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FOREWORD TO THE FIRST ENGLISH EDITION 

The ideas and methods of set theory and topology penetrate 
modern mathematics. It is no wonder then that the elements of 
these two mathematical disciplines are now an indispensable 
part of basic mathematical training. Concepts such as the union 
and intersection of sets, countability, closed set, metric space, and 
homeomorphic mapping are now classical notions in the whole 
framework of mathematics. 

The purpose of the present volume is to give an accessible 
presentation of the fundamental concepts of set theory and topo­
logy; special emphasis being placed on presenting the material 
from the viewpoint of its applicability to analysis, geometry, and 
other branches of mathematics such as probability theory and 
algebra. Consequently, results important for set theory and topo­
logy but not having close connections with other branches of 
mathematics, are given a minor role or are omitted entirely. Such 
topics are, for instance, investigations on foundations, the theory 
of alephs, and the theory of curves. 

The main body of the book is an introduction to set theory 
and topology, intended for the beginner. Sections marked with 
an asterisk cover either more complicated topics or points which 
are frequently omitted in a first course; this holds also for some 
exercises which allow the reader to get acquainted with many 
applications and some important results which could not be 
included in the text without unduly expanding it. Many new 
exercises not contained in the Polish edition have been included 
here. 

I take great pleasure in thanking Professor J. Jaworowski and 
Dr. A. Granas for their cooperation in preparing the Polish edition 
and to thank also Professors A. Mostowski and R. Sikorski, 
Dr. S. Mrowka, Mr. R. Engelking and Dr. A. Schinzel for nu­
merous comments which helped me to improve the original manu-
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12 FOREWORD TO THE FIRST ENGLISH EDITION 

script. Also, my thanks go to Mr. Leo F. Boron and to Mr. A.H. 
Robinson for preparing the present text for English-speaking 
students of mathematics. 

KAZIMIERZ KURATOWSKI 
Warsaw 
September 1960 



FOREWORD TO THE SECOND ENGLISH 
EDITION 

Since the first English edition appeared, set theory and point-
set topology have developed to such an extent that the author 
found it necessary to modify in many points the previous edition. 
This was done partially in the Polish edition (1965) and in the 
French edition (1966). 

The most essential changes concern the second part of this 
book (devoted to topology). However, there are also changes 
worth noticing in the first part (on set theory). 

The concepts of inverse limit, of lattice, of ideal, of filter, of 
a commutative diagram, and of a cartesian product of an arbitrary 
number of factors are considered. A slightly deeper insight into 
the axioms of set theory was needed; in particular, the notion of 
a class (in the sense of Bernays) is mentioned (and later applied, 
mainly in connection with the concept of category used in the 
Supplement). 

In the theory of ordering relations, more emphasis was put on 
what was previously called partial ordering. This is now called, 
more concisely, ordering, and this change of terminology seems 
to be more appropriate to common use. 

For the same reason, some notations have been changed. In 
particular, the Lebesgue notation Εχφ(χ) has been replaced by 
{x: φ(χ)}; the union of members of a family A of sets is denoted 
by U ^ J and the intersection by O A. 

The changes in the second part of the book are more essential. 
In the first edition, this part of the book was chiefly devoted to 
the study of metric spaces. In this second edition, the general 
topological spaces form its main subject. Consequently, more 
than a half of the second part had to be written anew. It contains 
new topics which were not considered in the first edition, such as 
cartesian products of topological spaces, the Cech-Stone com-

13 



14 FOREWORD TO THE SECOND ENGLISH EDITION 

pactification, quotient-spaces, completely regular spaces, quasi-
components, and a large number of exercises have been added. 

In Chapter XX, on simplexes, more material will be found on 
simplicial mappings, on the nerve of a cover and related problems. 

Finally, the rather short Chapter XXI, on complexes, chains 
and homologies, has been replaced by a much more extensive 
Supplement on the elements of algebraic topology. This Supple­
ment, written by Professor Engelking, will certainly be a very 
valuable complement to my book. 

I have received considerable help from the persons mentioned 
in the Foreword to the first edition and also from the young ladies 
Dr. Karfowicz and Dr. Vuilleumier. To all of them go my heartiest 
thanks. 

KAZIMIERZ KURATOWSKI 
Warsaw 
October 1968 



INTRODUCTION TO PART I 

The concept of a set is one of the most fundamental and most 
frequently used mathematical concepts. In every domain of math­
ematics we have to deal with sets such as the set of positive 
integers, the set of complex numbers, the set of points of a circle, 
the set of continuous functions, the set of integrable functions, 
and so forth. 

The object of set theory is to investigate the properties of sets 
from the most general point of view; generality is an essential 
aspect of the theory of sets. In geometry we consider sets whose 
elements are points, in arithmetic we consider sets whose elements 
are numbers, in the calculus of variations we deal with sets of 
functions or curves; on the other hand, in the theory of sets we 
are concerned with the general properties of sets independently 
of the nature of the elements which comprise these sets. This 
will be made clear by several examples which we shall give here 
and by a brief overall view of the contents of the first part of this 
volume. 

In Chapter II we shall consider operations on sets which are 
analogous to arithmetic operations: for every pair of sets A and B 
we shall form their union A u By i.e. the set composed of all 
elements of the set A and all elements of the set B; we shall also 
form the intersection A n B of the sets A and B, i.e. the set of all 
elements common to the sets A and B. These operations have, 
in a certain sense, an algebraic character, e.g. they have the pro­
perties of commutativity, associativity and distributivity. It is 
clear that these properties do not depend on whether these sets 
consist of numbers, points or other mathematical objects; they 
are general properties of sets and therefore the investigation of 
these properties belongs to the realm of set theory. 

In Chapter III we consider another operation, called cartesian 
multiplication. For two given sets X and Y we denote by XX Y 
the set of all pairs of elements (x, j>> in which the first belongs 

17 



18 [SET THEORY AND TOPOLOGY 

to the set X and the second to the set Y. Thus, e.g. if X and Y 
denote the set of real numbers then Xx Y is the plane (whence 
the name "cartesian" product in honour of the great French 
mathematician Descartes (1596-1650), who, treating the plane as 
a set of pairs of real numbers, initiated a new branch of mathe­
matics, called analytic geometry). The computational properties 
of cartesian multiplication in connection with the operations 
on sets mentioned above are given in Chapter III. 

The concept of cartesian product allows us to define the concept 
of a. function (or a mapping) in a completely general way. We shall 
concern ourselves with the concept of function in Chapter IV with 
emphasis on set-valued mappings. In the same chapter families 
of sets (in particular, Borel families) are considered. 

An especially important role in the theory of sets is played by 
the one-to-one functions. These are functions which map the set 
X onto the set Y so that to every two distinct elements of the set 
X there correspond two distinct elements of the set Y (and then the 
inverse function with respect to the given function, which maps 
the set Y onto the set X9 is also one-to-one). If there exists such 
a one-to-one mapping of the set X onto the set Y we say that these 
sets are of equal power. The equality of powers is the generalization 
of the idea of equal number of elements; the significance of this 
generalization depends first of all on the fact that it can be applied 
to infinite as well as to finite sets. For example, it is easy to see 
that the set of all even numbers has the same power as the set of 
all odd numbers; on the other hand, the set of all real numbers 
does not have the same power as the set of all natural numbers—a 
fact which is not immediately obvious. Hence, we can—in some 
sense—classify infinite sets with respect to their power. We can 
also, thanks to this, extend the sequence of natural numbers, 
introducing numbers which characterize the power of infinite 
sets (called the cardinal numbers); in particular, to sets having 
the same power as the set of all natural numbers (or the countably 
infinite sets) we assign the cardinal number a, to the set of all real 
numbers we assign the number c (the power of the continuum). 
It turns out that there is an infinite number of infinite cardinal 
numbers. However, in the applications of set theory to other 
branches of mathematics an essential role is played by only two 
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of them: a and c. So we also limit ourselves above all to the investi­
gation of these two numbers. This forms the content of Chapters 
V and VI. 

Chapter VII is devoted to ordered sets such as the set of all 
subsets of a given set (ordered by the relation of inclusion). Among 
the ordered sets, of particular importance are the linearly ordered 
sets such as the set of all natural numbers, the set of all rational 
numbers, the set of all real numbers. For each of these sets the 
relation x^y determines the ordering; here the order types of 
these three sets differ in an essential manner: in the first of them 
there exist elements which are immediately adjacent to one another 
(n and w+1), in the second there are no such elements (so we say, 
the ordering is dense), however, there exist gaps (in the Dedekind 
sense), but in the set of all real numbers there are no gaps. 

An especially important kind of linearly ordered sets are the 
well ordered sets, i.e. those in which every non-empty subset has 
a least element. An example of a well ordered set is the set of all 
natural numbers (but the set of all integers is not well ordered 
since this set does not have a least element). Also well ordered— 
although of a different order type—is the set consisting of numbers 
of the form 1—1 jn and numbers of the form 2—1 Ιη,η = 1,2,3, ... 
In Chapter VIII we give the fundamental theorems concerning 
well ordering. So, we prove that given two distinct order types 
of well ordered sets one is always an extension of the other (in 
a sense which we shall make more precise). From this follows 
the important corollary that given two different well ordered sets 
one has power equal to that of a subset of the other; in the termi­
nology of cardinal numbers this means that for two distinct car­
dinal numbers corresponding to well ordered sets, one is always 
smaller than the other. In connection with this theorem, there 
arises the fundamental problem: does there exist a relation for 
any set which establishes its well ordering? We shall prove that 
this is in fact so, if we assume the axiom of choice. 

The discussion of set theory given here is based on a system 
of axioms. Even though in the introductory part of set theory, e.g. 
in the algebra of sets, the concept of set, with which we usually 
have to deal in applications to other branches of mathematics 
(and hence the concept of a set of numbers, points or curves, and 
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so on), does not touch upon logical difficulties, a subsequent 
construction of set theory which is not based on a system of axioms 
turns out to be impossible; for there exist questions to which the 
so-called "naive" intuitive idea of a set does not give a unique 
answer. The lack of the necessary foundations of set theory in its 
initial period of development led to antinomies, i.e. contradictions, 
which arose from the "naive" intuitive idea of set. Only the axio­
matic concept of the theory of sets allowed the removal of these 
antinomies (cf. Chapter VI, § 2, Remark 2). 

In this book we do not analyse more closely the axiomatics 
of set theory or the logical foundation of the subject. Although 
these subjects form at the present time an important part of math­
ematics and are being actively developed, the discussion of them 
lies outside the principal goal of this book, which is: the pre­
sentation of the most important branches of set theory and topo­
logy from the point of view of their applications to other branches 
of mathematics. Therefore we limit ourselves to the formulation 
of some particularly important problems concerning axiomatics, 
such as the independence of the axiom of choice and of the con­
tinuum hypothesis. We mention also the existence of sets of power 
Κω and of inaccessible numbers, and we call attention to the neces­
sity of introducing new axioms which imply their existence. 

In the first part of this book the reader will find a certain amount 
of information on mathematical logic. The notation of mathemati­
cal logic is an indispensable tool of set theory and can be applied 
with great profit far beyond set theory. In Chapters I and III we 
give the main facts from this subject concerning the calculus of 
propositions, propositional functions and quantifiers. The notation 
of mathematical logic is not deprived of general didactic values; 
by examples for concepts such as uniform convergence or uniform 
continuity it is possible to observe how much the definition of 
these concepts gains in precision and lucidity, when they are 
written in the symbolism of mathematical logic. 

In the first period of its existence, set theory was practically 
exclusively the creation of one scholar, G. Cantor (1845-1918). 
In the period preceding the appearance of the works of Cantor, 
there were published works containing concepts which are now 
included in the theory of sets (by authors such as Dedekind, Du 
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Bois-Reymond, Bolzano), but none the less the systematic investi­
gation of the general properties of sets, the establishment of fun­
damental definitions and theorems and the creation on their 
foundation of a new mathematical discipline is the work of G. Can­
tor (during the years 1871-1883). 

The stimulus to the investigations from which the theory of 
sets grew was given by problems of analysis, the establishing of 
the foundations of the theory of irrational numbers, the theory 
of trigonometric series, etc. However, the further development 
of set theory went initially in an abstract direction, little connected 
with other branches of mathematics. This fact, together with 
a certain strangeness of the methods of set theory which were 
entirely different from those applied up to that time, caused many 
mathematicians to regard this new branch of mathematics initially 
with a certain degree of distrust and reluctance. In the course of 
years, however, when set theory showed its usefulness in many 
branches of mathematics such as the theory of analytic functions 
or theory of measure, and when it became an indispensable basis 
for new mathematical disciplines (such as topology, the theory 
of functions of a real variable, the foundations of mathematics), 
it became an especially important branch and tool of modern 
mathematics. 

The following list contains books which may be of aid in the 
study of set theory (also the books on topology mentioned in 
Part II, Introduction, contain the basic notions of set theory): 
A. A b i a n, The Theory of Sets and Transfinite Arithmetic, Phila­

delphia, 1965. 
P. S. A1 e x a n d r o v, Einführung in die Mengenlehre und die 

Theorie der reellen Funktionen, Berlin, 1956. 
P. B e r n a y s, Axiomatic Set Theory, N.-Holland Publ. Comp., 

Amsterdam, 1958. 
N. B o u r b a k i , Theorie des Ensembles, Hermann, Paris, 1970. 
J. B r e u e r , Introduction to the Theory of Sets, Prentice-Hall, 

Inc., Englewood Cliffs, N. J., 1958. 
P. J. C o h e n , Set Theory and the Continuum Hypothesis, Benja­

min, New York, 1966. 
A. F r a e n k e l , Abstract Set Theory, N.-Holland Publ. Comp., 

Amsterdam, 1953. 
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A. F r a e n k e l and Y. B a r-H i 11 e 1, Foundations of Set 
Theory, N.-Holland Publ. Comp., Amsterdam, 1958. 

K. G ö d e 1, The Consistency of the Continuum Hypothesis, Prince­
ton, 1940. 

P. H a 1 m o s, Naive Set Theory, Van Nostrand Comp., Prince­
ton, 1960. 

F. H a u s d o r f f , Set Theory, Chelsea, New York, 1957. 
D. H u b e r t and P. B e r n a y s, Grundlagen der Mathematik, 

2 vols., Berlin, 1934-1939. 
E. K a m k e, Theory of Sets, Dover Publications, New York, 1950. 
D. K 1 a u a, Allgemeine Mengenlehre, Berlin, 1964. 
A. H. K r u s e , Localization and Iteration of Axiomatic Set 

Theory, Detroit, 1969. 
K. K u r a t o w s k i and A. M o s t o w s k i, Set Theory, 

N.-Holland Publ. Comp. and PWN, Amsterdam-Warsza-
wa, 1968. 

A. P. M o r s e , A Theory of Sets, Academic Press, 1965. 
A. M o s t o w s k i , Constructible Sets with Applications, 

N.-Holland Publ. Comp. and PWN, Amsterdam-Warszawa, 
1969. 

I. P. N a t a n s o n, Theory of Functions of a Real Variable, 
Ungar, New York, 1955, Chapters I and II. 

J. E. R u b i n , Set Theory for the Mathematician, Holden-Day, 
1967. 

Jürgen S c h m i d t , Mengenlehre, Mannheim, 1964. 
W. S i e r p i n s k i , Algebre des ensembles, Monografie Mate-

maty czne, Warszawa-Wroclaw, 1951. 
Cardinal and Ordinal Numbers, Monografie Matematyczne, 
Warszawa-Wroclaw, 1965. 

L. E. S i g 1 e r, Exercises in Set Theory, Princeton, 1966. 
P. S u p p e s , Axiomatic Set Theory, Van Nostrand Comp., 

Princeton, 1960. 
A. T a r s k i, Cardinal Algebras, Oxford Univ. Press, New York, 

1949. 



CHAPTER I 

PROPOSITIONAL CALCULUS 

We apply the propositional calculus to propositions each of 
which has one of two logical values, 0 and 1 (denoted also by F 
and by Γ), where we assign the value 0 to a false proposition and 
the value 1 to a true proposition (in particular, all the proposi­
tions in mathematics are of this type, i.e. they take values either 
0 or l).t 

§ 1. The disjunction and conjunction of propositions 

If a and ß are two propositions, then we write "a or ß" in the 
form of the disjunction a V ß (called also the sum) and we write 
the proposition "a and ß" in the form of the conjunction α Λ β 
or ccß (called also the product). 

Clearly, the proposition a V ß is true if at least one of the com­
ponents is a true proposition and the proposition α Λ β is true 
if both factors are true propositions. The above can be put in the 
form of the following table: 

(1) Ο ν θ Ξ θ , O V l s l , i v O s l , l v l s l , 

(2) 0 Λ 0 = 0 , 0 Λ 1 = 0 , Ι Λ Ο Ξ Ο , 1 Λ 1 = 1. 

The equivalence sign used in the above formulas occurs between 
propositions; namely, the equivalence α = β holds if and only if 
a and β have the same logical value. 

The disjunction and conjunction of propositions are commu­
tative and associative, i.e. 

α ν / ? Ξ = β ν α , cc Aß = β ACC, 

a V (β V γ) = (a V β) V γ, a Λ (β Α γ) = (α Λ β) Α γ· 

t The propositional calculus in its actual form (called also algebra of 
logic) had its beginning in the papers of G. Boole and A. De Morgan around 
1850. 
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24 SET THEORY AND TOPOLOGY 

The distributive law 

(4) α Λ (β V γ) = (a Λ β) V (a Λ γ) 
also holds and more generally we have 

(5) (a V β) Λ (γ V δ) = (a Λ γ) V (β Λ y) V (α Λ <5) V(J8 Λ δ). 

We can verify the above laws—as well as all laws of the propo-
sitional calculus—by substituting the values 0 or 1 for the vari­
ables and then applying formulas (1) and (2). 

§ 2. Negation 
Next we introduce the operation of negation of a proposition 

a which we shall denote by a' (or by ~ a or Πα)· The negation 
of a true proposition is a false proposition and, conversely, the 
negation of a false proposition is a true proposition. We therefore 
have the following table: 
(6) V = 0, 0' = 1. 

From this we obtain the so-called law of double negation, 
(7) a" = a. 

Two fundamental theorems of Aristotelian logic (which follow 
easily from formulas (1), (2) and (6)) hold: 
(8) a V a' = 1, a Λ a' = 0; 

they are the law of the excluded middle (principium tertii exclusi) 
and the law of contradiction (these are formulated in classical 
logic in the following manner: from two contradictory proposi­
tions, one is true; no proposition can be true simultaneously with 
its negation). 

Further, the important De Morgan laws hold: 

(9) ( α ν β Έ ( α ' Α « , 

(10) (αΛ£)' = (α'ν£'). 
The first of these laws asserts that, if it is not true that one 

of the propositions a and β is true, then both of these propositions 
are false (and conversely); i.e. the negation of the first as well 
as the negation of the second are true propositions. 
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Similarly, if it is not true that both propositions a and ß are 
true, then this means that the negation of one of them is a true 
proposition, and conversely. 

