h(x,0)=fx) and h(x,1)=g(x) for xelK].

By the compactness of the Cartesian product |K|X.# and by
Theorem 4 of § 5, Chapter XVI, for every ¢ >0 there exist
numbers 0 =1¢y < ... <t,=1 such that |fi—fi_y| <e for
i=1,...,m where fi(x) = h(x,t). Taking as ¢ the number
satisfying the assertion of Theorem 9 of § 1, we obtain

=l =0Un=..=(ndt=Ur=2gr
forn=20,1, ...

ExaMmpLE 2. It follows from Theorem 5 that the identity
[+ &%, ~> &, and a constant mapping g: ¥, > &, are not
homotopic for n >> 1 (for n = 0 this fact is evident). As we know
(see p. 270 and Exercise 12, Chapter XX), this is equivalent to the
fixed-point theorem. Indeed, g = g"g’, where g': &, - {c}
andg”: {c} - &,, whence g* = g,'*g.* is the zero homomorphism
(since g,* and g;"* are zero homomorphisms, in view of the equality
H,(c) = 0), while f* =13

§ 7. Homology groups with coefficients

We shall now define homology groups of triangulable spaces
with coefficients from an arbitrary Abelian group, and we shall
assign homomorphisms of these groups to continuous maps
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of triangulable spaces. Different homology groups will correspond
to different groups of coefficients, thus enlarging the number
of algebraic invariants corresponding to triangulable spaces.
The construction of homology groups with coefficients will
consist in applying the tensor product functor to a chain complex
before computing homology groups of this complex.

We start from the definition of the tensor product functor
from the category G into itself.

Let G be a fixed Abelian group. For every group A from the
category G, denote by W(4, G) the free group generated by all
pairs of the form (a, g) with ae 4, g e G, and by R(4, G) the
smallest subgroup of W(A4, G) containing all elements of the form

(43)  (a:+a,8)—(a1,8)—(a;,8) and

(@, 8:1+82)—(a, g1)—(a, &).
The existence of such a subgroup follows from the fact that the
intersection of an arbitrary family of subgroups of a given group
is a subgroup of this group.

By the tensor product A ® G we shall understand the quotient
group W(4, G)/R(A, G); the image of the generator (a, g) under
the natural epimorphism p will be denoted by a®g. Since elements
of the form (43) are mapped into the zero of the tensor product,
we have
(44) (a1ta)®g=a,®gt+a,®g and

a® (g11+g)=a®g,+a®g;.

It follows from (44) that for any integer n > 0 we have
(45) na®g=nla®g) and a®Rng=n@e®g));
in particular 0 ® g = 0 == ¢ ® 0, which in turn implies the vali-
dity of (45) for negative n.

THEOREM 1. For any group G

ZR®G ~G.

Proof. Consider the homomorphism f of the group W(Z, G)

into G defined by assigning the element kg € G to the generator

(k, g). The homomorphism f vanishes on elements of the form
(43), whence R(Z, G) = Kerf, and the formula

f'p(x) = f(x)
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defines a homomorphism f* of Z®G into G such that f'(k®g)
= kg. Since f'(1®g) = g, we conclude that f’ is an epimorphism.
Every element x of the group Z®G is of the form

my(ny @ g+ ... +m(n, @ g1)

and in view of (45) and (44) we get x = 1®g, where g = mn, g}
+ g If f/(x) =0, then g = 0 and x = 0, hence [’ is
also a monomorphism.

Suppose we are given a homomorphism f: 4 — B. By assigning
the element (f(a), g) € W(B, G) to the generator (a, g) € W(4, G)
we define a homomorphism, to be denoted by f, of the free group
W(4, G) into the group W(B,G). We note immediately that
f maps elements of the form (43) into elements of the same form
in W(B, G); consequently, j_"(R(A, G)) = R(B, G) and an induced
homomorphism f': 4 ® G - B® G is defined such that

fp(x) = pf(x);
in particular, f'(@® g) =fa)® g.
" By simple checking we obtain

THEOREM 2. By assigning to every group A the tensor product
A ® G and to every homomorphism f: A — B the homomorphism
[t A® G > B® G we define a covariant functor from the category
G into itself. Moreover, if f, h: A — B, then (f+th) =f'LH.

The tensor product functor can be applied also to chain com-
plexes. Suppose we are given a chain complex C = {C,, 9,}. The
sequence {C, Q G, d,} of groups C,® G and homomorphisms
0,: C,® G— C,_ ® G is a chain complex, since, by Theorem 2,
On_10n = (0y_10,)’ is the zero homomorphism. This complex
will be called the tensor product of the complex C by G, and will
be denoted by C ® G. We can easily see that if s = {s,} is a chain
homomorphism of C into D, then s’ = {s;} is a chain homomor-
phism of C® G into D® G, and that in this manner we define
a covariant functor from category CC into itself. _

Composing the functor described in Theorem 1 of § 5 with
the tensor product functor, and then with the functor described
in Theorem 2 of § 5, we obtain a covariant functor from the
category SC to the category G. This functor assigns the group
H,(K; G) = H,,(C(K) ® G) to any complex K and the homomor-
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phism ¢;'*: H,(K; G) - H,(L; G) to the simplicial map ¢: K — L.
The group H,(K:G) will be called the nth homology group of
K with coefficients from G, while the homomorphism ¢;'*, usually
denoted shortly by ¢, is called the induced homomorphism.

ExAMPLE. Let us compute the homology groups with coefficients
from G for the simplicial complex K consisting of a single vertex p.
We easily note that C,(K) =0 for n>> 1 and Co(K) ~ Z, hence
all homomorphisms 8, are zero homomorphisms. After taking
the tensor product with the group G we have C,(K)® G =0
for n > 1, while Co(K)® G = G by Theorem 1; the homomor-
phisms &, are of course zero homomorphisms. It follows that
H,(K;G)=0 for n>>1 and Hye(K; G) ~ G.

The construction of homology groups with coefficients from
a group G for triangulable spaces and of homomorphisms of
those groups induced by continuous mappings is analogous to
the construction shown in § 6. We shall merely sketch the
main stages of this construction without going into detailed proof,
which would merely repeat the computations of the preceding
section.

To begin with, we show that homology groups with coefficients
from G of a complex K and of its barycentric subdivision are
isomorphic. We consider chain complexes C(K)® Gand C(K')® G
and chain homomorphisms ¢°: C(K')® G —» C(K)® G and
s': C(K)® G- C(K)® G. The fact that ¢°'s’ is the identity
is a consequence of the fact that the tensor product is a functor;
the fact that s'¢°" is chain homotopic to identity follows from the
fact that, in view of the last assertion of Theorem 2, the tensor
product functor maps chain homotopies into chain homotopies.

Theorem 1 of § 6 and its corollary remain, therefore, valid
for homology groups with coefficients. This allows us to assign
a homomorphism f¥: H,(K; G) - H,L; G) to every continuous
mapping f: |K| — [L|. Next, we prove theorems corresponding to
Theorems 2 and 3 of § 6 for homologies of simplicial complexes
with coefficients. Using these theorems we define the functor
which assigns the group H,(X; G) to the triangulable space X,
and the homomorphism f*: H,(X;G) - H,(Y; G) to the con-
tinuous mapping f: X — Y. We can also prove a theorem corre-
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sponding to Theorem 5, which asserts that for a pair of homo-
topic mappings f, g: X — Y the homomorphisms f* and g¥ of the
group H,(X; G) into H,(Y; G) coincide.

From the above example it follows that the Oth homology
group of a point with coefficients from G is the group G. There-
fore the homology functors with coefficients differ for different
groups of coefficients. Note also that there exists spaces for which
some homology groups without coefficients are zero groups,
but groups with suitably chosen coefficients are non-zero groups
(see Exercise 15).

One can easily show that the group G ® Z is isomorphic to
G and that under identification of groups G and G ® Z, and
H and H® Z the homomorphisms f: G- H and f': G® Z
— H® Z are identified (the proof is similar to that of Theorem 1).
It follows that homology groups defined in §§ 4 and 6 are identical
with homology groups with integer coefficients.

§ 8. Cohomology groups

We shall define one more functor from the category of trian-
gulable spaces to the category of Abelian groups, namely cohomo-
logy groups with coefficients from a group G. The construction
of this functor, as in the case of the construction of homology
groups with coefficients, consists in applying a certain functor
to chain complexes before computing homology groups. Unlike
the functors described in the preceding sections, the functor
introduced in this section will be contravariant.