Taking the negation of both members of identity (10) we 
obtain, by virtue of formula (7), the identity 
(11) α Λ/8 = (a'V 0% 

From this it is clear that conjunction can be defined with 
the aid of disjunction and negation (and, in a similar manner, 
one could define disjunction with the aid of conjunction and 
negation). This allows the reduction of the number of fundamental 
operations to two; however, from the computational-technical 
viewpoint it is more convenient to make use of three operations; 
disjunction, conjunction and negation. 

§ 3. Implication 
We write a => ß if the proposition a' V ß is true, i.e. 

02) ( α ^ ) Ξ ( α ' ν £ ) ; 
a => β is read: the proposition a implies the proposition /?, or: 
if a then β. 

Tables (1) and (6) yield the following table: 

(13) (0=>0) = 1, ( 0 = > l ) s l , ( U 0 ) E 0 , (1=>1) = 1. 

We also deduce from this that 
(14) if a => ß andß => a then α = β. 

Clearly, implication has properties analogous to deduction. 
However, the current meaning of the expression "deduction" is 
different from the expression "implication". To say that a proposi­
tion β is deducible from a proposition a (e.g. from a given 
theorem) usually means the possibility of proving proposition 
β on the basis of proposition a; but the implication α => β always 
holds, provided that the proposition β is true (even if the proposi­
tion a were false). 

Let us note further two laws: the syllogism law (or the law of 
transitivity of implication) and the law of contraposition (on 
which the proof by "reductio ad absurdum", or the indirect method 
of proof, depends): 
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(15) ifoi => ß and β => γ then α => γ; 

(16) if β'=> a' then <x => β. 

Exercises 

1. Prove that if a is a true proposition, then β => a is also a true proposition. 
Hint: In this and the following exercises apply the "zero-unit" tables 

(1), (2), (6), (13). 
2. If a' => β for each ft then a is a true proposition. Law ofClausius. 
3. If a is a false proposition, then a => β. Law of Duns Scotus. 
4. Prove that aAj5=>a=>aVj5. 
5. If a =>/? and y => <5, then <χ./\γ=>β/\δ and ocVy =>ßWö. 
6. If oc=>ft then αΛ0 = a and ocVß = ft 
7. Prove that a V (a Aft = a Ξ aA(aVft. Law o/ absorption. 

More generally: a V (ß A y) = (<* V ft A (a V y). 
8. Let (a-rft s[(aA0')V(a'A0)]. Prove that (ocVft s [(α-ί-ft -KaAft]· 

We call α-ί-β the symmetric difference of the propositions a and ft what is 
its logical meaning? 

9. Prove the /ΑΜΛΪ of tautology: aVa = a, a ^ a = a. 
10. Prove that aVI Ξ 1, aVO s a , a A l s a , αΑθ Ξ 0. 



CHAPTER II 

ALGEBRA OF SETS. FINITE OPERATIONS 

§ 1. Operations on sets 

The union of two sets A and B is understood to be the set 
whose elements are all the elements of the set A and all the 
elements of the set B and which does not contain any other 
elements. We denote the union of the sets A and B by the symbol 
A KJB. 

The intersection of two sets A and B is understood to be the 
common part of these sets, i.e. the set containing those and 
only those elements which belong simultaneously to A and to B. 
We denote the intersection of the sets A and B by the symbol 
An B. 

Finally, the difference of two sets A and B, i.e. the set A—B, 
is the set consisting of those and only those elements which 
belong to A but which do not belong to B (instead of A —B the 
symbols A\B and A ~ B are also used). 

The following examples illustrate the operations on sets: the 
union of the set of rational numbers and the set of irrational 
numbers is the set of all real numbers; the intersection of the 
set of numbers which are divisible by 2 and the set of numbers 
divisible by 3 is the set of numbers which are divisible by 6; the 
difference of the set of natural numbers and the set of even natural 
numbers is the set of odd natural numbers. 

Other examples are given in Figs. 1-3,1" where the sets A and 
B are circular disks. From Fig. 2 we see that there exists no point 
which belongs to both the sets A and B; but despite this fact, 
we can consider forming the intersection to be possible in all 
cases by adopting the following definition. 

t Called Euler circles, which are particular cases of Venn diagrams (John 
Venn, 1834-1923, an English logician). 

27 



28 SET THEORY AND TOPOLOGY 

The null set (or the empty set or the void set) is the set which 
contains no elements; we denote it by the symbol 0. 

Thus, in Fig. 2 we have A nB = 0 and in Fig. 3 we have 
B-A = 0. 

FIG. 1 

FIG. 2 FIG. 3 

The equality A n B = 0 therefore denotes that the sets 4̂ and 
5 do not have common elements. We then say that these sets are 
disjoint. 

The role of the null set in set theory is analogous to the role 
of the number 0 in arithmetic; these concepts are necessary in 
order that it be possible to carry out all operations with no 
exception. 

§ 2. Inter-relationship with the propositional calculus 
Operations on sets are closely related to operations on proposi­

tions. Let us write x e AJ to denote that x is an element of 
the set A (as a rule we shall denote elements with lower-case 
letters and sets with upper-case letters). 

t The sign e, introduced by G. Peano, is an abbreviation of the Greek 
word εστί (to be). 
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We assume also that 
(χφΑ) = (xeA)'. 

The following equivalences hold for all x: 

(1) [xe(Au B)] = (* e A) V (x e B), 

(2) [xe(An B)] = (* e A) ^ (x e 5 ) , 

(3) [x e (Λ-2*)] Ξ ( Χ 6 ^ ) Λ ( Κ 5 ) ' . 

By virtue of formulas (l)-(3), we can easily deduce theorems 
on the calculus of sets from analogous theorems in propositional 
calculus. 

In this connection, let us note that 

(4) if the equivalence x e A = x e B holds for all x, then A = B; 

and therefore the proof of the equality A = B reduces to showing 
that JC belongs to A if and only if it belongs to B. 

The operations of union and intersection of sets are com­
mutative, i.e. 

(5) ' Av B = BvA, AnB = BniA. 

These operations also satisfy the associative law: 

A u (BKJ C) = (A u B) u C, 
(6) 

An(BnC) = (AnB)nC. 
The distributive law 

. (7) A r\ (Bv C) = (A n B)v (A n C) 

also holds, as can easily be verified. 
It follows from this that 

(8) 0 4 u 5 ) n ( C u Z > ) 

= (A n C)v (B n C)v (A nD)KJ (B nD), 

for, by virtue of formula (7), we have 

(A u B) n (C u D) = [(A u 5 ) n C ] u [(Λ u Ji) n D] 

= ( i n C ) u ( 5 n C ) u ( ^ n D ) u ( 5 n Z)). 

Therefore, in general, as in arithmetic, in order to expand the 
intersection of two unions one must take the intersection of 
each term of the first union with each term of the second union 
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and then form the union of the intersections obtained in this 
manner. 

The analogy between arithmetic and the theory of sets is not, 
however, complete. For example, the following identities (compare 
the laws of tautology stated in Chapter I, Exercise 9) hold in set 
theory: 

(9) AvA = A, 

(10) AnA = A, 

which point out that, in contrast to arithmetic, neither multiples 
nor exponents arise in set theory. 

§ 3. Inclusion 
We shall now introduce the important relation of inclusion 

between sets. We shall say that the set A is a subset of the set 
B (or also that the set A is contained in B) if every element of 
the set A is an element of the set B. We then write A a B (or 
BZD A). 

We therefore have the following equivalence: 

(11) {A c B) = [the implication (x e A) => (x e B) holds for all x]. 

In particular, it follows from this that 

(12) Ac A, 

i.e. that every set is a subset of itself. Because of this inclusion, 
we also use the term proper subset for subsets of a given set which 
are different from the given set. 

Obviously 

(13) if A c B and B cz A, then A = B, 

for the sets A and B consist of the same elements in this case. 
Hence, in order to prove that A = B it suffices to prove that 

A c B and B c A; in other words, instead of the equivalence 

(xeA) = (xe B) 

we prove the two implications 

x eA => x e B and x e B=> x e A 

(cf. Chapter I, (15)). 
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It can easily be proved that 

(14) / / A c B and B cz C, then A c C, 
(15) (A nB) c A cz (AKJ B), A-B c A, 
(16) if A cz B and C a D, then (A u C) c ( 5 u D) 

onrf ( i n C ) c (BnD). 

The following equivalences hold: 

(17) ( ^ α 5 ) = ( ^ υ 5 = ,β) = ( ^ η 5 = ^ ) . 

For, let A <=. B. Combining this inclusion with the inclusion 
B cz B (cf. (12)), we obtain, by virtue of (16) and (9), 

(AKJB) c ( 5 u 5 ) = £ , 

but since (cf. (15)) B <z (A u 5), we have Av B = B (cf. (13)). 
Conversely, it follows from the relation AKJ B = B that 

A a B (by virtue of (15)); hence these relations are equivalent. 
Similarly, combining the inclusion A cz B with the inclusion 

A cz A we obtain 4̂ cz (̂ 4 n 5), whence v4 = A n 5 , because 
A nB a A by virtue of (15). 

Conversely, from the relation A nB = Awe obtain the relation 
A cz B because (A nB) a B. 

From this we deduce the following formula which is important 
in applications: 

(18) (AKJ B)n(Au C) = AKJ (Bn C). 

In fact, by virtue of (8) and (10) we have 

(A u B) n (A u C) = (A n A) u (B n A) u (A n C) u (B n C) 
= AKJ (B nA)yj (A n C)u (B nC), 

and (BnA) <=: Aby (15), and hence by (17) AKJ (BnA) = A 
and similarly , 4 u 0 4 n C ) = y4. Formula (18) follows. 

Let us note further the following formulas, the proofs of which 
do not present any difficulties: 

(19) AnB = A-(A-B), 
(20) AU(B-A) = AKJB9 

(21) A-(AnB) = A-B9 

(22) A n (B-C) = (AnB)~C. 
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§ 4. Space. Complement of a set 

In the applications of the theory of sets, we assume, as a rule, 
that all the sets under consideration are subsets of some fixed 
set, called the space. For example, in analysis, the set of real 
numbers or the set of complex numbers forms a space, and in 
geometry we have to deal with the Euclidean space. 

Under this assumption, the theorems of the algebra of sets 
assume a still simpler form which is closer to the calculus of 
propositional functions. 

Hence, let 1 denote a given space (this notation is expedient 
from the calculational point of view). We therefore have A c 1 
for each of the sets A considered. We denote by Ac (or by ~ A 
or CA) the set of elements of the space which do not belong to A, 
i.e. 

Ac= l-A. 

Ac is called the complement of the set A (with respect to the 
given space 1). We therefore have 

(23) xeAc = (xeA)' = χφΑ. 

Formulas (6)-(8) (Chapter I, § 2) yield immediately the (almost 
obvious) formulas: 

(24) lc = 0, 0c = l, 

(25) ACC = A , 

(26) AuAc = \, AnAc = 0. 

Formulas (3), (23) and (2) imply the formula 

(27) A-B = AnBc, 

which allows us to define subtraction in terms of intersection 
and complementation. 

In fact, 

(x e A-B) = (x e A)(x e B)' 

= (x e A)(x e Bc) = (x e A n Bc). 

Formula (16) (Chapter I, § 3) implies that: 

(28) / / Bc c Ac, then A a B. 
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Finally, formulas (9) and (10) (Chapter I, § 2) yield the De 
Morgan laws for sets: 

(29) (AvB)c = Ac nBc, 

(30) (AnB)c = Acu Bc. 

For, we have 

XG(AKJB)C= [xe(AuB)Y = [(xeA)W (xeB)]' 

= (x e Ac) Λ (x e Bc) = x e (Ac n Bc). 

The proof of formula (30) is analogous. 
The obvious formula 

(31) A n 1 = A 

yields by (26), that 

(32) A = (AnB)O(AnBc), 
inasmuch as 

A = Anl = An(BuBc) = (AnB)yj (AnBc). 

Formula (17) can be supplemented by the following equivalence 
which is frequently applied in practice: 

(33) (A czB) = (AnBc = 0). 

For, forming the intersection of both sides of the inclusion 
A c B with Bc we obtain (A n Bc) c (B n Bc) = 0 (by virtue 
of (26)). But from formula (32) we deduce, assuming the equality 
AnBc = 0, that A = AnB, whence, by (17) it follows that 
A c B. 

§ 5. The axiomatics of the algebra of sets 
In the considerations up to this point we used only some 

properties of sets. The properties can be taken as a system of 
axioms, from which all the theorems of set theory, given above, 
follow. 

We take, namely, as primitive concepts the concept of element 
of set and the relation of an element belonging to a set, i.e. the 
relation x e A. We assume the following four axioms. 

I. UNIQUENESS AXIOM (called also Axiom of extensionality). If 
the sets A and B have the same elements then A and B are identical. 
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II. UNION AXIOM. For arbitrary sets A and B there exists a set 
whose elements are all the elements of the set A and all the elements 
of the set B, and which does not contain any other element. 

III. DIFFERENCE AXIOM. For arbitrary sets A and B there exists 
a set whose elements are those and only those elements of the set 
A which are not elements of the set B. 

IV. EXISTENCE AXIOM. There exists at least one set. 
It is not necessary to assume an axiom on the existence of an 

intersection because, as we saw (formula (19)), the intersection 
can be defined in terms of the difference. Likewise, the existence 
of the void set is a consequence of our system of axioms, for we 
can define the void set by means of the formula 0 = A —A, 
where A is an arbitrary set (the existence of at least one set is 
guaranteed by axiom IV). 

An important consequence of axiom I is the uniqueness of 
the operations, i.e. for given sets A and B there exists only one 
set satisfying axiom II (which justifies the use of the symbol 
AVJ B to denote this set); the same applies to the intersection 
and difference. 

As we have already stated, it is possible from the above axioms 
to deduce all the theorems of the theory of sets considered till 
now, without referring back to the intuitive concept of set. 

§ 6. Boolean algebra.f Lattices 
Examining the theorems of §§ 2-4, we see that the symbol 

G does not occur in the majority of them (though it does appear 
in their proofs). This suggests stating a system of axioms which 
will enable us to prove those theorems without referring to the 
relation e. 

We take as primitive concepts the set 0 and the operations 
u , n , —, and we assume the following axioms: 
(1°) Au B = BvA, 
(2°) AnB = BnA, 
(3°) AKJ(BKJ C) = (AuB)u C, 

t For more details on Boolean algebra, see R. Sikorski, Boolean Algebras, 
2nd edition, Berlin, 1964, and R. Halmos, Lectures on Boolean Algebras, 
Princeton, 1963. 
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(4°) An(BnC) = (AnB)nC, 

(5°) AKJ0 = A, 

(6°) Λ υ ( Λ η 5 ) = Λ, 

(7°) An(AvB) = A, 

(8°) An(B\j C)= (A nB)v (A n C), 

(9°) (A-B)vB = AuB, 

(1(f) (A-B)nB= 0. · 

From these axioms we are able to deduce all the theorems 
of the algebra of sets in which the relation e does not appear. 
Also, if we desire to restrict the domain of the variables to subsets 
of a fixed set 1, we assume, in addition, the axiom 

(11°) Ar\\=A. 
We add that we define inclusion with the aid of the formula 

(cf. (17)): 
(4 c:B)= (AuB = B). 

The theory based on the above axioms is called Boolean algebra. 
The applications of Boolean algebra extend far beyond the theory 
of sets; we need not interpret the variables A,B9 ... as sets. 
Interpreting them, e.g. as propositions, we obtain the proposi-
tional calculus. 

This explains the duality between the propositional calculus 
and the algebra of sets: to the disjunction (or sum) V of propo­
sitions corresponds the union u of sets, to the conjuction 
(product) Λ of propositions—the intersection n of sets, to the 
negation a' of a proposition a—the complement Ac of a set A, etc. 
(see also Chapter IV, § 3). 

Other interpretations of Boolean algebra in recent times permit 
us to apply it in various branches of mathematics, and even 
outside mathematics (for example, in the theory of electrical 
networks). 

R e m a r k . If we omit axioms (8°)-(10°), we obtain the 
notion of lattice (with 0 and 1).* Of course, every Boolean algebra 

t For a detailed study of lattices, see G. Birkhoff, Lattice Theory, New 
York, 1961. 
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(with 1) is a lattice. However, the converse is not true. There 
are important examples of distributive lattices which are not 
Boolean algebras; such is the family of closed subsets of a topologi-
cal space which is a lattice (since the union and intersection of 
two closed sets is closed) but is not a Boolean algebra (since the 
difference of two closed sets does not need to be closed, see Chapter 
X, § 4). 

§ 7. Ideals and filters 
A non-empty family* R of subsets of 1 is called ideal if the two 

following conditions are fulfilled: 
(AeR)(B czA)=>BeR9 

(AeR)(BeR)=> (AuB)eR. 
A non-empty family S is called a filter if 

(AeS)(A cB)=>BeS, 
(AeS)(BeS)=> (AnB)eS. 

It is easy to show that a family of sets is a filter iff the family 
of the complements of these sets is an ideal. 

Obviously the family of all subsets of a given set E is an ideal 
and the family of all sets F such that E a F c 1 is a filter. 

A proper ideal (i.e. an ideal which does not contain 1) is called 
maximal if it is not a subset of any other proper ideal. The defini­
tion of a maximal filter (called also ultrafilter) is analogous (we 
mean by proper filter a filter which does not contain 0). 

One shows with the aid of the axiom of choice (see Chapter VIII, 
Exercise 12) that each proper ideal (filter) is contained in a maximal 
ideal (filter). 

Exercises 
1. Prove the following formulas: 

(a) Av(AnB) = A=An(AvB), 
(b) (A u B)-C = (A-C)\J (B-Q, 
(c) A-(B-Q = (A-B) u (A n Q, 
(d) A-(B KJ C) = (A-B)-C. 

t By family we mean a set of sets. We write then R instead of R. 
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2. The set 
A-B = (A-B) v(B-A) 

is called the symmetric difference of the sets A and B. 
Prove the following formulas: 

(a) A-(B-C) = (A-B)-C (associativity), 

(b) A n (B-Q = A n B-A n C fdistributivity), 
(c) Av B = A—B-A r\ B, 
(d) A-B = A -A n B, 
(e) define n by means of (i) —, u , (ii) —, —, 
(f) (A-B = O => (B = Λ - Q , 
(g) G4xu ... u ^ - ^ u . . . u£„) c ( Λ χ - B J u ... \J(An-Bn)9 

(ALn ... η Λ ) - ( ^ ι η ... r\B„) <= (A^BJv ... υ(Λη-£/ι) 
(Hausdorff). 

3. Let A = A i — Λ2 — ... —Ai. Prove that A is the set of elements belonging 
to an odd number of sets Al9 ...9An. (Thus the set A is not affected by changing 
order in which operations are performed.) 