We shall start from defining the contravariant functor Hom
from the category G into itself.

Let G be a fixed Abelian group. For every group 4 from the
category G denote by Hom(A4, G) the set of all homomorphisms
of A into G. With the addition of homomorphisms defined by
formula (7) the set Hom(4, G) is an Abelian group; the role
of zero is played by the zero homomorphism of A into G. The
group Hom(4, G) will be called the group of homomorphisms
of 4 into G.

THEOREM 1. For any group G

Hom(Z,G) ~ G.
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Proof. Since Z is the free group generated by the number 1,
each homomorphism of Z into G is uniquely determined by its
value at 1, and by assigning an arbitrary element of G to 1 we
define a certain homomorphism. We easily verify that the corre-
spondence between fe Hom(Z, G) and f(1) e G establishes the
isomorphism between these groups.

Suppose we are given a homomorphism f: 4 — B. By assigning
to the element g € Hom(B, G) the element f’(g) e Hom(4, G),
defined as

(46) [ (@)(a) = gf(a)
we define a homomorphism f°: Hom(B, G) - Hom(4, G). In-
deed
[f’(g1+82)] (@) = (g:+22)f(a) = g1 f(a)+g.f(a)
= [ (g1 @+[f(g2)] (@,
ie.
f(g1+g2) =1 (g)+f(g2).

THEOREM 2. By assigning the group of homomorphisms Hom(A4, G)
to every group A, and the homomorphism f’: Hom(B, G)
— Hom(4, G) to every homomorphism > A — B we define a con-
travariant functor from the category G into itself. Moreover,
if f, h: A> B, then (fL+hy=f+n.

Proof. From (46) it follows immediately that 13 = 1y, (4, 6)-
If f: A-> B and h: B— C are homomorphisms, then for
g € Hom(C, G) we have

() () () = ghf(a) = [ (D)f(@) = [f'F ()] (a),

ie.
By =fF.
Finally,
[(f£hY (8))(a) = g(f+h) (a) = gf(@)Lgh(@)
= [ (@I@=x (),
ie.

(1R (8) = (@)K (g) and (fLh) =[f"1h.
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The functor Hom can also be applied to chain complexes;
it leads from the category CC to a certain category which will
be described below.

Definition 1. By a cochain complex we shall mean an
infinite sequence

a2 o
C)) C'>Cls .. mC1Cr> ...
of Abelian groups C" and homomorphisms 8": C"~! — C” called
coboundary operators, such that 6"6"!=0 for n=2,3,...
The cochain complex (47) will be denoted by C = {C~, §"}.

Definition 2. A cochain homomorphism of cochain complex
C = {C", 6"} into a cochain complex D = {D", §"} will be defined
as an infinite sequence of homomorphisms f = {f"}, where
f* C"— D" and the diagram

fn
c" > D"
A A
6:1 611
fn—l
Ccn-1 > Dn—l

is commutative, i.e.
(48) fron =41 for n>=1.

The category whose objects are cochain complexes, and whose
morphisms are cochain homomorphisms will be called the category
of cochain complexes, and will be denoted by CCC. The composi-
tion of morphisms, and the identity morphism are defined as
in the category CC.

Given a cochain complex C = {C*, 8"}, the group of n-dimensional
cocycles will be defined as the groups Z"(C) = Ker§"+*, and the
group of n-dimensional coboundaries will be defined as B"(C)
=1Iméd"* for n>=1; the group of O-dimensional coboundaries
B°(C) will be defined as the zero group. The identity §"6"~! =0
implies that B*(C) « Z"(C) for n =0, 1, ...; the quotient group
H"(C)= Z*(C)/B"(C) will be called the nth cohomology group
of the cochain complex C.

It follows from (48) that a cochain homomorphism f: C —» D
maps cocycles into cocycles and coboundaries into coboundaries;
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thus, it determines for every n, the induced homomorphismf*,: H*(C)
— H"(D). The following theorem holds:

THEOREM 3. By assigning the nth cohomology groups to cochain
complexes, and the induced homomorphisms of those groups to
cochain homomorphisms, we define a covariant functor from the
category CCC to the category G.