4. We define division by means of the formula A:B = AvBc. Compute 
A:(BnQ, A:(BvQ, An(B:A). 

5. Let Ai,A2,~-,Anbe fixed subsets of the space 1. Let us assume that 
A\ = 1—Ai, A\ = Ai. Every intersection of the form 

A[lr\Ä22r\ ... ηΛ„η, where // = 0 or 1, 
i s called a constituent of the space (with respect to the sets Ai9 A2, .., An). 

Prove that the Constituante are disjoint and that their union is equal to 
1 (therefore the decomposition into Constituante effects a classification of the 
elements of the space with respect to their belonging to sets Al9A29 >.>tA„). 

6. Represent the set A—(B—C) as the union of Constituante of the space 
with respect to the sets A, B and C. 

7. The sets Al9..., An are called independent^ if all the constituants are 
non-empty. Prove that in this case the number of constituants is 2". 

8. Let Jn denote the /i-dimensional cube composed of points (xl9..., x„) 
such that 0 < Xi < 1 for i = 1, 2 , . . . , n. Denote by Im the set of points 
(*i, · · ·, Xn) where 1 /2 < xm < 1. Show that the sets Λ , . . . , In are independent. 
What is the geometrical interpretation for n = 3? 

9. We say that the operations x-\-y and x-y form a (commutative) ring 
if they satisfy the following conditions: 
(i) x+y = y+x9 

(ii) x+(y+z) = (x+y)+z, 

t The notion of independent sets has important applications in proba­
bility theory. See E. Marczewski, Indopendence d'ensembles et prolongement 
de meeure, Coll. Math. 1 (1948), pp. 122-132. 
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(iii) there exists an element 0 such that x+0 = x, 
(iv) for every pair x,y there exists an element z (z = x—y) 

such that y+z = x, 
(v) x-y=yx, 
(vi) X'(y-z) = (x-y)- z, 
(vii) x ■ O+z) = (x · y) + (x · z). 

Prove that sets form a ring with respect to the operations A—B and A n B, 
but they do not form a ring with respect to the operations A u B and ^ n 5 . 

10. Show that a proper ideal (filter) R is maximal iff 
for each J c i , either Jfe R, or (1-A0e If. 

11. Let A be a family of subsets of the space 1. Consider the family R of 
sets of the form 

(Ai r\X,) KJ ... u(An nXn), where Al9...,A„eA. 
Show that if is an ideal containing A (it is the ideal "generated by A"). 

Establish the dual theorem for filters. 
12. Show that the family of all linear subsets of Sn (i.e. of the origin, 

straight lines, planes, etc.) passing through the origin is a (non-distributive) 
lattice (with 0 and 1) relative to the operations u and n defined as follows: 
A n B is the intersection defined in the usual sense and A u B is the least 
linear set containing A and B. 



CHAPTER III 

PROPOSITIONAL FUNCTIONS. 
CARTESIAN PRODUCTS 

Let a fixed set A be given, which in the sequel we shall consider 
to be the space. Let φ(χ) be an expression which becomes a propo­
sition when one substitutes for x an arbitrary value of x belong­
ing to A. We call this expression a propositional function^ (with 
the argument bounded by A). 

For example, if the space is the set of all real numbers, then the 
expression "x > 0" is a propositional function; it becomes a true 
proposition if we substitute, say, 1 for A:; it becomes a false propo­
sition if we substitute —1 for x. 

§ 1. The operation {x: φ(χ)} 
The set of all those values of the variable x for which <p(x) 

is a true proposition (or, as we say, the set of x's which satisfy 
the propositional function <p(x)) is denoted by the symbol 

{x: φ(χ)}. 

For example, in the space of real numbers {x: (x > 0)} is 
the set of all positive numbers, {x: (x = x)} is the set of all 
real numbers, and {JC: (*+l = x)} is the null set. 

It follows from the definition of the operation {x: <p(x)} that 
a necessary and sufficient condition, that the element a should 
belong to the set {x: φ(χ)}> is that the proposition φ(α) be true. 
Hence, the following equivalence holds: 

(1) for every a: [a e {x: φ(χ)}] = φ(α). 

The following four formulas hold: 
(2) {x: φ(χ) v ψ(χ)} = {x: <p(x)} u {x: ψ(χ)}9 

t Following Bertrand Russell the term predicate is also used in the same 
sense (see Hubert and Ackermann, Grundlagen der Mathematik, vol. T, 1928). 

39 
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(3) {*: φ(χ) Λ ψ(χ)} = {x: <p(x)} n {x: ψ(χ)}, 
(4) {*: φ(χ) A [ψ(χ)]'} = {x: <p(x)}-{x: ψ(χ)}9 

(5) {x: [φ(χ)]'} = {x: φ(χ)}'. 

We obtain the proof of the formula (2) from the formula (1) 
above and formula (1) of Chapter II, § 2: 

a e {x: φ(χ) V ψ(χ)} = φ{α) V ψ(α) 

= [ae {χ: φ(χ)}] V [a e {x: ψ(χ)}] 

= a e {χ: <ρ(χ)} υ {Λ:: ψ(χ)}, 
whence equality (2) follows (cf. Chapter II, § 2, (4)). 

Formulas (3)-(5) are proved similarly. 

§ 2. Quantifiers 
Let us now consider the following two operations on proposi-

tional functions: 

\/χφ(χ) and /\χφ(χ). 

We read the formula \Jχφ(χ) as follows: there exists some x 
which satisfies the function <p(x); /\x<p(x) denotes that every x 
satisfies this function. (The symbols 3*, Σχ and ΥΧ9ΠΧ, respectively, 
are used in the same sense.) 

Clearly, the above operations transform propositional functions 
into propositions. The symbols of these operations \ / and / \ 
are called the existential and the universal quantifiers, respec­
tively^ 

For example, in the space of real numbers the proposition 
\/x (x > 0) is true but the proposition /\x(x>0)is false. 

The variable x which appears as the free variable in the proposi­
tional function <p(*) becomes a bound variable in the proposition 

1 
V * ψ(χ) Oike x in / f(x)dx). 

o 
It may be noted that 

\J x<f(x) = V J ^ O ) · 

t The concept of a quantifier was introduced by G. Frege {Begriffsschrift, 
1879) and studied by C. S. Peirce (1885). 
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Analogous remarks can be made about the universal quantifier. 
The operations y and / \ may be considered as generalizations 

of the operations of disjunction and conjunction. For, if the 
domain of variation of x is finite, consisting of the elements al9a2, 
...,tfn,then 

V*<K*) Ξ [<P("i) V <p(a2) V ... V φ(αη)]9 
(6) Λ 

/\x<p(x) = [φ&ι) Λ φ(α2) Λ ... Αψ(αη)]. 
We now set down the following easily proved formulas: 

(7) for every x0 we have [/\χφ(χ)] => φ(χ0) => [\/χφ(χ)], 

(8) [\/χ <P(x) V VxVWl Ξ \/χ[ψ(χ) V Ψ(χ)]> 

(9) [\Jx<p(x) Λ ψ(χ)] => \/x9(x) Λ V^V^W· 
Let us note that in formula (9) we cannot replace the implication 

sign by the equivalence sign; in other words, implication in the 
opposite direction may not hold. For example, both of the proposi­
tions 
\JX (x is a positive number) and V * (^ is a negative number) 

are true, and hence a true proposition appears in the right member 
of formula (9); but on the left side there appears, in this example, 
a false proposition (inasmuch as there is no number which is 
simultaneously positive and negative). 

The duals of formulas (8) and (9) are the following formulas: 

(10) [Λ*Ρ(*) Λ Λ*Ϋ(*)1 = ΛΛ<Ρ(Χ) Λ ψ(χ)]> 
(11) [ΑχΦ) ν Λ*ν(*)1 =* ΑΛψ(χ) ν ?(*)]. 

This duality is expressed by the generalized De Morgan formulas 
(which appear very frequently in applications): 

02) [Λ*<Κ*)Γ = V*<?'(*)> 
(13) [V*K*)]'^A*?'(*)· 

As in the case of finite operations, the De Morgan formulas 
permit the definition of the universal quantifier in terms of the 
existential quantifier and negation (and the existential quantifier 
in terms of the universal quantifier and negation): 

(14) /\Mx) = (V.V'W)'. V*<K*) = (Λχ9>'(*))'· 
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R e m a r k . Instead of the symbols \Jx and f\x we often use 
the more complicated symbols Vy(*> an(* AV(*) where y(x) is 
a given propositional function. We assume that 

\Z«x)<p(x) = \/χ[ψ(χ) Λ <K*)]> 

Av(*)<K*) Ξ Αχ[ψ(χ) => <p(x)h 

§ 3. Ordered pairs 
We denote a set consisting of only one element a by the symbol 

{a} (let us note that {a} Φ a). We denote the set consisting of 
the two elements a and b by {a,b}; similarly, {a, b, c] denotes 
the set consisting of the elements a, b and c, and so on. 

Obviously the symbols {a, b} and {b, a} denote the same set. 
In the sequel we shall need the concept of an ordered pair with 
antecedent a and successor b which we shall denote by the symbol 
(a, b}. We consider the pair {a, b} as distinct from the pair (b, a) 
(unless a = b); more generally, the pairs <a, b} and <c, d} are 
equal only when a = c and b = d, i.e. when they have identical 
antecedents and identical successors: 
(15) [<*, b} = <c, dy] =>(a=c)A(b = d). 

An ordered pair can be defined in the following way: 
(16) <«,*> = {{*}, {a,b}}. 

It is easy to verify that condition (15) is satisfied by this defini­
tion. 

§ 4. Cartesian product 
The cartesian product of the sets X and Y is the set of all ordered 

pairs (x, j> where x eX and y eY. We denote this set by Xx Y 
and therefore 
(17) [<x, yy e (XX Y)]^(xeX)A(yeY). 

Cartesian products appear very frequently in mathematics. For 
example, the complex number plane is SxS, where & is the 
set of all real numbers (since a complex number is an ordered pair 
made up of two real numbers). A cylinder can be considered as 
the cartesian product of the circumference of a circle (base) by 
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a closed interval (height); the surface of a torus can be treated 
as the cartesian product of two circles. 

Let us set down several easily proved formulas concerning the 
distributivity of cartesian multiplication with respect to the opera­
tions of the algebra of sets: 

(18) (Xt u X2)xY=X1xYu X2X Y, 

whence 

(19) (XlvX2)x(YlvY2) 

= I 1 x 7 1 u I 1 x 7 2 u X2X Y1uX2xY2i 

(20) (X1 -X2) χΥ=Χ,χ Y-X2 x Y9 

(21) (Xx nX2)X (Y, n Y2) = (XtXYJ n (X2X Y2). 

If the sets Xl9X2, Υχ and Y2 are nonvoid then 
(22) [(X,χΥί) = (Χ2χ Y2)] => (X, = X2)(Υ± = Y2). 

All the above formulas can easily be interpreted geometrically, * 
if we assume that Xx Y is the plane with axes X and Y and that 
Xx c:X,X2 a X, Yt c 7, F2 c Y. 

Similarly, the following two formulas have a clear geometric 
interpretation: 
(23) AXB = (AX Y) n ( ^ Χ ^ ) , 

(24) (A X B)c = (Ac X Y) u (XX Bc), 

where A <= X, B a Y9 Ac and Bc denote the complements with 
respect to X and Y, respectively, and (A X B)c denotes the com­
plement with respect to Xx Y. 

Formula (23) follows from (21), and (24) follows from (23) by 
virtue of the De Morgan rules since 

(Ax Y) n (XXB) =(An X)x (YnB) = AxB, 

(24a) (A X Y)c = (Ac X Y) and (Xx B)c = (Xx Bc). 

§ 5. Propositional functions of two variables. Relations 

Let Z = Xx Y. Let φ(ζ) be a propositional function of the vari­
able z which ranges over the set Z. Since z — <x, >>>, the proposi­
tional function φ(ζ) can be considered as a function of two varia­
bles x and y\ we write φ(χ, y) instead of φ((χ, j>». We also call 
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a propositional function of two variables a relation. Denoting 
this relation by ρ we write sometimes xqy instead of <p(x9 y). 

Thus a propositional function of two variables ranging over the 
space X and Y is the same as a propositional function of one 
variable ranging over the cartesian product of these spaces. Con­
sequently instead of {z: φ(ζ)} we also write {(x,y): <p(x,y)} 
or «JC , y): xgy}. For example {<x, y): (x < y)} is the half-plane 
situated above the line x = y, and «Λ: , y}: (y = x2)} is the para­
bola j ; = x2. 

Quite often in practice we identify the relation ρ with the set 
{(x,)?}' XQy}- This set is a subset of XxY. Conversely, every 
set R cz Χχ Υ can obviously be considered as a relation; namely 

R = {<*, y}: <p(x, y)} where <p(x, y) = (x,y}eR. 

Let us add definitions of various kinds of relations which will 
be frequently used later. 

D e f i n i t i o n s . A relation ρ is called reflexive if 
XQX for each x; 

ρ is symmetric if 
xgy=>yQx; 

ρ is transitive if 
(xQy)(yQz)=> (*Qz)l 

ρ is an equivalence relation if ρ is reflexive, symmetric and tran­
sitive. 

Let cp(x9y) be a given propositional function of two variables. 
Hence /\yq>(x, y) and V y(p(x,y) are propositional functions of 
one variable, namely of the variable x. 

We set down the following easily proved formulas: 

(25) Vx\/y<p(x,y) = V,\/x<p(x,y), 

(26) AxAy<p(x>y) = AyAx<p(x>y)-
In both of these formulas we may alternatively write 

\/x.y<P(x>y) or \Jz<p(z)9 and /\x.y<p(x,y) or /\z<p(z). 
These formulas express the commutativity of the operation 

V with respect to \ / and similarly of the operation / \ with 
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respect to / \ . On the other hand, the sequence of the quantifiers 
\J and / \ is significant. The following important formula holds: 

(27) ν*Λ,^^)=>Λ^ν*^^)· 
The left-hand member denotes that there exists an x0 such that, 

for every value of the variable y9 φ(χθ9 y) is true; and therefore 
to every y we can assign an x (namely, x = x0) such that φ(χ, y) 
is true; and this is exactly what the right-hand member states. 

On the other hand, the implication in the opposite direction 
does not hold (compare formula (9)). For example, in the domain 
of real numbers it is true that 

/\,\/x(y<x), 

but it is not true that 

V*A,(y<*)· 
Another example is: the assumption that the real valued function 

/ i s bounded can be written in the following form: 

\AA*(I/MI<JO· 
On the other hand, the proposit ion / \ x \ / y( \ f(x)\ <j>)istrue 

in general (for all real valued functions), for it suffices to set y 
= l/(*)l+i. 

The obvious formula 

(28) ΑΧΨ(Χ) => \/x<P(x) 

(under the assumption that X Φ 0 ) can be replaced, for functions 
of two variables, with the additional assumption that X = Y, by 
the more general formula 

(29) /\x,y(p(x, y) => Αχψ(χ> χ) => \/χ<ρ(χ> χ) => \/x.y<P(x> ^)· 

With this same assumption we can replace formula (9) by the 
following formula 

(30) V * [<p(x) Λ ψ(χ)] => \Jx,y [φ(χ) Λ ψ(γ)] 

= \/χφ(χ) Λ \Jyv(y) = \/χ<ρ(χ) Λ \/χφ(χ). 
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Analogously, (11) can be replaced by the formula 

(31) /\χφ(χ) V A*V(*) 

= Λ*Λ<ρ(χ)v vGOl => ΛΛφ(χ) v y(x)]. 

§ 6. Cartesian products of n sets. Propositional functions of n 
variables 

The above reasoning can easily be generalized to a larger number 
of variables than two. For example, Euclidean three-dimensional 
space is the set of ordered triples of real numbers, i.e. SxSxS, 
which we write more briefly as $3. More generally, Sn denotes 
«-dimensional Euclidean space; denoting by · / the closed interval 
0 < / < 1 we denote the «-dimensional unit cube by Jn. 

Similarly, we may speak about a propositional function of n 
variables which run over the same or distinct spaces. The following 
examples illustrate the role of the quantifiers and the meaning of 
some formulas which are related to them: 

EXAMPLE 1. The continuity of a function/at a given point x0 is 
expressed by the following condition (in the Cauchy formulation): 

(32) Λ<\ΛΛ*(Ι"Ι < «) => (ΙΛ*ο+Λ)-Λ*ο)Ι < *), 
where the domain of variation of the variables ε and δ is the set 
of positive real numbers. 

Therefore the continuity of a function in the interval under 
consideration a < x < b is expressed by prefacing formula (32) 
with the quantifier /\x and replacing the constant ΛΤ0 by the 
variable x. Since we can interchange the order of the quantifiers 
f\x and /\e9 this condition takes on the following form: 

(33) Λ . A * ν*Λ*(Ι*Ι < «) => (ΙΛ*+*)-Λ*)Ι < *)· 
If we interchange the order of the quantifiers /\x and \Jd9 we 

obtain a stronger condition, namely the condition for uniform 
continuity. Since, after this interchange, the quantifier \/δ follows 
/ \ e , but is still before f\x, it is immediately clear that δ depends 
on ε but that it does not depend on x (which is exactly what "uni­
form" continuity means). 



III. PROPOSITIONAL FUNCTIONS 47 

EXAMPLE 2. The condition that the sequence ai9a29-.* be 
convergent to the limit b can be written in the form 

04) Λ.Χ/-.Λ«. 
Therefore the condition that the sequence of functions ft , / 2 , ... 

be convergent to the limit / is 

(35) A*A*\/mA*\fmM-ÄX)\ < *· 
By interchanging the order of A * and / \ e , we obtain an equiva­

lent condition. Let us now interchange / \ x and \/m. We then 
obtain the stronger condition from which condition (35) follows, 
namely 

(36) Λ ε V m A x A n l / ^ n W - Z W I < B. 

This is the condition for uniform convergence. 
EXAMPLE 3. The rules (12) and (13) of De Morgan lead to the 

following rule (which can be extended to n variables): 

(37) [A*V,/W*>>^)]' Ξ \AA,\Afa(*>j>>z)r. 
§ 7. On the axiomatics of set theory 

The four axioms given in Chapter II, § 5, are not sufficient for 
the discussions of Chapter III. Adding three further axioms, we 
obtain a system of axioms which expresses all those properties 
of the set concept with which we shall deal in this volume, and 
which—generally speaking—suffice for the applications of the 
theory of sets to other branches of mathematics. These are the 
new axioms. 

V. For every propositional function φ(χ) and for every set A there 
exists a set consisting of those and only those elements of the set A 
which satisfy this propositional function. 

As seen in § 1, we denote this set by the symbol 

{x: φ(χ)(χ e A)}, or, more briefly, by {x: <p(x)}9 

where the domain of variation of x is restricted to A. 
We had examples of the applications of axiom V in § 3. The 

existence of the sets {a}, {a, b), and so on (where a e A, b eA) 
follows from axiom V, since 
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{a} = {x: (x = a)(x e A)}, 

{a, b) = {x: [(x = a) V (x = Z>)K* e ,4)}. 

On the other hand, the existence of an ordered pair requires 
the use of a further axiom. 

VI. For every set A there exists a set, denoted by 2A, whose ele­
ments are all the subsets of the set A. 

VII. AXIOM OF CHOICE. For every family R of non-empty disjoint 
sets there exists a set which has one and only one element in common 
with each of the sets of the family R. 

We have not applied the axiom of choice yet but we shall use 
it in the later chapters. 

We point out that if we complete the system of axioms I-IV by 
means of the axioms V-VII we can at the same time omit some 
of the earlier axioms. In particular, axiom III follows from the 
rest, for the set 

A-B= {x: (xeA)(xeB)'}9 

exists by virtue of axiom V. 
Similarly, we can do without axiom II in the formation of the 

union of the sets A and B provided that we assume that both A 
and B are subsets of a fixed "space" C (which is usually the case). 
For the existence of the set 

A u B = {x: [(x e A) v (x e B)](x e C)} 

follows from axiom V. 
Axiom IV is also superfluous in applications; for in its place 

appears the axiom which asserts that the space under considera­
tion is a set. 

R e m a r k . Besides propositional functions φ(χ) where x 
is supposed to be bounded by a given set, we consider sometimes 
propositional functions without this restriction on x. We suppose 
only—what is sufficient for our aims1"—that the free variable 
x (as well as bound variables, if they appear in φ), ranges over 
arbitrary sets (and, of course, individuals belonging to a given 
set). Then we assume a new axiom asserting the existence of 

t For a more general approach, see A. P. Morse, A Theory of Sets, 
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Κφ = {χ: <p(x)} called a class1' and we add the term class to the 
list of primitive terms of set theory.* A class does not need to 
be a set (satisfying axioms I-VII); for example, the class of all 
sets (compare Chapter VI, § 2, Remark 2). 

Similarly, we consider propositional functions of two varia­
bles (p(x,y)9 i.e. relations (in the generalized sense), where x,y 
are variables ranging over sets. 
Exercises 

1. Prove that none of the implications in the table below can be inverted. 

V * Ay *(*> y) => Λ,\/*Φ(*. y) 

/ X \ 
\ X / 

2. Prove that 

V * ? W V AxVW Ξ V * / W * ) V y>(y)] = AyV* [K* ) V yOOL 
\/χψ(χ) Λ AxVW = V * / W * ) Λ VÜ0] s / \ , V x W * ) Λ vWl· 
3. Prove the following equivalences: 

/ \ * i l / W * . 7)1 => v(*)> Ξ Λ*\Λΐ?(*. y) => vWl. 
Λ*{[ \Λ w*. >0] => vW) Ξ A * . J M * . >o => vwi. 

4. Write down the definition of the uniform convergence of the improper 
00 

integral [ f(x,y)dy making use of quantifiers. 
a 

5. Show that each formula (8)-(l 1) is a particular case of the corresponding 
formula (25)-(27). 

Hint. Put Y = {a, b}9 φ(χ, ά) Ξ= ct(x) and <p(x, b) s β(χ). 
6. Sentences p can be considered as propositional functions, assuming 

that 
i/\xP) = P and (\Jxp) = p. 

Show that 

ΛχΙΡ V φ(χ)] s pV A*?(*). VxIP Λ <K*)1 Ξ /> Λ V*?>(*), 

Λ*[/> =>?(*)] = IP => Λ*?(*)ΐ, Λχ&ω =>ρ] Ξ i ( A ^ w ) =>pi. 
t Following P. Bernays (Axiomatic Set Theory). 
t See K. Gödel, The Consistency of the Axiom of Choice and of the Gener­

alized Continuum-hypothesis with the Axioms of Set Theory9 Princeton, 1940. 



CHAPTER IV 

THE MAPPING CONCEPT. INFINITE 
OPERATIONS. FAMILIES OF SETS 

§ 1. The mapping concept 

D e f i n i t i o n . Every relation ρ such that the conditions xqy 
and xqy' imply y' = y is called a mapping (or a. function). 

Under the above assumption we write y=f(x) instead of 
xqy (since y is uniquely determined by x) and denote this mapping 
by / If x ranges over the set X and y belongs to Y9 we call X the 
domain o f / a n d Y its range, and we say t h a t / i s a mapping ofX 
into Y. The elements of X are also called the arguments o f / a n d 
the elements f(x) its values. 

Clearly, the set G = {{x,y}: [y = / (*)]} , called the graph of/, 
is a subset of XX Y. Its characteristic property is that for every 
x eX there exists one and only one y such that <x,y) e G. As in 
the case of arbitrary relations, we may identify/and G (when no 
confusion can occur). 

The set of all mappings / of X into Tis denoted Yx. Instead of 
/ e F w e write also 

f:X-+Y or X--+Y. 

Clearly, in the case where X and Y denote sets of real numbers 
G denotes the graph of the function / in the usual sense of the 
word. An analogous remark applies to a function of two real 
variables (or a function of a complex variable). 

We do not assume that the values of/fill the entire set Y. But 
if this condition is fulfilled, then we say that / i s a mapping of the 
set X onto the set Y. 

If X is the set of natural numbers, then we call / an infinite 
sequence. Instead of/(«) we then wri te/ , (or more frequently an) 
and we call the values of/ terms of the sequence. 

50 
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R e m a r k 1. The same notation and terminology can be 
applied to the more general case, where X and Y are classes (see 
Chapter III, § 7, Remark). Then the graph G o f / i s a class. 

R e m a r k 2. Let A c X, B c Yand/: X -+ Y. If/transforms 
A onto B9 we write/ : (X, A) -> (Y, B). 

D e f i n i t i o n 1. Let / : X -► Y and g: Y -> Z. The mapping 
h defined by the condition 

(0) Kx) = g[f(x)] 

is called composed and is denoted by h = g o / (or briefly gf). 
f 8 g°f 

In other words, if X--+ Y—*Z, then X—>Z. 
Obviously 

[* = (g°f)(x)] Ξ \ A b =Λ*)] [z = *(y)l· 
One can easily show that the composition of mappings is asso­

ciative, i.e. 

(hog)of=ho(gof) if χ Λ τ Λ ζ Λ ^ 
(this means that Xx is a semi-group relative to the operation g of). 

The composition of mappings can be represented by the commu­
tative diagram 

X--+Y 

z 
speaking, the diagram 

jsr-Cr 
*1 U 
T-*Z 

k 
is said to be commutative ifgof= k o h, i.e. if 

g[f(x)] = k[h(x)] whatever x e X is. 

D e f i n i t i o n 2. Let / : X -► Y, fx: * \ -> Y and Z c Z x . 
If/(x) = / i ( x ) for each x e X, we cal l / i an extension o f / a n d / 
a restriction of / t . We write then 

/ < = / , and / = /1 |JT. 
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§ 2. Set-valued mappings 
We shall now consider the case where the values of the mappings 

are sets. Thus, let F be a mapping whose domain is a non-empty 
set T and whose range is 2X, i.e. 

F: T->2X, hence F(t) c X. 

We shall write Ft instead of F(t). 
We introduce the following two operations 0.1 set-valued map­

pings, called generalized union and generalized intersection (which 
are analogues of the quantifiers \Jt and / \ f ) . 

Ui^f is the set of all x which belong to at least one of the 
sets Ft. 

C\tFt is the set of all x which belong to all the sets Ft. 
In the notation of logic this means that 

(2) (xentFt) = At(*eFt). 

It is to be noted that the existence of the sets VJtFt and (~\t Ft 

can be deduced from our axioms (see also § 5, Remark). 
These operations are indeed generalizations of known opera­

tions of union and intersection of sets (see Chapter II, § 1). For, 
if the set T consists of the numbers 1,2, ..., n, then 

\JtFt = F1vF2v ...vFn9 ntFt = F1nF2n...nFn. 

Let us add that if F is an infinite sequence of sets, i.e. if T is 
the set of natural numbers, we use the notation U£Li Fn instead 
of UtFt9 HLi Fn instead of Π tFt. 

We now set down several formulas which can easily be proved 
((4) is the generalized De Morgan formula): 

(3) ntFtczFtczUtFt9 

(4) (UtFty = D,/7, (HtFtY = L U C , 
(5) ifFt c A for every t, then \JtFt a A, 

(6) if A c Ft for every t, then A a ΓΊί^τ-

As an example, we shall prove formula (5). Hence, let x e {JtFt. 
By virtue of (1) there exists a t0 such that x e Fto; but by assump­
tion Fto a A. Therefore x e A. This means that [JtFt <=: A. 
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R e m a r k . As in Chapter HI (cf. Remark, § 2) we also make 
use of the operations UV(» Ft and P)V(i)2r

f, where ip(t) is a given 
propositiorial function. The meaning of these operations is defined 
by formulas (1) and (2), replacing \Jt by Vv(0 a n d U* by U n o 
and so on. 

§ 3. The mapping Fx = {y: <p(x, y)} 
Let φ(χ, y) be a given propositional function of two variables 

xeX and y e Y. For fixed x0, {y: <p(x0,y)} is some subset of 
the space Y. Hence, if we put 
(7) Fx = {y: <p(x,y)}, 
we define a set-valued mapping F which assigns to every element 
x e X a subset of the space Y. Let us apply the operations U * 
and Dx to this mapping. We obtain the following formulas 
which display the duality between these operations and quantifiers 
(compare Chapter III, § 1, (2) and (3)): 

(8) UAy- <p(x,y)} = ir- \iM*>y)}> 
(9) nx{r- <p(x,y)} = {y· /\M*,y)}· 

In fact, by formulas (1), § 2, and (1), Chapter III, § 1, we have 

y0 e Ux{y: <p(x,y)} = \/x\yo e {y: <p(x,y)}] 
= \/x<p(x,yo) = Jo e {y: \/x<p(x,y)}. 

Formula (9) is proved analogously. 
The set {y: \Jx<p(x9y)} has the following interesting geometric 

interpretation. 
Noting the analogy to analytic geometry, we shall say that 

the element <x, y} of the cartesian product Xx Y has the abscissa 
x and the ordinate y9 and that X is the axis of abscissas and Y is 
the axis of ordinates of the space XxY. Similarly, if A c l x 7 , 
then the set of abscissas of the elements of the set A will be called 
the X-projection of the set A and the set of ordinates will be called 
the Y-projection of A, Now: 

(10) the set {y: \Jx(p(x,y)} is the Y-projection 
of the set {<*,>>>: <p(x,y)}. 
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In fact, y0 is an element of the Y-projection of the set A 
= {(x>y}: <p(x>y)} if a n ^ only if there exists an x0 such that 
Oo, Jo> e A, i.e. if <p(*o, JO) holds; in other words, if \/χφ(χ9 y0\ 
i.e. if y0e{y: \/x<p(x,y)}. 

The universal quantifier does not lead to such a simple geometric 
interpretation. 

EXAMPLE. By the parametric definition of the circle S with 
centre <0,0> and radius r the point {x,y} belongs to this circle 
if there exists a t such that 
(11) x = rcost9 y = rsint9 

that is 

S = {{x,y}: \/t(x = rcost)(y = rsini)}· 

This means that the formulas (11) which give the parametric 
definition of the circle S define this circle as the projection onto 
a subset of the plane Χχ Υ (i.e. the XF-projection) of the helix 
lying in the three-dimensional space XX Yx T and defined (in 
an explicit manner) by the same system of equations (11). 

§ 4. Images and inverse images determined by a mapping 
Let f: X -+ Y. Suppose A c X. We denote the image of the 

set A with respect to/by/(v4), i.e. f(A) is the set of values which 
/assumes when x ranges over the set A; in other words, 

(12) [y ef(A)] = \Jx(*e A) (y = /(*)), 
i.e. 

f(A) = {y: \/x(xeA)(y=f(x))}. 

Thus/04) is the projection of the set/|^4 into the Y-axis. 
The inverse image of the set B contained in Y is the set/"1 (B) 

consisting of all x such that/(^) e B; thus 

(13) [x ef~\B)] s [/(*) e B\, i.e. f~\B) = {x: f(x) e B}. 

(In order to avoid misunderstanding we assume that A φΧ 
and B φ Υ.) 

For example, for the function given by the equation y = x2, 
the set/-1({l}) consists of two numbers: 1 and —1. 
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Let us note the following formulas: 
(14) f(AivA2)=f(A1)vf(A2) 

and more generally f({JtFt) = U f M ) , 
(15) f{A1nA2)czfi(A)nf(A2) 

and more generally f(C\tFt) c Πί/(Ή), 
(15a) AAi)~AA2) ^ΑΑ,-Α^, 

f'HB, u B2) =f-1(Bl)uf-\B2), 
(16) 

ri(Ui^) = ui/-i(c?f), 
f-*(Bx n B2) = / - 1 (^ i ) r x T W , 

(17) ricniGi)=ni/-i(Gi), 
(17a) r 1 ^ ! -B2) =f-i(B1)-f-\B2), 
(18) fr1(B) = B if 2?cz/(X), 
(19) il af-if(A); 
iff: Z - 7, g: Y-+ Z and h = gof, then 
(20) h'x(C) =f~\g-\C)) for each C c Z. 

We shall prove, say, formula (15). Since ( f l t ^ ) ^ Ft, we 
have/(PitJF;) <=/(iv> and (15) follows by (6). 

§ 5· The operations U ^ and C\R. Covers 
Besides the operations U*and ΓΊ* on mappings we consider 

the operations U ^ and f}R on families of sets. Namely assuming 
that I? is a family of subsets of some fixed set A, we denote by 
U ^ the union and by OR the intersection of all sets belonging 
to the family R, that is 
(21a) xe[jR = \Jx(xeXeR), 
(21b) xe HR = A * K * e R) => (xeX)]. 

We use the same terminology ("union" and "intersection") 
here as in the case where R is a family consisting of a finite number 
of sets: R = {Al9 ...,An}; for 

\^JR = A1 u A2 u ... u A„, 
C]R = At r\A2 n ... r\An. 
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It is easy to see that 

n Ä c J c l j Ä for each XeR, 

( J 0 = 0 , Π0 = Α9 U2A = A. 
R e m a r k . We have assumed that all members of the family 

R are subsets of a fixed set A. This assumption allows us to deduce 
the existence of the set \JR from axiom V of Chapter III, § 7. 
Without this assumption the existence of the set \^JR would 
require a new axiom (called the generalized Axiom of union). 

D e f i n i t i o n s . If (JR = A, R is called a cover of A. 
If, moreover, the members of R are disjoint, R is called a partition 
(or a decomposition) of A. 

If R and 5 are two covers of A and to each X e S there exists 
Y e R such that X a Y, then S is called a refinement of R. 

The notions defined above have important applications in 
topology. 

§ 6. Additive and multiplicative families of sets 
We say that the family R of sets is additive if 

(22) (XeR, YeR) => (Xu YeR), 

multiplicative if 

(23) (XeR,YeR)=>(XnYeR), 

subtractive if 

(24) (X e R, Y e R) => (X-Y e R). 
An additive and subtractive family of sets is multiplicative 

since I n Y = X— (X— Y). Clearly, the operations of union, 
intersection and subtraction performed on sets belonging to that 
family do not take us outside it (we say that this family is closed 
relative to these operations). 

EXAMPLES. The family of finite subsets of a fixed set A satisfies 
(22)-(24). Sets which are the unions of a finite number of closed 
intervals form an additive family, but they do not form a sub-
tractive family. 

THEOREM. For every family Z of subsets of a set A there exists 
(I) a smallest additive family R, such that Z a RSi 
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(2) a smallest multiplicative family Rp such that Z c Rp, 
(3) a smallest additive and subtractive family of sets Rc such 

that Z c Rc. 
Proo f . Let us denote by M the totality of all additive fami­

lies R which satisfy the condition Z c R (consisting of subsets 
of the set A). Obviously Jiφ 0, for the family of all subsets 
of the set A is an element of the totality Ji. Let 

(25) Rs = C\M. 

We shall show that the family Rs is additive and that Z a Rs. 
Let XeRs and let YeRs. Therefore (cf. 21b)) XeR and 

YeR for every ReJi. Since the families R belonging to Ji are 
additive, we therefore have X \JYeR\ but since this last formula 
holds for every Ä e l , hence (cf. (21b)) Z u YeRs. 

We shall next prove that Z c Rs. By assumption we have 
Z c R for every ReJt. In other words, if XeZ, then XeR; 
and therefore XeRs. This means that XeZ=>XeRS9 i.e. that 
Z cR5. 

Finally, the family Rs is the smallest additive family containing 
the family R, being the intersection of all the families with this 
property. 

In order to define the family Rp9 we denote by Jf the totality 
of all multiplicative families R which satisfy the condition Z a R 
and we set 

(26) RP = f\jr. 

The proof of the fact that the family Rp satisfies condition (2) is 
entirely analogous to the preceding proof. 

We define the family Rc in a similar manner. 
R e m a r k . Denoting by Z the family of all the one-element 

subsets of the set A, we obtain as Rs the family of all finite subsets 
of the set A. 

It follows that a necessary and sufficient condition that the 
set A be finite is that the family of all its non-empty subsets be 
identical with Rs. This equivalence can serve as the definition 
of a finite set (which does not refer to the concept of natural 
number). 
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§ 7. Borel families of sets 
We say that the family R of sets is countably additive or countably 

multiplicative if the conditions X„eR for n=l,2, ... imply 
that 
(27) U : = J n e R, or Π Π ι *» 6 tf, respectively. 

(These concepts play an important role in the theory of proba­
bility.) 

We shall encounter a rather large number of examples of 
families of this sort in the second part of this book; e.g. the 
family of closed subsets of the space of real numbers is countably 
multiplicative (a closed set is a set which contains all its accu­
mulation points); the family of its complements is countably 
additive. Note that the family of closed sets is not only countably 
multiplicative, it is absolutely multiplicative, i.e. the intersection 
of an arbitrary family of closed sets is closed (see Part II, Chapter 
X, § 5). 

A family of sets is said to be a Borel family if it is simultaneously 
countably additive and countably multiplicative, i.e. if it is 
closed relative to the operations U ^ l i and ΠΓ=ι· 

The following theorem, analogous to the theorem of § 6, holds: 
THEOREM. TO every family Z of subsets of the set A there exists 
(1) a smallest countably additive family Ra such that Z <= Ra, 
(2) a smallest countably multiplicative family R5 such that ZczRÖ9 
(3) a smallest Borel family Rß such that Z c Rß. 
In order to prove (1) let us consider the totality %l of all countably 

additive families R which satisfy the condition Z c R (and con­
sist of subsets of the set A) and let us set Ra = Π ^ - In exactly 
tl\e same way that we proved the theorem of § 6, we show that 
the family Ra satisfies condition (1). 

The families Rd and Rß are defined analogously. 
R e m a r k s . We also say that the family Rß is the Borel 

family generated by the family Z If Z is the family of all closed 
intervals then the sets belonging to Rß are called briefly the Borel 
subsets of the space of real numbers. It is worth remarking that 
all the sets (contained in the space of real numbers) with which 
we have to deal in practice are Borel sets (cf. also Chapter XI, § 1). 
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§ 8. Generalized cartesian products 
Let Al9A29...9An9... be a given infinite sequence of sets. 