Definition 3. Two cochain homomorphisms f, g: C - D
where f= {f"}, g={g"},C={C" 6"} and D = {D", 6"} will
be called cochain homotopic, and denoted by f ~ g, if there exists
a sequence of homomorphisms 4 = {4"} where 4": C"+! —» D"
for n=20,1,2, ... such that

49 fr—g"= oAt A" for n=1,2,..
and
(50) FO—g° = A5,
The sequence of homomorphisms A will be called a cochain

homotopy between f and g.
We easily prove

THEOREM 4. If cochain homomorphisms f, g: C — D are cochain
homotopic, then ff =gy for n=0,1, ...

The functor Hom applied to a chain complex yields a certain
cochain complex. Suppose we are given a chain complex
C = {C,, 9,}. The sequence {C", 6"} where C" = Hom(C,, G)
and 8,= J) is a cochain complex, since §"6"~! = 239;_, =(0,_19,)’
is the zero homomorphism. This complex will be denoted by
Hom(C, G). We easily verify that if s = {s,} is a chain homomor-
phism of C into D, then s’ = {s}} is a cochain homomorphism
of Hom(D, G) into Hom(C, G) and that the mapping defined
above is a contravariant functor from the category CC to the
category CCC.

Composing the functor described in Theorem 1 of § 5 with
functor Hom, and then with the functor described in Theorem
3, we obtain a contravariant functor from the category SC to
the category G; the group H"(K; G) = H'(Hom(C(K), G)) is
assigned to any simplicial complex K, and the homomorphism
p3": H*(L; Gy » H'(K; G) is assigned to any simplicial map
¢: K — L. The group H"(K; G) will be called the nth cohomology
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group of K with coefficients from G, and the homomorphism
O>n

%", denoted shortly by ¢}, will be called the induced homo-
morphism.

ExAMPLE. We shall determine the cohomology groups with
coefficients from G of the simplicial complex K consisting of
a single vertex p. We know that C,(K) =0forn =1, Co(K) =~ Z
and the homomorphisms ¢, are zero homomorphisms. After
applying the functor Hom we obtain Hom(C,(K), G) =0 for
n > 1, while Hom(Co(K), G) = G in virtue of Theorem 1; clearly
the homomorphisms 8" = 9, are zero homomorphisms. It follows
that H*(K; Gy =0 forn>1 and HYK;G) =~ G.

The construction of cohomology groups with coefficients from
G for triangulable spaces, and of homomorphisms of those groups
induced by continuous mappings is analogous to the construc-
tion presented in § 7. We shall merely sketch the main steps
of this construction.

To begin with, we show that cohomology groups with coeffi-
cients from G of a complex K and of its barycentric subdivision K’,
are isomorphic. We consider cochain complexes Hom(C(K), G)
and Hom(C(K"), G) and cochain homomorphisms ¢°’: Hom(C(K),
G) - Hom(C(K'), G) and s’: Hom(C(K"), G) — Hom(C(K), G).
Since Hom is a functor, s°¢° is the identity; next, ¢°’s’ is cochain
homotopic with the identity, since (in view of the last assertion
of Theorem 3) the functor Hom maps chain homotopies into
chain homotopies.

We leave it to the reader to formulate a corollary, corresponding
to the corollary to Theorem 1 of § 6, which permits the assigning
of a homomorphism f*: H(L; G) - H"(K; G) to every conti-
nuous mapping f: |K|— |L|. Next we prove theorems correspond-
ing to Theorems 2 and 3 of § 6 for cohomologies of simplicial com-
plexes; using those theorems we define a functor which assigns
to the triangulable space X the group H"(X; G) and to the map-
ping f: X > Y the homomorphism f%: H"(Y; G) - H"X, G).
One can also prove the theorem corresponding to Theorem 5
of § 6, which asserts that for a pair of homotopic mappings
f, g1 X — Y the homomorphisms /7 and g% of the group H*(Y, G)
into H"(X, G) are identical.
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Exercises

1. Show that every simplex determines its vertices, i.e. that if po ... p,
= g ... gy, then the sets {po, ..., Pn} and {4o, -.., g5} coincide.
Hint. Every point of the closure of a simplex S other than one of its ver-

tices is an interior point of some segment contained in S.

2. Show that the simplicial subdivision of the set S defined in Chapter XX
forms a simplicial complex, i.e. show that it contains all faces of its simplexes.