By the cartesian product of these sets we understand the set of 
all infinite sequences of the form 

(28) ai9 a2,..., an,..., where an eAn for every n. 

We denote this set by the symbol 

(29) π:=χΑ„. 
The product (29) when An = S 9 i.e. when An is the set of 

real numbers for all w, is especially important in applications. 
We denote this product by the symbol $**\ this is the natural 
extension of the concept of the w-dimensional Euclidean space 
Sn to an infinite number of dimensions. 

Similarly, if J denotes the interval 0 < t < 1, then */*S called 
the infinite dimensional cube, is the set of all infinite sequences 
with terms belonging to the interval «/. 

We obtain further generalizations of the concept of cartesian 
product by considering, instead of sequences, sets of arbitrary 
set-valued mappings. Thus let F: T -* 2X. Then the cartesian 
product 

(30) [JtFt 

is the set of all mappings f:T->X such that fit) e Ft (where 
t e T). Thus we have 

(31) (fen,Ft)= A,W)eF,]. 
As can be seen, when T is the set of all natural numbers, then 

the sets (30) and (29) are identical. It can also be easily shown 
that if Ft = X for each t e T, then Y\tFt = XT-

As in the case of a finite number of factors, we call the values 
fit) of / t h e coordinates of the point fe [JtFt. Hence fit) is the 
rth coordinate of / , and the mapping nt defined by the condition 

(32) * , ( / ) = Λ 0 

is the projection of Y\tFt into Ft. 
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If Xt = X for each t e Γ, then the mapping nt: XT -► X defined 
by the formula (32) is called the evaluation ofXT at t. The mappings 
nt define a mapping π: T-> X& ) called the evaluation of XT. 

R e m a r k . More generally, if Φ c XT we call the mapping 
et: Φ -> X such that 

(33) et(f)=f(t) for each feO 

the evaluation of Φ at t (we write sometimes e(t) instead of et). 
As before, the mappings et define a mapping e: Γ-»ΖΦ, 

called the evaluation of Φ. 
Let gf be the evaluation of Χφ a t / e Φ. In other words 

(34) gf(h) = A(f) /or Λ 6 Ζφ, a«rf Λακ* gf: Χφ - X. 
The following diagram is commutative (where Ζ = ΧΦ): 

f 
T—^X 

z 
In other words 
(35) f=gfoe. 
Because we have for each t eT (according to (0), (34) and (33)) 

(gf «0(0 = SrW)\ = gjie,) = et(f)=f(t). 

Exercises 

1. Prove the following formulas: 

(a) r\t(Ft n Gf) = C\tFt n C\tGt9 Ut(Ft u G,) = U r * t u U ft, 

(b) Π ί / Ί u H * f t = Γ \ . ( * ί u Gs) c r\t{Ft u Gt), 

(c) U i ( F f n Gf) c ( J r . . « ^ ft) = U r f t n U r f t , 

(d) H i W υ « ) = Λ u f V r , U i W n Ff) = Λ n U* * * · 

Prove that the inclusion sign cannot be replaced by the identity sign in 
formulas (b) and (c). 

2. Prove that if 
Λγ => A2 => ··. => An r> ... and £1 D ί 2 ^ ... =5 2?„ z> ... 

then 

ΠΠ°°=Ι(Λ u J5n)=n?=i4. ^ n ? = i * . 
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3. Prove that 

<UtFt)xQJtGt) = U M W X W , 

( Π Λ ) χ ( η Α ) - DtAFtXGs). . 
4. If F„ <= F0 for n = 1, 2 , . . . , then 

F0 - (Fo-FO u (Fx-F2) u (F 2 -F 3 ) u ... u H i - o f t . 

If F0 z> Fi 3 F2 => . . . , then 

(F i - f t ) u (F3-F4) u ... u H?=ofl. = Fo-KFo-FO VJ (F2-F3) u . . . ] . 

5. Ι ί Γ Τ = ι Λ π Π ? - ι Α = 0 and B0 = 1, then 

6. We define the /eas/ upper bound and the greatest lower bound of an 
infinite sequence of sets Fl9 F2 , . . . , F„,... as follows: 

LimsupFn = H ^ o U ^ o F ^ f c , LiminfFn = U *= 0 fT==o Fn+k. 
Prove the following formulas: 

(a) LiminL4£ = (Limsupy4n)c, 
(b) Liminf(yin n Bn) = Liminf^,, n Liminf5n, 
(c) Limsup(yi„ u B„) = Lim sup Λ„ u Lim sup Bn, 

(d) Ρ|5°=ιΛ c LiminL4n <= Lim sup Λ <= U * = i ^ n , 
(e) Liminf^,, vj Liminfi?,, <= Liminf04„ u £rt)» 
(f) Limsup(/4„ n #«) C Lim sup A„ n Lim sup 2?„, 
(g) Λ— LiminL4„ c Limsup(/4 — An)9 

(h) >4— Limsupyin <= Limsup(/4— Λ„). 
Show that the inclusion cannot be replaced by identity in the above 

formulas. 
7. If Lim sup Fn = LiminfF„, then we say that the sequence Fl9F2, ... 

converges to the limit 
LimFn = Lim sup Fn = LiminfF«. 

Prove that 

(a) if ^ c F2 c ..., thenU^=i^. = LrniF«, 

(b) if f , D F2 3 ..., m e n f ^ i ^ = LimF«. 

8. Define the characteristic function /A of the set A by the conditions 

(1 if xeA, 
10 if * e / i c , 

and prove the equivalence 
(F - LimF„) = (/f (*) = \imfFn(x)). 
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9. Prove the formulas: 
(a) Λ ί π Γ Η Β ^ η Β , 
(b) if A, c A2i then /(Λ0 <= / ( ^ 2 ) , 
(c) if A c 5 2 , then Γ 1 (A) <= /-i(B2) . 

10. Let # =*f\A (cf. Chapter IV, § 1). Prove that 
g-\B) = Anf-HB). 

11. Use the axiom of choice to prove that 

(a) Λ*\Λ?(*. y)Ξ V> A*?(*./(*))> 
(b> υ,η*^<=π*υ^*,,, 
(c) if the conditions x Φ Xi and y φ yi imply that 

then 

12. If if is a family of sets, we denote by 1?ρ the family of all sets of the 
form Z = X—Y, where X, YeR. Prove that RQ C Αρρ, and show by an 
example that the inverse inclusion can be false. 

13. Prove that 

Prove that if the elements of if i u l?2 are disjoint sets, then 

U(*i ntf2) = U*i ^ l > 2 . 
14. Prove that 

15. Prove that 

2A~B Z=2
A n 2B, 2^tAt = Dt2At. 

16. The mapping f: X-+Y induces the mapping d: ZY -> Zx defined as 
follows: 

d(<p) = 9?o/ for ψ e Z y . 
Let A: Z(zX) -> Z( z Y ) be induced by </. Show that if <? is the evaluation 

of Zx and # the evaluation of Z y , the following diagram is commutative (where 
£/ = Z«*>and K=Z<zr>): 

/ 

£/—> V 
h 

17. Let/ : Z-> Fand g: Y-»W. We call the mapping h = ( /x#): ( I x 
x Γ) -* (Kx W\ such that 

the product-mapping. 
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Show that, if M c V and N «= W, then 

h-l(MxN) =f-'(M)Xg-'{N). 

More generally, if ft: Xt -* Kf for r e Γ, we put 

h = ntft: IItXt->ntVt, 

where I» = h(z)] s Λ * Η 0 = /*(*('))] and zeIItXt. 

Show that, if M, <= Kf, then 

and if At ^ Xti then 

A( /7^ )=77 r / i ( ^ ) . 

18. Let / : X-+ V and #: X-+ W. We call the mapping h = .</,*>: 
A'-^FxH'such that 

*(*) = </(*),*(*)> 
the complex-mapping. 

Show that, if M <= κ and N c w, then 
h-'iMxN) = / - 1 (M) n ^ - J W . 

More generally, i£ft: X-+ Yt for f e Γ, let A: X -> 77, yf where nt oh=ft. 
Show that, if 5, <= yf, then 

h-l(IItBt) = Dr/rli*). 
and if Λ <= ^ then 

19. Let A' be a given set and ρ an equivalence relation defined on X Thus 

(36) χ ρ * , (*ρ>>) => (γρχ), (χργ)(γρζ)=> (χρζ). 

Given an element JC0 of X, the set 

(37) -P(*o) = {*: *ορ*} 

is called an equivalence set; the family of equivalence sets is called the quotient 
ΧΙρ. Show that the elements of Χ\ρ are disjoint and that X is their union. 

20. Establish the inverse theorem: if if is a partition of JC in non-empty 
(disjoint) sets, then there is an equivalence relation ρ such that 

(38) R = XIQ. 

21. Let Xj (J = 1,2) be two sets, ρ; two equivalence relations (defined 
on Xj) and Pj: Xj -+XJIQJ two mappings defined by the formula (37) (called 
projections). Let / : Xt -► X2 and suppose that 

(39) χ'οιΧ"=>ί(χ')ρ2ί(χ"). 
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Show that there is a mapping F: ΧιΙρι ->ΑΓ
2/ρ2 such that the following 

diagram is commutative 
/ 

Xi >X2 

Moreover if / is onto, so is F. 

22. As in Exercise 16, let 
(40) df(h) = hof for /: X-* Y and h: F->Z. 

Show that 
(41) dgof=dfodg if / : X-+Y and g: Y-> T. 

23. Let fy Xj -> Yj and gy Yj -► Z3 for j = 0, 1. Then the following 
distributivity holds (for the definition of a product mapping, see Exercise 17): 
(42) (g0 xgi) · (/o x / 0 = (go ·Λ) x fei °/i). 

More generally, if /,: Xt -* 7, and #,: Yi -► Z, for / e Γ, then 

(43) (77*,) · (/7/f) = 77(^ o / ,) (Bourbaki). 



CHAPTER V 

THE CONCEPT OF THE POWER OF A SET-
COUNTABLE SETS 

§ 1. One-to-one mappings 
The mapping/: X -* Yis said to be one-to-one (more concisely: 

1-1) if 

(1) {ΧΙ¥>Χ2)=>\ΛΧΙ)*ΑΧΙ)] 

or, equivalently, if 

(2) Utxi)=ÄXz)]=>(xi=X2). 

For example, the function x3 is one-to-one (in the domain of 
reals) but the function x2 is not. 

If the mapping / is onto, then / is one-to-one if it forms a set 
of pairs <*,}>> such that every element x eX is the predecessor 
and every y e Y is the successor of one and only one of these 
pairs. 

Still another way of stating this is: / i s one-to-one if for every 
y ef(X) the set/"1^) reduces to one element x (such that j> =/(*)). 
In this case we usually use the symbol/ - 1^) to denote x (and 
not the set {x}) and we call / - 1 the inverse mapping off; Y is its 
domain and X is its range. 

Obviously 

(3) b =/(*)] ^ [x=f-Hy)h 
THEOREM 1. The inverse of a one-to-one mapping is one-to-one. 
For 

(4) σ-τ1 =/. 
Geometrically, the transition to the inverse function can be 

interpreted (in the case where X and Y each denote the set of 
real numbers) as the reflection of the graph of the function with 
respect to the line y = x. 

65 
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THEOREM 2. The composition of two one-to-one mappings is 
a one-to-one mapping. 

In other words, if/ is a one-to-one mapping of the set X onto 
the set Y and g is a one-to-one mapping of the set Y onto the set Z, 
then the mapping h = g o / i s a one-to-one mapping of X onto Z. 

For, if A(*0 = h(x2), then g(/(*i)) =g(/(*2)), whence f(xj 
= f(x2), and consequently xx — χ 2 · 

Under the assumption that / is one-to-one, formulas (15) 
and (19) (Chapter IV, § 4) may be strengthened: they can be 
replaced by the formulas 

(5) f{AinA2)=f(A1)n(A2) 

and more generally f(C)t Ft = Dtf(Ft), 

(6) A =rxÄA). 

If / is one-to-one, we have besides the equivalence (13) of 
Chapter IV, § 4, the symmetric equivalence 

(7) [xeA]^\f(x)ef(A)}. 

First, we shall establish formula (7). If f(x) ef(A), there exists 
x1e A such that/(x) =/(xi) , which implies by (2) that xl = x 
and hence x e A. 

Conversely, x e A implies that f(x) ef(A). 
Formulas (5) and (6) can be established as follows (referring 

to formulas (2) and (13) of Chapter IV and to the equivalence (7)): 

/(*) e ntf(At) Ξ /\tf(x) ef(At) ^ f\txeAt 

= xentAt=f(x)ef(ntAt), 

x ef~lf(A) s f{x) ef(A) = x e A. 

R e m a r k . As in the Remark of Chapter IV, § 8, let Φ a XT
9 

let e: T -► Χφ be the evaluation of Φ, and gf: Χφ -> X the evalu­
ation of Χφ at / . Let e be one-to-one. Then by formula (35) of 
Chapter IV, we have 

/ o e'1 <= gf, i.e. /(«ΤΗΛ)) = g/(h) for h e e(T). 
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§ 2. Power of a set 
D e f i n i t i o n . Two sets X and Y are said to be equipollent, 

or to have the same power, symbolically 
Jf~ Y, 

if there exists a one-to-one mapping of X onto Y. 
If the set X is finite: X = (α1? ..., #„), then the set Y has the 

same power as X if and only if it has the same number n of ele­
ments. The concept of equipollent sets therefore coincides, in 
the case of finite sets, with the elementary concept of having 
the same number of elements; this concept can however be applied 
also to infinite sets. 

For example, the set of all odd natural numbers has the same 
power as the set of all even natural numbers; in fact, the function 
f(n) = n+\ establishes a one-to-one mapping of the set (1, 3, 5, ...) 
onto the set (2, 4, 6,...). 

Similarly, the set of all natural numbers is of the same power 
as the set of all even numbers (which shows that an infinite set 
can have the same power as a proper subset of itself!). Here the 
corresponding function is f(n) = In. 

Two intervals a < x < b and c < x < d are of equal power, 
as is easily shown using a linear mapping. The open interval 
—π/2 < x < +π/2 has the same power as the set of all real 
numbers; the corresponding mapping is y == tan x. 

Next, we shall show that the set of all natural numbers does 
not have the same power as the set of all real numbers; it will 
follow from this that, in the domain of infinite sets, there exist 
sets of different powers, and—as we shall show—there even 
exists an infinite number of infinite sets of which no two have 
the same power. 

THEOREM 3. The relation X ~ Y is an equivalence relation, 
i.e. 
(8) X ~ X, 
(9) (x~r)=>(Y~x)9 

(10) (X ~ Y)(Y ~ Z) => (X - Z). 
P r o o f . Formula (8) follows from the fact that the identity, 

i.e. the function f(x) = x, is a one-to-one mapping of the set 



68 SET THEORY AND TOPOLOGY 

X onto itself. Formulas (9) and (10) follow from Theorems 1 and 2, 
respectively. 

Theorem 3 permits the classification of sets with respect to 
their "power". This leads to the extension to infinite sets of the 
elementary concept of the number of elements in a set. Namely, 
to each set X we assign a cardinal number, or its power, which 
we denote by the symbol X, in such a way that the same cardinal 
number is assigned to two distinct sets if and only if these sets 
have the same power. 

The cardinal number of a finite set is the number of its elements. 
R e m a r k . Cardinal numbers play an auxiliary role in the 

theory of sets, inasmuch as all the theorems of set theory can be 
formulated without using them. However, many theorems gain 
in lucidity when expressed in terms of cardinal numbers. 

From the axiomatic point of view the introduction of cardinal 
numbers requires a new axiom, namely the axiom of their existence. 

One can also—using the term "class"—define X to be the class 
of all sets equipollent to X (cf. Chapter III, § 7). 
§ 3. Countable sets 

A set A is said to be infinitely countable if it has the same power 
as the set of all natural numbers; in other words, if its elements 
can be arranged in an infinite sequence of distinct terms. 

Finite sets are called countable sets as well. 
Hence a nonvoid set is countable if its elements can be arranged 

in an infinite sequence (which may have repetitions). For, if the 
infinite sequence contains an infinite number of distinct terms, 
then there exists a subsequence which contains each of these 
terms precisely once. 

As we saw above, the set of even natural numbers (and similarly 
the set of odd natural numbers) is countable. 

THEOREM 1. The set of all real numbers is noncountable. 
To prove this theorem it obviously suffices to show that for 

every sequence of real numbers ai9 a2i ..., an9 ... we can define 
a real number c which does not belong to this sequence. 

To this end, we define a sequence of closed intervals piqi9 
PiQi, ~·>Ρη<Ιη> ··· which are such that 

qn ~Pn = 1 / 3 " , Pn qn <= Pn-iqn-l , «π Φ Pn Qn · 
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Thus, in the closed interval (0, 1) we determine a closed interval 
pxqx which does not contain the point at [this will be one of the 
three intervals (0, 1/3) or (1/3, 2/3) or (2/3, 1)]. Similarly, in the 
interval p^q^ we determine a closed interval p2q2 of length 1/9 
which does not contain the point a2. In general, in the closed 
interval pn-\qn-\ we determine a closed interval pnqn of length 
1/3" which does not contain the point a„. 

Let c be the common point of all the closed intervals p„q„: 

{c} = Π ^ ι Λ ί η , i.e. c = lim/>„ = limqn. 

Obviously, οΦ an for every n since an $pnqn whereas cepnqn. 
We shall now list several important properties of countable sets. 
THEOREM 2. The union A u B of two countable sets A and B 

is countable. 
In fact, under the assumption that the elements of the set 

A can be written in the form of an infinite sequence al9 a2, ..., 
an9 ..., and the elements of the set B in the form of a sequence 
bl9b29 . . . ,6», ..., we consider the sequence 

(11) al9bl9a29b2i . . . , # Λ , bn, ... 

The terms of this sequence obviously form the set A u B. 
It follows from this that the set of all integers is countable. 

For the set of all positive integers as well as the set of all nonposi­
tive integers is countable. 

THEOREM 3. The cartesian product of two (or, more generally, 
of a finite number) of countable sets is a countable set. 

P r o o f . We shall prove that the set of pairs <m,«>, where 
m and n are natural numbers, is countable. Hence we have to 
represent this set as a sequence. To this end, we adopt the following 
rule: of two pairs <m, n) and <m', n'} we consider that one to 
be the earlier whose sum of elements is smaller; but if m+n 
= m'+n', then the earlier pair is the one with the smaller ante­
cedent. And therefore this sequence can be represented as follows: 

(12) <1,1>,<1,2>,<2,1>,<1,3>,<2,2>,<3,1>, . . . 

From this we easily deduce, that given two arbitrary infinite 
sequences ai9 a2, ..., am9 ... and bl9 b29 ..., bn9 ..., we can write 
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the sequence of all pairs <tfm, bny in the form of an infinite se­
quence. 

The generalization from two to an arbitrary finite number 
of countable sets presents no trouble. 

If follows from Theorem 3 that the set 0t of all rational numbers 
is countable. 

For, every positive rational number can be represented as 
a pair of numbers p/q (in the irreducible form), i.e. the set of 
positive rational numbers can be represented as a subsequence 
of the sequence (12). The set of positive rational numbers is 
therefore countable. The same is true of the set of negative rational 
numbers together with the number zero. Therefore, according 
to Theorem 2, the set of all rational numbers is countable. 

From Theorem 3 it also follows that every double sequence 
{amn} can be transformed into a simple sequence, i.e. it is possible 
to write down the elements of the array 

#11 J #12> ♦··> #lit9 · · · 

#21> # 2 2 s · · · > #2n> · · · 

(13) 
# m 1 5 # m 2 ? · · · 5 **mn > · · · 

in the form of the infinite sequence 

(14) #11,#12>#21>#13> ·· 

From this we deduce the following theorem: 
THEOREM 4. The union S = At u A2 u ... u Am u ... of a 

countable sequence of countable sets is countable. 
P r o o f . We write each of the sets Am in the form of a sequence 

ö m i ,ö m 2 , . . . , amn9 ..., and then we transform the double sequence 
{amn} into the simple sequence (14) (perhaps with repetitions). [Here 
we apply the axiom of choice (Chapter III, § 7), for the set of 
sequences consisting of the elements of the set Am contains more 
than one element (and none of them in general can be distin­
guished).] 

THEOREM 5. The set of all finite sequences with terms belonging 
to a given countable set is countable. 
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For this set can be represented in the form of a union At u A2 u 
... u Am u ..., where Am is the set of sequences with m elements. 
And the countability of the set Am follows from Theorem 3. 

From this we deduce that the set of all polynomials with rational 
coefficients is countable. 

For every polynomial is determined by its coefficients, i.e. the 
polynomial a0+axx+ ... +amxm is determined by the sequence 
consisting of m+1 rational numbers a0,al9 ..., tfm. 

COROLLARY. The set of all algebraic numbers is countable. 
In fact, the set of all polynomials with rational coefficients is 

countable and hence we can write it in the form of an infinite 
sequence wl9 w2, ..., wm, ... Let Am denote the set of roots of the 
equation wm(x) = 0; this set, as is known, is finite (the number of 
its elements does not exceed the degree of the polynomial wm). 
By virtue of Theorem 4, the set A± u A2 u ... u Am u ..., i.e. 
the set of all algebraic numbers is therefore countable. 

R e m a r k . This last result together with Theorem 1 leads to 
the result that transcendental (i.e. nonalgebraic) numbers exist, 
and even that there is a noncountable number of them (for the 
union of two countable sets is countable). Making use of the 
methods given here, one could even define a transcendental 
number; namely, to this end we set down all real algebraic numbers 
in the form of an infinite sequence and then apply the method 
used in the proof of Theorem 1, which determines a real number 
not belonging to this sequence. 

We recall that the numbers e and π are proved to be transcen­
dental numbers—by entirely different means. 

Exercises 
1. Consider the transformation of the plane into itself given by the system 

of equations 
x — au+bv, y = cu+dv. 

Give the conditions on the coefficients a, b, c, d under which this trans­
formation is one-to-one. 

2. Is the homographic transformation of the Gaussian plane (i.e. the 
plane of complex numbers together with the point at infinity) 

w = (az+b)l(cz+d) 
one-to-one? 
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3. Suppose uit u2i · · . , u„,... is a given sequence of real numbers. Let 
un = cn0' cnicn2cn3 ... 

be the decimal expansion of the number un containing an infinite number 
of digits different from 9. 

We define the number / = 0* eie2e3 ... in the following way: en = 0 
if cnn Φ 0, en — 1 if cnn = 0. Prove that the number / is not a term of the 
sequence ul9 u2i ·.·, and deduce from this Theorem 1, § 3. 

4. Prove that the set of all intervals (in the set of real numbers) with both 
endpoints rational is countable. 

5. We say that a function f (with real arguments and values) has a proper 
maximum at the point a if there exists an interval be containing the point 
a in its interior such that the conditions b < x < c and x φ a imply the 
inequality fix) < f(a). Prove that the set of proper maxima of the function 
/ is countable. 

Hint: Give the points b and c rational values. 
6. Prove that every family of disjoint intervals is countable. 
Hint: Make use of the countability of the set of rational numbers. 
7. Prove that the set of points of discontinuity of a monotonic function 

is countable. 
Hint: A monotonic function has at every point a left and right limit 

(which are different at points of discontinuity). Then make use of Exercise 6. 
8. Prove that the set of spheres (in 3-dimensional space) which have 

both rational radii and rational coordinates of the centre is countable. 
9. With the notations of Exercise 21 of Chapter IV, show that, if 

x'Qix" =f(x')Q2f(x"), 
then the mapping F is one-to-one. 

10. Establish the following formulas (used in the next chapter): 
(a) (AxB) ~ (BxA), 
(b) [Ax(BxQ]~ [(AXB)XC], 
(c) (A, - Bi)(A2 - B2) => [(Αχ XA2) - (Bt xB2)]9 

(d) (A - B) => (2A - 2B), 
(e) (Ax{a})~A, 
(f) [(Λχ~ Β,)(Α2 - B2)(AL nA2=0 = Btn B2)] 

=>[(AL VA2)~ (B, UJ52)]. 



CHAPTER VI 

OPERATIONS ON CARDINAL NUMBERS. 
THE NUMBERS a AND c 

We denote the power of the set of natural numbers by a (or X0) 
and the power of the set of real numbers (the power of the "con­
tinuum") by c. 

The numbers a and c are the most important of the infinite 
cardinal numbers which occur in analysis and geometry. So far, 
we know (Chapter V, § 3, Theorem 1) that 
(1) a # c . 

The operations on arbitrary cardinal numbers which we shall 
now define will interest us primarily in relation to the numbers a 
and c. 

§ 1. Addition and multiplication 
The sum m+n of two cardinal numbers m, n is defined to be 

the power of the union of two disjoint sets which have the powers 
m and n respectively. 

We therefore have 
(2) Χ+Υ=¥ϋΎ, if XnY=0. 

We note that for every pair of sets X and Y there_exists a pair 
of disjoint sets Xx and Y± such that X1 = X and Y± = Y. For, 
denoting any two distinct elements by a and b, it suffices to set 
χί = {a}xX and Y1 = {b}xY. 

Keeping this remark in mind, we can assert that for every two 
cardinal numbers their sum is defined uniquely (i.e. independently 
of the choice of the sets A" and Y, compare Exercise 10(f) of Chap­
ter V). 

We define the product m · n of m and n to be the power of the 
cartesian product of two sets having powers m and n respectively, 
i.e. 
(3) XY=Xxf. 
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Thus, the product of cardinal numbers is uniquely defined 
(comp. Exercise 10(c) of Chapter V). 

It can easily be verified that the above definitions, in the case 
where m and n denote natural numbers, are in agreement with 
the usual definitions of addition and multiplication in arithmetic. 
We deduce from Theorems 2 and 3 (Chapter V, § 3) that 

(4) a+<t = a, α ·α = α, a+n = a, α·η = α, 

where n is a natural number. 
Multiplication and addition satisfy the associative and commu­

tative laws. The distributive law is also satisfied: 

(5) m· (n+p) = m· tt+m· p. 

For, let m = X, n = Y and p = Z where Yn Z = 0 . Then 
(cf. Chapter III, § 4 (18) and (21)): 

XX ( F u Z) = Xx Γ u XX Z , 

( l x y ) n ( Z x Z ) = Z x ( 7 n Z ) = 0 , 

and therefore Xx ( 7 u Z ) = Z x F + X x Z, which was to be 
proved. 

It follows from this (by induction) that 

(6) xxx' n = m+ m+ ... + m, 

where the right member has n terms. 
For formula (6) is obvious for n = 1, and by virtue of (5): 

m · (n+l) = m· w+m· 1 = m· n+m. 

Equation (6) asserts that m · n is the power of the union of n 
disjoint sets each of which is of power m. This theorem can be 
generalized to the sum of an infinite number of terms as follows. 

Let T = rx and let F: T -> 2X be a set-valued mapping such that 

(7) Ft=m9 FtnFt. = 0 for ίφί\ 

then 

(8) \JtFt— m· n. 
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P r o o f . Let t0 be a fixed element of rand let gt be a one-to-one 
mapping of Fto onto Ft (we apply the axiom of choice here). Let 
us set 
(9) f(x, 0 = gt(x)> where x e Fto and t e T. 

/ i s a one-to-one mapping of the cartesian product F,0x T onto 
the union {JtFt. For let 

(10) Λ * , 0 = / ( * ' , ' ' ) , i.e. gt(x) = gv(x')· 
If t Φ t\ then gt(x) Φ gt>(x')> since gt(x) e Ft, gr(x') e Ft,9 and 

FtnFv - 0 . 
Thus t = t'. If x ^ x', then &(*) # &(*')> because gf is one-

to-one. 
Therefore, (10) implies that t = t' and x = x'. 
We have thus proved that the sets FtoX T and ^JtFt have the 

same power. This completes the proof of formula (8). 

§ 2. Exponentiation 
Let X = m and 7 = n. The cardinal number nm is defined to 

be the power of the set, denoted by Yx, of all mappings/: X -> Y> 
i.e. 

The following formulas, known from the arithmetic of natural 
numbers, are valid: 
(11) nm+» = nm-n*, 
(12) (mn)* = m» · n*, 
(13) (nOT)* = n«1». 

P r o o f . Let m = X, n = Y and p = ΓI 
In order to prove formula (11), we must prove that 

(14) YX^T ~ Yxx YT provided X n Γ = 0 . 

Hence, let / e F ^ r . Assign to / the pair <J\X9 f\T}. This 
correspondence, as can easily be verified, establishes a one-to-
one correspondence between the elements of the sets YX^T and 
YXXYT. Thus formula (14) is proved. 
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Formula (12) means that 

(15) (XxY)T ~ XTxYT. 

Let fe (XX Y)T. Hence / i s a complex mapping, i.e. its values 
are ordered pairs belonging to Xx Y; we can therefore write 

AO = <g(f), *(0>, where g(t) e X and h(t) e 7 . 

And therefore g eXT and h e YT. We have thus assigned to / 
a pair <g, A>, i.e. an element of the set XTX YT. It is easy to verify 
that this correspondence is one-to-one. This yields (15). 

In order to prove (13) we have to show that 

(16) (YX)T ~ YX*T. 

Hence l e t / e YX*T. /assigns to every pair <x,f> the element 
f(x91) of the set Y. For a fixed t we obtain a function g, of the 
variable x defined by means of the formula 

(17) g,(x)=f(x,t), 
i.e. gt e Yx, for every value of the variable /. We have thus defined 
a mapping—let us denote it by g—which assigns to elements of 
T elements of Yx, i.e. g e (YX)T. 

To every/belonging to YXxT we have therefore assigned some 
g belonging to (YX)T. It is easy to prove that this correspondence 
is one-to-one. 

Let us now consider certain particular cases. 
It is almost obvious that 

n1 = n 

(in this case the domain reduces to a single element). 
Let m be a natural number. By (11) we have 

n m + l = n m . n l = n m . n 

And therefore (by induction) 

(18) nm = η· η· ... · n, 

where the right-hand member has m factors. 
It also follows that the definition of exponentiation of cardinal 

numbers which we assumed coincides with the arithmetic definition 
when these numbers are finite (m = m, it = n). 
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Let us now assume that n = 2. Hence let X = m, and Y = {0, 1} 
(i.e. Y is the set consisting of two numbers: 0 and 1). Hence the 
set Yx is the set of functions defined on the set X and assuming 
only two values 0 and 1 (or only one of them). We call such func­
tions characteristic functions (see Chapter IV, Exercise 8); namely, 
the function satisfying the condition 

i l for x e A, 
0 for XeX-A 

is the characteristic function of the set A. 
The set {0, 1}X and the set of all subsets of the set X are of equal 

power, namely of the power 2m, where m = X. 
P r o o f . Assign to the set A c X its characteristic function 

fA. This correspondence is one-to-one. For let A Φ B and let 
a eA—B. Hence we have fA(a) = 1 but fB(a) = 0 and therefore 
/A T*/B- Here every characteristic function has been assigned to 
some subset of the set X. 

CANTOR THEOREM. 2m Φ m; in other words, no set X has power 
equal to that of the family of all its subsets. 

P r o o f . It suffices to show that if F: X -> 2X, F is not an onto 
mapping, i.e. that there exists a set Z c X which is not a value 
of F. (This is the so-called diagonal theorem.) The Cantor theorem 
will follow because if the set X were of power equal to that of 
the family of all its subsets, then there would exist a (one-to-one) 
mapping F: X -+2X onto. 

Define the set Z as follows: 

(20) Z={x: xφF(x)}. 

We have to show that Z Φ F(x) for every x eX. Let us assume 
on the contrary that Z = F(x0). By virtue of (20) the following 
equivalence holds: 

(xeZ)^ [χφΡ(χ)]. 

Setting x = x0 in this equivalence, we obtain 

(x0eZ) = [x0 4-F(x0)]9 

and therefore Z φ F(x0), which is a contradiction. 



78 SET THEORY AND TOPOLOGY 

R e m a r k s . 1. The diagonal theorem can be illustrated geo­
metrically as follows. Let X be the closed interval 0 < x < 1. 
We place the set F(x), which by assumption is a subset of this 
interval, on the vertical line passing through the point x. In this 
way we obtain a planar set M = {<*,>>>: yeF(x)} contained 
in the square XxX. Let P denote the diagonal of this square. 
Thus, the set Z is the projection of the set P—M onto the Z-axis. 

2. The proof of the Cantor theorem given above permits us 
to verify easily that the family of all subsets of the set X is not 
of the same power as that of any of the subsets of this set. 

It follows immediately that there does not exist a set of all sets 
(for the family of its subsets would itself be one of its subsets). 

This same conclusion follows, after all, immediately from the 
theorem on the diagonal. For, if there existed a set X whose ele­
ments were all sets, then the mapping F defined by the condition 
F(x) = x (i.e. the identity) would obviously assume as values 
all subsets of the set X (since these subsets would be elements 
of the set X). 

Let us add that from the (false) assumption that there exists 
the set of all sets there follows the existence of 

Z = {x: (x φχ)}. 
However, the existence of the set Z leads immediately to a con­

tradiction (called the Russell antinomy) because x e Z = x φ χ, 
and therefore Z e Z = Z φ Ζ. 

The theorem on the non-existence of the set of all sets was 
deduced by us from the axioms given in Chapter III, § 7. The 
assumption, that for a given set A, the propositional function 
ψ(χ) (with unbounded domain of variation for x) determines 
the set {x: φ(χ) (x e A)} plays an essential role in the formulation 
of axiom V. Omitting the expression x e A would lead to a con­
tradiction. For, taking as <p(x) the propositional function "x is 
a set", we should obtain as an immediate consequence the existence 
of the set of all sets which — as we saw — leads to a contradiction. 
Thus the class of all sets (which does exist, comp. Chapter III, 
§ 7) is not a set. 

Let us note that in the period before the axiomatization of set 
theory, and hence in the period of "naive" set theory, it was 
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common to assume as obvious the existence for every proposi-
tional function φ(χ) of the set {x: <p(x)}. This has led to the con­
tradictions which we mentioned above (which were then called 
antinomies of set theory), and which have necessitated revising 
the foundations of set theory. The axiomatic theory of sets, which 
arose around 1904, eliminated these antinomies. 

§ 3. Inequalities for cardinal numbers 
Let X — m and Y = n. Let us assume that m ̂  n if the set X 

has the same power as some subset of the set Y. Therefore 

(X a Y)=>(X < 7 ) . 
If m < n and m Φ n, then we write m < n. 
By virtue of (1) we have 

(21) a < c. 
We can state the Cantor theorem (§ 2) in the form 

(22) * m < 2 m . 
In fact, m Φ 2m, and at the same time m < 2m, since the set X 

has the same power as the family of all its one-element subsets. 
It is easy to prove the following formulas: 

(23) if m < n and n < p then m < p , 
(24) if m < n then m+*> < n+p, 
(25) if m < n then mp < up, 
(26) if m < n then m*> < η», 
(27) if m < n then pm < *>n. 

We shall now prove the fundamental Cantor-Bernstein theorem: 
(28) if m^i n and n^m then m = xi. 

P r o o f . Let X = m. Since n < m, the set X contains a subset 
Y of power n. But since m < n, the set X is of power equal to 
that of some subset of the set Y; i.e. there exists a one-to-one 
mapping/defined on X such that 
(29) f(X) c 7 c l 

We have to define a one-to-one mapping g of A" onto Y. 
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Let us set 
(30) Z = Y-ftX), S = ZKJ/(Z)U ff(Z) u ... 
(see Fig. 4 in which X is the largest rectangle, Y is the second in 
size,f(X) is the third, and so on; X—S is the shaded part). 

FIG. 4 

We define g as follows: 

{ x for x e S, 
f(x) for xeX-S. 

We shall first prove that 
(32) g(X) = Y. 

Since S <= X, 
(33) X=Su(X-S). 

And therefore 
(34) g(X) = g(S) u g(X-S) = Su f (X-S) 
by virtue of (31). At the same time (because of (30) and Chapter 
IV, §4, (14)): 

f(S) =f(Z) u ff(Z) u fff(Z) u ..., 
and hence applying (30): 
(35) S = Z u / ( S ) . 

From this and (34) and (33), we obtain 
g(X) = Suf(X-S) = ZKJ f(S) uf(X-S) = Z uf(X), 



VI. OPERATIONS ON CARDINAL NUMBERS 81 

but by (30) we have 

Z u f{X) = [Υ-ΛΧ)] u f(X) = Y. 

We have thus proved formula (32). 
It remains to show that g is one-to-one. 
Since (according to (31)) g is one-to-one on each of the sets 

S and X—S separately, we ought to prove that 

(36) g ( 5 ) n g ( I - S ) = 0 . 

Now by (31) we have 

(37) g(S) = S and g(X~S) = f(X-S) =f(X)-f(S); 

at the same time, f(X) =f(X)—Z because f(X) n Z = 0, and 
hence 

f(X)-f(S) =f(X)-[Z yjf(S)] =RX)-S 

because of (35). 
Hence, we have S n [f(X)—f(S)] — 0 , whence formula (36) 

follows by virtue of (37). 
This completes the proof of the Cantor-Bernstein theorem. 
Another form of this theorem, which is frequently used, is the 

following: 

(38) if A c B c C and A = C, then A = B=C. 

The following theorem holds for an arbitrary mapping / : 
If X is the domain off then 

(39) / W < f . 

For, let y ef(X) and let g(y) be an arbitrary element of the set 
/ - 1 C F ) twe make use of the axiom of choice (Chapter III, § 7) 
here]. Since the sets/-1^) for various ^'s are disjoint, g determines 
a one-to-one mapping of the set f{X) onto a subset of the set X. 
From this follows formula (39). 