3. Two homomorphisms f; and f: such that

Lo S
Gl-—)Gz—>G3

are said to form an exact sequence, if the group f,(G),) is the kernel of f;.
Assuming that f; and f, form an exact sequence, show that:
1°. If G reduces to the zero element, then f; is a monomorphism.
2°, If G; reduces to the zero element, then f; is an epimorphism.

4. More generally, we say that a given (finite or infinite) sequence of
homomorphisms is exact, if every successive triple of its elements forms an
exact sequence.

Show that the following sequence of homomorphisms is exact:

i 4
0—+Gy—>G—> GGy, —~0,

where i denotes the identity (defined on elements of a subgroup G, of G)
and p is the natural epimorphism of G onto G/G,.

5. The Cartesian product [[F; of any family of groups F;,te T (see
t

Chapter 1V, § 8) becomes a group if we define the addition of elements
fand g of this product (called the direct product of groups F;) by the formula

h=f+tg) = N\t = fi+gn.
Prove that

19, The zero element of the group J F, is the function f equal to zero
for every re T.

20, {—f), = —f; for every te T.
3°. The projection f— f; is a homomorphism mapping JIF; onto F,.
1

6. Suppose we are given an inverse system {T, F, ¢} (see Chapter VII,
§ 5), where for cach te T, F, is a group, and qﬁ(‘, is a homomorphism:

(pf;: F,—»F, for t<t,.
Show that the limit of this system, to be denoted by Lim{T, F, ¢}, is
a subgroup of the group JTF,.
t
7. Show that if T is the set of all positive integers, Fr+1 < F, and tp;',.

is the identity for n> m, then the elements of the limit Lim are constant

—

functions with values in the intersection of the sets F,.
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8. Let T be a directed set, let F; be an Abelian group for every ¢t e T, and
let tp§0‘ be a homomorphism

tp:;: F,—>F, for 1, <t,.
The system {T, F, ¢} will be called direct, if
‘P: = 1Ff,, ‘P:i?’:; = ‘P;g for th <t <t,.

The limit Lim{T, F, ¢} is defined as follows: the elements of this limit

are sets obtained by including to the same set two elements x ¢ F; and x* & Fya
if there exists ¢, such that ¢ < 15, t* < £y and zp;" x) = q)f,.," (x).
Addition of these sets is defined as follows: let x; € X;e Lim, where x; ¢ F; j

for j=0,1, let to < t2, 1, < 12 and let [p2(x0) + @2 (x)]e X;. In this
case we put X; = Xo+X;.
Prove that according to the above definition, Lim is an Abelian group.

—_—
9. Show that if T'is the set of all positive integers, F, < Fy.1 and ¢p is the
identity for m < n, then Lim consists of one-point sets, with elements from

the union of sets F,.

10. The definition of connectedness of a complex leads in a natural way
to the definition of a component of a complex. Show that the homology
groups of a complex are equal to direct sums of the corresponding homology
groups of its components.

Prove analogous theorems for homology groups with coefficients and
for cohomology groups.

11. The complex K consists of all segments S, = pop;, Sz = PiP2y --.»
Sm = Pm-1Pm and vertices po, P1, -.., Pm Of the polygonal line L (Fig. 22).

Let the chain z=k;S,+k2S2+ ... +k,Sn be a cycle. Show that
ki=k,=..=k,=0,

Py P Pm

Fig. 22 Fic. 23

12. The complex K consists of all the segments and vertices of the polygonal
line L presented in Fig. 23.

We orient the segments of L in the manner shown in Fig. 23. Denote the
one-dimensional simplexes obtained in this way by Sy, ..., Ss.



340 SET THEORY AND TOPOLOGY

Prove that
(a) Every chain of the form
8
0 k> S
i=0

is a cycle.

(b) Every one-dimensional cycle of the complex K is of the form (i).

(c) From (a) and (b) deduce that the first homology group of K is isomorphic
to the group of integers.

13. The complex K consists of all the segments and vertices of two polygonal
lines L,, L, with one common vertex (Fig. 24). The segments of the complex

th th th
1
i W 7 W 1
=3 =~ 1
ty tg te
FiG. 24 Fic. 25

K are oriented as shown in Fig. 24; we denote them by S,; or S»;, the
indices 1 and 2 referring to lines L; and L,. Put

4 4
Zl=2 51,', Zy = ZSZ,'.
i=1 i=1

Prove that
(a) Every one-dimensional cycle z of the complex K is of the form
(il) z=k121+k222.