§ 4. Properties of the number c 
We have defined the number c as the power of the set $ of 

all real numbers. Let us note that, as stated in Chapter V, § 2> 
every open interval a < x < b is of power c. 
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The interval a < x < b (where a < b) is also of power c. This 
follows immediately from formula (38) since 

{x: a < x < b} a {x: a < x < b} a S. 

Further, we also deduce from formula (38) that 

(40) c — c+n = c+α = c+c = n · c 

(n being a natural number); 

for (cf. (24)) c < C+AI < c+α < c+c and c+c < c, since c+c 
is the power of the set 

{x: 0 < x < 1} u {JC: 1 < x < 2}, 

which is a subset of $. 
The generalization to n terms is obtained immediately by in­

duction. 

(41) 2a = c. 

For, let A denote the set of all infinite sequences consisting 
of the numbers 0 and 1. Therefore A = 2a. Let B denote the 
subset of the set A consisting of sequences with an infinite number 
of zeros. To the sequence t = (tl9t2, ...) belonging to B we 
assign the number 

At) = / i / 2+ i 2 / 4+ ... +tJ2n+ ..., i.e. fit) = (O.M2 ..O2, 

and if t e A —B we let 

f(t)= 1 + / J 2 + / . / 4 + ... +tJ2n+ ..., i.e. f(t) = (I.M2. ..)2 

(in the binary system of calculation). 
It is easy to verify that / i s one-to-one. At the same time 

{x: 0 < x < 1} af(A) ag9 

and therefore A =f(A) = c by virtue of (38). 
We deduce from this that 

(42) a0 = c = ca, 

because (cf. (26)) 2α < αα < ca - (2a)a - 2(a2) - 2\ 
Similarly, we have 

(43) n« = c for n > 2. 
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Formula αα = c = na asserts that the set of all infinite sequences 
whose terms are natural numbers (or whose terms are 1,2, ..., H) 
is of power c. 

We shall now deduce from (42) that 

(44) c = c · a = c · c = cn = ca (n is a natural number > 1). 

In fact 
c < c - a < c - c < c n < c a = c . 

Let us note that c2 is the power of the plane, and more generally: 
cn is the power of «-dimensional Euclidean space Sn. Formula 
(44) asserts that the set of all infinite sequences whose terms are 
real numbers (i.e. the infinite cartesian product SxSx ...) is 
also of power c. 

The last formula dealing with the numbers a and c is 
(45) 2C = ac = cc. 

In fact, cc = (2a)c = 2ac - 2C for ac - c by (44). 
Let us set 2C = f. By virtue of (22), 2C > c; f is therefore a car­

dinal number greater than a and c. Formula (45) asserts that 
f is the power of the family of all subsets of the real line (or more 
generally—of the family of all subsets of the space Sn)\ it is at 
the same time the power of the set of all real valued functions 
of a real variable (as well as the power of the set of all func­
tions of a real variable whose values are natural numbers). 

R e m a r k . We now give a more direct proof of the formula 
c2 = c because of its fundamental importance. 

Let A be the square determined by the conditions 0 < x < 1 
and 0 < J > < 1 . Since A = c2, our problem depends on the 
definition of a one-to-one real valued function on the square 
A (it will follow from this that c2 < c; the inequality c < c2 

is obvious). 
Let us develop the numbers x and y in essentially infinite decimal 

expansions (i.e. containing an infinite number of nonzero digits): 

x = Q.a1a2 ..., y = 0.blb2 ..., 
and let 
(46) f(x,y) = 0.a1b1a2b2 ... anbn ... 

We must prove that if/(x, y) =f(x, y), then x = x and y = y. 
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Now the development (46) contains an infinite number of 
digits which are different from zero; at the same time no number 
has two different essentially infinite developments, and therefore 
the formula 

f(x,y) = 0.alb1a2b2 ... = §.aj)Ji2b2 ··· =f(x,y) 

implies that 

0i = 5i , b1=b1, a2=ä2, b2 = b29 . . . , 

i.e. x = x and y = y. 

Exercises 

1. Let if be a family of sets each of which has power c and let if = c. 
Prove that U ^ = c. 

2. Let An = c for n = 1,2,... Prove that 

AlxA2x ... = c. 

3. Let T = XX and Ft = m for every te T. Calculate IJtFt. 
4. Prove that a necessary and sufficient condition that the set A be of 

power equal to that of one of its proper subsets (i.e. to some subset distinct 
from A) is that a < A. 

Hint: In the proof of necessity take into consideration an element 
a e A —f(A), then f(d), ff(a), and so on. In the proof of sufficiency consider 
the sequence αί9α2,... contained in A and the function / defined as follows: 

fix) = x for χφ an (n = 1, 2,...) and f(an) = an+i. 



CHAPTER VII 

ORDER RELATIONS 

§ 1. Definitions 
Let the relation ρ, written < , be defined for elements of a given 

set X. Consider the following four conditions: 
1. x < x, for each x, 
2. if x < y and y < x, then x = y, 
3. if x < y and y < z, then x < z, 
4. for each pair x, y, either x < j or j> < JC. 
If the conditions 1-3 are satisfied, we say that the relation 

< is an ordering of X (or that the set X is ordered); the relation 
< is a quasi-ordering if it satisfies conditions 1 and 3 only; it is 
a linear ordering if it satisfies conditions 1-4. 

For example, the family 2X is ordered by the relation of inclusion 
X a Y. If the family R c 2X is linearly ordered by the above 
relation, we say that R is monotonic. 

A quasi-ordered set is called directed if to each pair x, y there 
exists z such that x < z and ^ < z. Again such is the family 2X 

(since I c I u F a n d 7 c l u y ) . 
An ordered set A is said to be cofinal with the set B c A, if 

for each x e A there is y e B such that x < j>. 
For example the set of all real numbers ordered by the rela­

tion < is cofinal with the set of positive integers. 
Obviously, if A contains the last element a9 it is cofinal with {a}. 

§ 2. Similarity. Order types 
We say that the relation < which orders the set A and the 

relation <* which orders the set B establish similar orderings 
of A and B if there exists a one-to-one mapping/(called a similarity 
mapping) of A onto B such that 

(x<y)=[f(x)<*f(y)h 
85 
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i.e. x precedes y in the set A if and only if fix) precedes/(>>) in 
the set B. 

For example, the relation < establishes similar orderings 
of the set of natural numbers and the set of numbers of the form 
1-1/«. 

Just as cardinal numbers were assigned to sets, we assign order 
types to order relations or, as we say, to ordered sets. Namely 
we assign the same order type to two ordered sets if and only 
if they are similar. We depend here on the property of the similarity 
relation of being an equivalence relation, i.e. 

(a) every ordered set is similar to itself, 
(b) if A is similar to B, then B is similar to A, 
(c) if A is similar to B and B is similar to C, then A is similar to C. 
We omit the simple proofs of these properties. 
Obviously two similar sets have the same cardinality. 
The following order types are particularly important: ω—the 

type of the set of natural numbers, co*—the type of the set of 
negative integers, η—the type of the set of rational numbers, 
and λ—the type of the set of all real numbers (all these sets are 
considered to be ordered by the relation < ) . 

The type of a finite set, consisting of n numbers, is denoted by n. 
THEOREM. Every countable* linearly ordered set A is similar to 

some subset of the set 0t of all rational numbers (ordered with re­
spect to the relation <^ . 

P r o o f . Let us arrange the elements of the set A (ordered 
by the relation ρ) in a sequence al9a29 ->.9an9 ... consisting of 
distinct terms (we assume that A is infinite; for finite sets the 
theorem is obvious). 

We define a similarity mapping f of A onto a subset of 0t9 

in the following way. 
L e t / ^ i ) = 0;f(a2) is defined as an (arbitrary) rational number 

which is less than/(tfi) if α2ραΐ9 but larger t h a n / ^ ) if αγρα2. 
The inductive definition of the number f(an+1) is the following: 
if, in the set A9 an+i precedes all the elements ai9 al9 ..., an9 

then/(a„+1) is a rational number less than all the numbers / (#ι ) , 
f(a2)9 ...,/(#,,); analogously if tf„fl follows all the elements ai9 

a29 ...,an9 then the number f(an+1) is larger than all the num-
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bers f(ai)9f(a2)9 ...,/(#„); finally, if none of these cases holds, 
then let ak be the last among those elements ai9a29 ->an, which 
precede an+1 and let am be the first among those which follow 
an+l; then let us set 

f(an+i) = {f(ak)+f(am)}l2. 

The function / defined in this way is obviously one-to-one. 
Moreover, for every n it is a similarity mapping of the set 
{al9a29...9an+1} onto the set {f(a1)9f(a2)9 . . . , / (a n + 1 )} . But 
from this it follows that the function / is a similarity mapping 
of the entire set A onto f(A). For if α,-ρβ/, then, denoting by Λ + 1 
the larger of the two numbers i and 7, we deduce from the similarity 
of the sets {ai9a29 .,.,an+1} and {f(a1),f(a2)9 ...9f(an+1)} that 
M) <f(aj). 

§ 3. Dense ordering 

We say that a linear ordering of the set A is dense if whenever 
a <b9 then there exists c such that a < c and c < b. 

An example of a dense ordering is the ordering of the rational 
numbers (with respect to the "less than" relation). 

Every countable set with dense ordering, without a first and 
last element, is of type η.^ 

§ 4. Continuous ordering 

D e f i n i t i o n s . A subset B of an ordered set A is said to 
be an initial interval of A if together with each of its elements 
x e B it contains all the elements of the set A which precede x> 
i.e. if 

(y^xeB)=> (yeB). 

Given a set Z c A9 the earliest element a of the set A which 
satisfies the condition 

( x e Z ) = > ( x < ö ) 

(if it exists) is called the least upper bound of Z. 

t For a proof, see Hausdorff, Set Theory, Chapter 3, § 11, Theorem IV; 
or Kuratowski and Mostowski, Set Theory, p. 217. 
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An ordering of the set A is continuous if it is dense, and if, 
furthermore, for each of its initial intervals B which is nonvoid 
and distinct from A there exists a least upper bound. 

The set $ of all real numbers is of continuous type. This is 
in fact only a different formulation of the known Dedekind 
axiom of continuity. 

The ordering of the set of rational numbers is not continuous; 
for we can take as B the set of rational numbers less than }/2. 
(We also say that \/2 determines a "gap" in the set of rational 
numbers.) 

R e m a r k . The following theorem which we give here without 
proof contains the most essential part of the theory of irrational 
numbers due to Dedekind. 

Let 0t denote the set of all rational numbers and let K denote 
the family of all its initial intervals which are non-empty, distinct 
from 0t, and which do not possess a last element. Then the relation 
a establishes an ordering of the family K of type λ. 

Hence, real numbers can be defined as the initial intervals 
of the set 0t of all rational numbers which are non-empty, distinct 
from ^?, and which do not possess a last element. 

«§ 5. Inverse systems, inverse limits 
Let T be a directed set. Let I be a set-valued mapping, 

X: T-+ 2A; thus Xt c= A for each t e T. Let / be a mapping 
defined on Tx T for pairs </0> *i> where t0 < tl9 and such that 

O ) ftoU'' X*i. ~~* ^ο' 

We assume further that 
<2) / V i % * 2 =ft0t2

 f o r t0<t1< t2 (transitivity) 
and 
(3) ft = identity. 

Then we call the triple (Γ, X,f) an inverse system.^ 
The inverse limit of the system (T,X,f), denoted 

X„ or Um{T9X,f) or Lim{^,/ io f l}, 
<— t,t0<h 

t See S. Eilenberg and N. Steenrod, Foundations of Algebraic Topology, 
Princeton, 1952, Chapter VIII. Comp. P.S. Alexandroff, Ann. of Math. 30 (1928). 
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is the subset of the cartesian product YlterXt composed of ele­
ments z = {zf} such that 

(4) /fori(z'0 = z*>. 
In other words, we have for z e l « , 

(5) / ί 0 ί ι ο Λ ί ι = = π ί ο · 

We shall agree to write 
(6) ft^nt\X^ i.e. /,(z) = z<. 

Consequently 

Consider two inverse systems (Γ, X,f) and (Γ, F, g). Suppose 
that h assigns to each t a mapping 

such that (for t0 < tx) commutativity holds in the diagram 

v ftoti v 
Xt0< Xti 

<8) Ar 0 | JV 

i.e. 

Then we may define a mapping 

so that the following diagram is commutative for each t eT: 

xtx 
0°) M [h„ 

gt 

We put y = {yf} = /^(z) for z e l ^ , where 

<") *.(*·) = / . 
It is easily seen that 

(12) Ϊ / e#cA A, is a one-to-one mapping onto, so is Λ .̂ 
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Exercises 
1. Let X and Y be two subsets of the ordered set A such that Z u Y — A, 

J n F = 0 a n d ( j t e X)(y e Y) => (x < y). We say that the pair X, Y is 
a cut of the set A. 

Prove that if Xx, ΙΊ and X2, F2 are cuts of the set A, then either Xt c: χ 2 
or X2

 c ΛΊ. 
2. Prove that every linearly ordered set is similar to some monotonic 

family of subsets of this set (ordered by the relation <= ). 
3. Let R be a monotonic family of subsets of the set Z. Prove that the 

family of all sets {Jx and f*)X, where X c if, is also monotonic. 
4. Give an example of a linearly ordered set which is not of type ω9 but 

which, despite this fact, possesses a first element and which is such that to 
every element there exists an element immediately following and (except 
to the first) an element immediately preceding it. 

5. A subset G of a linearly ordered set A is said to be dense with respect 
to A if between every two elements x and y of the set A there is an element 
z of the set G. 

Prove that a set A of type λ contains a countable subset which is dense 
with respect to A. 

5a. Show the inverse theorem (see Remark of § 4): if A is continuously 
ordered, contains a countable subset dense in A, but contains no first nor 
last element, then A is of order type λ. 

R e m a r k . The following conjecture, called the Souslin problem, is inde­
pendent of the axioms of set theory (that is, it can neither be proved nor 
disproved with the help of these axioms) :t let every family of disjoint 
intervals of a continuously ordered set A be countable; is A necessarily of 
type λ (assuming that A contains no first and last elements)? 

6. Let us establish an ordering for the set S1 (of all complex numbers) 
by assuming that of two complex numbers with distinct imaginary parts 
that one is earlier whose imaginary part is smaller, and of two numbers 
with equal imaginary parts that one is earlier which has the smaller real part. 

Prove that in the set Sz there does not exist a countable part which is 
dense with respect to S2. 

7. (a) The family of all infinite sequences with real terms can be ordered 
in the following way: the sequence ai9a2,... precedes the sequence bt, b2t ... 
if there exists a k such that an < bn for n> k. 

(b) A family of real valued functions is ordered by the relation 

( / < * ) = Λ χ [ Λ * ) < *(*)]· 

t As recently shown by Tennenbaum and Solovay. 



CHAPTER VIII 

WELL ORDERING 

§ 1. Well ordering 
D e f i n i t i o n . We say that a linear ordering of a set A is 

a well ordering if every non-empty subset of the set A has a first 
element. 

We call the order types of well ordered sets ordinal numbers 
(concisely: ordinals). 

EXAMPLES. The set of all natural numbers is a well ordered 
set (this follows directly from the principle of finite induction). 
Therefore ω is an ordinal number. On the other hand, none of 
the order types ω*, η, A is an ordinal number. 

It follows from the definition of well ordering that every subset 
of a well ordered set is well ordered. It also follows that for every 
element a of a well ordered set (with the exception of the last 
element, provided the set contains a last element) there exists 
an element b which is its immediate successor. Namely, b is the 
first element of the set {x: a < x}. 

On the other hand, a well ordered set can contain an element 
(which is not its first element), for which there does not exist 
an element which is an immediate predecessor. For example, 
the set consisting of the numbers 1— \\n (n = 1, 2, ...) together 
with the number 1 is well ordered, but there does not exist an 
element in this set which immediately precedes the number 1. 

If the set A is well ordered, then for every initial interval B which 
is distinct from A there exists one and only one element b in A such 
that 

B = {x: x <b}. 
Namely, b is the first element of the set A —B. It is therefore 

the least upper bound of the interval B if B does not contain 
a last element; but if B contains a last element, then b is the 
element which immediately succeeds this element. 

9J 
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Let us set 
(1) . P(a) = {x: x<a). 

P is a one-to-one correspondence between the elements of A and 
the family R of all initial intervals of A which are distinct from A. 

Thus P: A -» R is a similarity mapping (where Ä is ordered 
by the inclusion relation: X a Y). 

For if a < b, then x < a => x < b, i.e. P(a) cz P(ft) and con­
versely. 

§ 2. Theorem on transfinite induction 
Let A be a well ordered set and let <p(x) be a propositional function, 

where x e A, satisfying the following condition for every x: 

(2) if/\y[iy <x)=> <p(y)]9 then φ(χ). 
Then every element of the set A satisfies the propositional function 

<p(x), i.e. /\χφ(χ)· 
Let us assume that this is not the case, i.e. that the set Z of 

elements of the set A which do not satisfy the propositional 
function φ(χ) is nonvoid. Let x0 be the first element of the set Z. 
Therefore 

Ayl(y <*<>)=>?>(y)]. 
But it follows from this by virtue of (2) that the proposition 
<p(x0) is true. But then x0 φ Ζ. 

R e m a r k . The principle of finite induction known from 
arithmetic is a particular case of the preceding theorem; namely, 
the case where A is the set of natural numbers. 

§ 3. Theorems on the comparison of ordinal numbers 
D e f i n i t i o n . Let a and β be ordinal numbers; let a be the 

order type of the set A and let β be that of the set B. We write 
α < β if the set A is similar to some initial interval of the set 
B which is distinct from B. 

We assume the above definition of the "less than" relation 
in connection with the following theorems. 

THEOREM 1. No well ordered set is similar to an initial interval 
which is distinct from the set itself i.e. 

(3) a < a. 
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Let us assume the contrary. That is, let us assume that 
f: A -> P(a) is a similarity mapping for some a e A. Since 
f(a) e P(a) we have f(a) < a. Therefore the set 

Z={x:f(x)<x} 

is not empty. Let x0 be its first element. Hence 

(4) f(x0)<Xo, 

and since / is a similarity mapping of A onto P(a), we deduce 
that 

(5) f[f(x0)] < / (*o) , 

but then—comparing formula (5) with (4)—it follows that x0 is 
not the first element of the set Z. 

THEOREM 2. No two initial intervals of a well ordered set are 
similar. 

This follows directly from the preceding theorem, for of two 
distinct initial intervals P{a) and P(b) one is an initial interval 
of the other (depending on whether a < b or b < a). 

Theorem 2 can also be expressed in the following manner: 

(6) if a < ß then ß < a. 

Since an initial interval of an initial interval of the set A is an 
initial interval of this set, we have: 

(7) if OL < ß and β < γ then α < γ. 