(b) Every chain of the form (ii) is a cycle.

Deduce the structure of the homology groups of the complex K from (a)
and (b).

14. Fig. 25 with the sides #4 and #§ of the rectangle joined together represents
a triangulation of the Mébius band. The orientation of the triangles of this
triangulation, and also of the oriented segments t} is given in the figure.
Putting

o
I
[NTES
-,
A ¥
N
I
i
1
-

show that
ol = z+25}.

15. A triangulation of the projective plane can be obtained as follows:
consider the triangulation of the rectangle presented in Fig. 26, consisting of 24
oriented triangles ¢%,r2,...,¢2,, of 12 segments fi,t}, ..., t{2, of interior
segments, and of vertices; then join #] with #3, ¢} with 3, t3 with ¢§, t1 with
tio, t3 with ¢}, and 3 with ¢},.
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Instead of 12 segments t},¢1, ...,¢}, we obtain only 6, denoting them
as before by 11, ...,¢3.
In this manner we obtained a triangulation of the projective plane. Putting

% 6
11
=54, =X
i=1 j=1

show that 0,/ = 2z, and that z is not a boundary of any two-dimensional
chain of K.

1 1 1

g g 4
1 1
t10‘ tg
ty At
1 1
o) Mo

"] i A

t, f f

FIG. 26

Hint. If 8,1, = z, then I, = kl.

Compute the homology groups of the projective plane and its homology
groups with coefficients from the group Z, (i.e. the quotient group Z/2Z,
where 2Z denotes the group of even numbers).

16. Show that if a group H is the direct sum of m copies of the group Z,
then the group H @ G is the direct sum of m copies of the group G.

17. Prove that if K is a non-empty connected complex, then Ho(K; G) = G.

18. Show that if the group H is the direct sum of m copies of the group Z,
then the group Hom(H, G) is the direct sum of m copies of the group G.

19. Show that if K is a non-empty connected complex, then H*(K; G) = G.

20. Let {Go, ..., G,} be a system of open sets in an (arbitrary) space X.
Let po, ..., P, be a system of points of a Euclidean space such that

*) Gior\...nGik#O

implies linear independence of points p;, ..., Piy- The complex N consisting
of simplexes p;, ... p;; such that (¥) holds will be called the nerve of the system
{Go, -.., Gy}.

Prove that

1°.If X = py ... pn (where the vertices of the simplex in question are linearly
independent), and if G; denotes the star of p;, then the nerve of the system
{Go, ..., G,} is given by the complex consisting of all the faces of the simplex
Do -+ Pne
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2°, If X is a compact n-dimensional space, then for every ¢ > 0 there exists
a continuous mapping f of this space into an n-dimensional polyhedron N
such that 6[f~1(»)] < ¢ for every ye N.

Hint. Consider the nerve of the cover given in the theorem from § 3,
Chapter XIX, and the kappa mapping from Exercise 3, Chapter XX.

21. Let {Go, ..., Gp} and {Hy, ..., H,} be two covers of X consisting of
open non-empty sets. Moreover, suppose that the second cover is a refinement
of the first one (i.e. for every j < n there exists an i < m such that H; < G)).

Suppose that a complex K with vertices po, ..., pm is the nerve of the sys-
tem {Gq, ..., Gm}, and a complex L with vertices gq, ..., q, is the nerve of the
system {Hy, ..., Hy}. Let f be the function assigning to every j < n a number
f(j) < m such that

Hj < Gy
Show that the function 7z defined by the condition
(gj) = Pr()

is a simplicial map of L into K (such a simplicial map is called a prajection).

Remark. The concept of homology group for an arbitrary compact
space X is introduced as follows. Let T be the family of all finite (open) covers
of X. This family is directed by the relation <, where 4 < B mean> that B
is a refinement of 4. For each 4 ¢ T denote by K 4 the nerve of A (see Exercise
20), and let =& be the projection of K into K4 (this projection is a simplicial
map). Finally, for a given n, denote by pﬁ the homomorphism of the group
H,(Kp) into H,(K ) induced by =5,

One can show that the system {T, H,(K ), p} is an inverse system. The
limit of this system is called the nth homology group of the space X.

In an analogous manner one defines the cohomology groups of compact
spaces, using direct systems instead of inverse ones (see Exercise 8).
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