We shall now prove the following fundamental theorem: 
THEOREM 3. If α Φ β then <x < β or β < a. In other words, 

if the sets A and B are well ordered, then either the set A is similar 
to an initial interval of the set B or the set B is similar to an initial 
interval of the set A. 

P r o o f . We shall denote by PA(x) the initial intervals of 
A and by PB(y) the initial intervals of B. We shall write M ~ N 
if M and N are similar. 

We set 

(8) * = { * : \/,[ΡΛ(Χ) *Ps(y)]}. 
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By Theorem 2, for every x eX, there exists only one element 
y such that PA{x) — Pß(y)· Hence we can denote this y by f(x). 
Therefore the equivalence 

(9) [y=Ax)]= [PAW * PBO?)] 
holds for every x eX. 

We shall prove that X is an initial interval of A. Let x' < xeX. 
We must prove that x' eX. Since xeX, there exists (by virtue 
of (8)) a similarity mapping of the interval PA(x) onto the interval 
ΡΒ[/(Χ)Υ, but since PA(x') is an initial interval of PA(x)9 under 
this mapping the interval PA(x') goes over into an initial interval 
of ΡΒ\/(Χ)], and hence onto an initial interval of B. This means 
that x' e l , i.e. that X is an initial interval of A. 

Analogously, the set f(X) is an initial interval of the set B. 
For by virtue of (9) and formula (12) of Chapter IV, § 4, we have 

(10) f(X) = {y: \Jx[y =f(x)]} = {y: \/x[PB(y) C± PA(X)]}· 

Moreover, as we have already proved, the condition x' < x 
implies that the interval PB[AX')] *S an initial interval of the 
interval P* [/*(*)], and hence that f(x') <f(x). This means that 

(11) * - / ( * ) . 
It remains to prove that either X = A or f(X) = B. Let us 

assume the contrary, that X Φ A and that f(X) φ Β. Since the 
sets Xand f{X) are initial intervals of A and B> there exist aeA 
and b e B such that 

X=PA(a) and f(X) = PB(b). 

By virtue of (11) we therefore have PA(a) ^ PBQ>), whence 
it follows by (8) that a e Z, i.e. that a e PA(a), hence a < a, 
which is a contradiction. 

Theorem 3 implies the following: 
THEOREM 4. If the sets A and B are well ordered, then their 

powers satisfy the trichotomy condition, i.e. 

either A = B, or 1<B, or B < A. 

A question of fundamental significance which arises here natu­
rally is: can every set be well ordered? 

We shall consider this question in § 7. 
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§ 4. Sets of ordinal numbers 
We shall use the following notation: 

(12) /Xa) = {f : . { < « } . 

THEOREM 1. The set Γ(οϊ) is well ordered (by the relation < J 
and the order type of this ordering is a. 

P r o o f . Let A be a well ordered set of type a and let τ(χ) 
for x e A be the order type of the interval P(x). 

T is a similarity mapping of A onto Γ(ά). For if x' < x, then 
the set P(x') is distinct from P(x) and is an initial interval of P(x), 
and hence (cf. Theorem 1, § 3) x(x') < r(x). At the same time, 
every ξ e Γ((χ) is a value of τ. For let £ e Γ(οέ), i.e. ξ < et; by the 
definition of the relation < for ordinal numbers, a set of type 
ξ is similar to some initial interval P(x') of A; and hence ξ = τ(χ'). 

THEOREM 2. Every set of ordinals is well ordered (by the rela­
tion < j . 

We have to prove that every non-empty set Φ of ordinals 
contains a least number. Let a e Φ. If a is not the least number 
of Φ then the set Φ η /Χα) is nonvoid and therefore, being 
a subset of the well ordered set Γ((χ)9 it contains a least number β. 
The number β is the least number of the set Φ. For if ξ e [Φ—Γ(α)] 
then ξ > α and hence ξ > β. 

THEOREM 3. For every set Φ of ordinals there exists an ordinal 
number which is greater than every number of this set. 

Such a number is <x+1, where a is the order type of the set 

ψ=υξΓ(ξ) where £ Ε Φ , 

and a + 1 denotes the type of the set Ψ u {a} (cf. § 6). 
In fact, for every ξ the set Γ(ξ) is an initial interval of the 

set Ψ. If Γ(ξ) = Ψ, then ξ = a (by virtue of Theorem 1); and 
in the contrary case ξ < α. Therefore for every | we have ξ < α + 1 . 

THEOREM 4. There does not exist the set of all ordinal numbers. 

§ 5. The number Ω 
D e f i n i t i o n . Let us denote by Ξ the set of all order types 

of countable well ordered sets and by Ω the order type of the set Ξ. 
By Theorem 2 of § 4, Ω is an ordinal number. 
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We shall prove that 

(13) Ξ=Γ(Ω). 

By virtue of Theorem 3 of § 4 there exists an ordinal a greater 
than every number of the set Ξ. Therefore 3 c Γ(<χ). Further 
3 is an initial interval of the set Γ(μ). For let ξ' < ξ eS; ξ' is 
therefore an order type of some subset of a countable well ordered 
set (of type £); this subset is obviously countable and hence 
ξ'βΞ. 

Since 3 is an initial interval of Γ(<χ), there exists (cf. (1)) a number 
γ < α such that 3 = Γ(γ). In order to prove formula (13) it 
remains to show that γ = Ω. But this follows immediately from 
the definition of Ω and from Theorem 1, § 4, by virtue of which 
Γ(γ) has the type y. 

THEOREM 1. The set Γ(Ω) is noncountable, i.e. 

(14) ΓζΠ) > a. 

In fact, if the set Γ(Ω) were countable, then its order type 
would belong to 3, i.e. Ω eS, whence by (13) we should have 
Ω e Γ(Ω), i.e. Ω < Ω which is impossible. 

R e m a r k 1. The cardinal number F(U) is denoted by the 
symbol Κχ ("aleph" 1). Hence we have Κχ > a, as well as c > a 
(Chapter VI, § 3, (21)). However, we were led to the number Kx by 
entirely different reasoning than that used to define the number c. 
Are these numbers equal? The hypothesis, called the continuum 
hypothesis, asserting that 

(15) N\ = c 

is independent of the axioms of set theory.1" 

THEOREM 2. Kj. is the number immediately following the number 
a, i.e. if m < Kj. then m < a. 

P r o o f . Let A — m. Since m < K i , there is B a 3 such 
that B = m. Let β denote the order type of B. Therefore the 
sets B and Γ(β) are similar and hence of equal power, i.e. Γ(β)= m. 

t See P. J. Cohen, Set Theory and the Continuum Hypothesis. 
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It follows that β < Ω, for otherwise Ω < ß9 whence Γ(Ω) c Γ(β)9 

and therefore Κχ = Γ(ί3) < Γ(β) = m contrary to the assump­
tion. It follows from the inequality β < Ω (by the definition of 
Ω) that the set B is countable, i.e. m < a. 

R e m a r k 2. The alephs X2> ^3> ···> N„, ... can be defined 
similarly to K0 = <* and K^ Namely X2 is the cardinality of the 
set of all order types of well ordered sets of power Kx; K„ is de­
fined by induction. It follows that 

Κ Λ <Κ Μ + 1 . 

Here we assume obviously the 
AXIOM OF INFINITY. There exist infinite sets. 
Another axiom is needed in order to prove the existence of 

cardinal numbers greater than all K„, n = 1, 2, ... This is the 
AXIOM OF REPLACEMENT. If to every element x of a set A there 

corresponds an element y (which belongs or does not belong to A), 
then the totality of all these y's is a set. 

Consequently, if we denote y by f(x), then / is a mapping in 
the usual sense (Chapter IV, § 1). 

Here we use this axiom as follows. As shown, there exists, 
for each n, a set Z„ of power X„. Denote by A the set of positive 
integers and by R (according to the axiom of replacement) the 
family of all sets Zn for n = 1, 2, ..., and consider the union 
U n

w = Ä (which exists according to the generalized union axiom, 
cf. Chapter IV, § 5, Remark). Its power exceeds each K„, and 
it is natural to denote it Κω. 

§ 6. The arithmetic of ordinal numbers 

Let a and β be two ordinal numbers (or more generally, two 
order types). Let A and B be two sets with order types a and β, 
respectively; let us assume also that A n B = 0 (see Chapter VI, 
§ 1, concerning the possibility of making such an assumption). 
Let us establish an ordering of the set A u B by assuming that 
every element of the set A precedes every element of the set B and 
that in the domain of each of the sets A and B individually the 
ordering does not change. 

We denote the order type of the set A u B by α+β. 
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We shall prove that, under the assumption that a and ß are 
ordinal numbers, oi+ß is also an ordinal number. 

We have to prove that the set A u 5 with the above-established 
ordering of its elements is well ordered. Hence, let 0 Φ X c A u B. 
If X n ΑΦ 0 , then—since the set A is well ordered—the set 
X n A contains an earliest element; this element is the earliest 
element of the entire set X = (X n A) v (X n B), inasmuch 
as it precedes, by the definition of the ordering of the set A u B, 
each of the elements of the set X r\ B. 

Now, if X n A = 0 , then X <= B and therefore there exists 
an earliest element in the set X. 

EXAMPLES, a + 1 > a whereby a + 1 follows immediately after a. 
The number ω+ω is the type of the set of numbers of the form 
1—1 jn together with the numbers of the form 2—l/n where 
« = 1 , 2 , . . . Let us note that 1+ω=ω; and hence addition 
is not commutative. 

We denote by α · β the order type of the cartesian product AxB 
ordered as follows: 

[<*, y> < <u, v}] = [(y < v) V ((y = v)(x < «))]. 

Under the assumption that a and β are ordinal numbers, a · β is 
also an ordinal number. 

For, let 0 Φ Z c A X B. Let Y denote the projection of the 
set Z onto the i?-axis. Hence we have 0 Φ Y a B. Let b be the 
earliest element of the set B and let X = {x: <x, b} e Z}. Finally 
let a be the first element of the set X. It is easy to verify that <#, by 
is the first element of the set Z. 

EXAMPLES. 2 · ω is the order type of the cartesian product 
{ l , 2 } x / (where / is the set of natural numbers) ordered as 
follows: 

<1,1>,<2,1>,<1,2>,<2,2>, . . . , 

and hence 2 · ω = ω. 
On the other hand, ω · 2 = ω+ω is the order type of the product 

/X{1 ,2} (see the example given above). 
As we see, multiplication is not commutative. 
ω · ω is the type of the set of all numbers of the form k—l/n 

where k = 1,2, ... and n = 1,2, ... 
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Instead of ω · ω we write ω2. In general, απ+1 = α" · a. 
We denote by αω (for a > 1) the least number larger than any 

an, where n = 1,2, ... 
More generally, the definition of exponentiation (and of many 

other operations) can be introduced with the aid of the following 
definitions of the concept of transfinite sequence and of its limit. 

D e f i n i t i o n s . By a transfinite sequence of type a we mean 
a mapping φ whose domain is Γ(<χ); instead of φ, we write usually 

αθ9αί9 ...,αξ, . . . , ξ < α. 

If a is a limit ordinal and the terms of the above transfinite 
sequence are ordinals, then its limit, denoted 

l ima| , 

is the least ordinal larger than all αξ for ξ < α. 
With the help of the above definitions, we define the power 

of (for a > 1) as follows 
1. a° = l , 

2. a*+1 = α* ·α , 

3. αλ = lima1, 

where λ is a limit ordinal (cf. the theorem on the definition by 
transfinite induction, § 8, Theorem 2). 

R e m a r k . The arithmetic of ordinal numbers forms at 
present a well established theory which we shall not develop 
any further here^ The main objective of the theory given above 
was a study of ordinals of countable sets; all these ordinals can 
be obtained with the aid of sets of real (or even rational) numbers 
(see Chapter VII, § 2). 

D e f i n i t i o n 1. The ordinal a is cofinal with the (limit) 
ordinal β if the set Γ(α) is cofinal with a subset of type ß (cf. 
Chapter VII, § 1). 

Thus, for example ωω (see below) is cofinal with ω, while Ω is 
not. 

t See e.g. W. Sierpinski, Cardinal and Ordinal Numbers, or F. Hausdorff, 
Set Theory, Chapter III. 
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D e f i n i t i o n 2. The ordinal a is called initial relative to 
the cardinal number m if a is the smallest possible ordinal number 
of a well ordered set Z such that Z = m. 

For example, ω and Ω are initial numbers. Let us denote them 
ω0 and ωί9 and more generally let us denote by ωη the initial 
number relative to Kw. 

As stated in § 5, the existence of Κω follows from the axiom 
of replacement. One can show similarly the existence of initial 
ordinals ωω,ωΩ and so on. The two quoted numbers are cofinal 
with smaller numbers (namely with their indices). This leads 
to the problem of the existence of an initial ordinal ωλ, where 
λ is a limit number (# 0), which is not cofinal with a smaller 
number. The existence of numbers of that kind, called inaccessible 
numbers, does not follow from our axioms (including the axiom 
of infinity and the axiom of replacement). One could, of course, 
assume axiomatically the existence of inaccessible numbers, but 
this would not solve analogous problems concerning greater 
and greater ordinals. 

Here we have before us a problem which has not been solved 
satisfactorily thus far. 

R e - m a r k . It can be shown that to each ordinal a there corre­
sponds an initial ordinal ωα. This leads to the definition: 
Κα = Γ Κ ) . 

Let us add that we write, instead of ΧΓ(ω«\ more concisely 
A^a (as we did in the case of a = 0). 

§ 7. The well-ordering theorem 
We shall deduce this theorem, which is of fundamental impor­

tance for the theory of sets (cf. e.g. Theorem 4, § 3), from the 
axiom of choice. To this end, we shall prove first of all, the fol­
lowing theorem which is a generalization of the axiom of choice. 

THEOREM 1. (General principle of choice.) For every set A there 
exists a mapping e which assigns to every non-empty subset of 
A one of its elements, i.e. 
(16) e(X) eX for every 0 # X c A. 

P r o o f . Let F(X)= {X}xX, i.e. the set F{X) consists of 
ordered pairs of the form (X, x) where x e X. Let R denote the 
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family consisting of all sets F(X), where 0 Φ X c A. This is 
a family consisting of nonvoid disjoint sets. By the axiom of choice 
(Chapter III, § 7) there exists therefore a set consisting of elements, 
one chosen from each of the sets belonging to R; this set is the 
desired mapping e. 

THEOREM 2. (Zermelo theorem.) For every set A there exists 
a relation which establishes its well ordering. 

P r o o f . Let us consider the ordinal numbers ß with the fol­
lowing properties: there exists a transfinite sequence fß of type 
ß+l such that 

(17) fp(0) = e(A)9 /β(ξ) = β[Α-/β(Γ(ξ))\ for ξ^β; 

in particular 
f2(l) = e[A-{e(A)}]9 

/2(2) = e(A-{e(A), e[A-{e(A)}]}). 

fß is one-to-one. For if f < ξ < β9 then ξ' e Γ(ξ) and hence 
/ , ( « 6/ ,(Γ(ί)) butfß(t)e[A-fß(m)] by (16) and (17). 

It follows that the set of values of/,,, i.e. the set fß(r(ß+1))9 

is of order type ß+l. 
Hence the numbers ß form a subset Φ of the set of all order 

types of subsets of A which can be well ordered. By virtue of 
Theorem 3, § 4, there exist ordinal numbers which do not belong 
to Φ. Let a be the least of them. Therefore, there does not exist 
fa, satisfying conditions (17) (replacing ß by a), and on the other 
hand, for every ß < cc, there exists fß which satisfies these con­
ditions. 

We shall prove that A can be well ordered, its order type being a. 
To this end, let us first note that if ß' < ß and the transfinite 

sequence gß,, of type /?'+l, satisfies conditions analogous to 
those of (17), i.e. 

(18) gß.(0) = e(A)9 gß.® = e[A-gß.(nt))] for f < β', 

then for each ξ < β' the identity 
09) ξβ,(ξ)=/β(ξ) 

is satisfied (this means that, if ß' = ß, fß is uniquely determined 
and that if β' < ß, fß is an extension of fß,). 
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In fact, let us denote by φ(ξ) the propositional function (19), 
having the set Γ(β'+1) for its domain. 

Let us apply to this function the theorem on transfinite induction 
(see § 2, where we substitute Γ(β'+1) for A). Hence let us assume 
that for given ξ < β' the condition γ < ξ implies that gß>(y) =/β(γ) 
and therefore that g>(Af)) =Λ(Α£))> which in turn, by virtue 
of (18) and (17), implies (19). By the theorem on transfinite in­
duction, (19) holds for every ξ < β'. 

Let 

(20) Äß)=fß(ß) 
for every β < α. 

In order to show that A admits a well ordering of type a, it 
obviously suffices to prove that / is one-to-one and that A is its 
set of values. 

Hence, let β' < β. As we proved (cf. (19)) /β.(ξ) =/β(ξ) for 
every ξ < β', and hence fß,(ß') =fß(ß') in particular. But since 
fß is one-to-one, we therefore have/,(/?') Φ fß(ß), i.e. f(ß') Φ f(ß). 

It remains to prove that / (T(a)) = A. Let us suppose that 
A—f(r(oc)) Φ 0 , and define fa as follows: 

/«(ft = Aß) for β < α and /β(α) = e[A -fa (Γ(α))]. 

As can easily be seen, fa satisfies condition (17) (replacing β 
by a). But this contradicts the definition of a. 

* § 8. Definitions by transfinite induction 
THEOREM 1. For every set A, for every ordinal a and for every 

mapping h: 2A -> A, i.e. 
(21) h(X)eA for X cz A, 

there is a transfinite sequence f of type a + 1 such that 

(22) / ( ! ) = Α[/(Γ(!))], 
where ^Γ(ξ)) denotes (as always) the set of all f(rj) with η < ξ. 

S k e t c h o f t h e p r o o f . Let us assume that the theorem 
is false and that a is the least number for which there does not 
exist a transfinite sequence/of type a + 1 satisfying condition (22). 
Therefore for every β < oc there exists fß such that 

(23) f„(i) = A [/,(Γ(£))] for ξ^β. 
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We can prove as above that fß is uniquely determined. The 
transfinite sequence / defined by the formulas 

Aß)=fß(ß)fotß<a and /(α) = Α[/(Γ(α))] 

then satisfies the conditions of the theorem — contrary to our as­
sumption. 

This completes the proof of Theorem 1. 
R e m a r k . The Zermelo theorem can be deduced from Theo­

rem 1 by substituting 

h(X) = e(A-X) for ΧφΑ, 
and denoting by h(A) an arbitrary element of A. 

We denote by Φ the set of ordinals β for which there exists 
a transfinite sequence/^ satisfying condition (23) and the inequality 
/β(Γ(β)) Φ A. Let a be the least ordinal which does not belong 
to Φ. Then /(T(a)) = A, whence it easily follows that A can be 
well ordered, its order type being a. 

Another way of defining by transfinite induction is based on 
the following theorem.1" 

THEOREM 2. Let A be a given set, a an element of A, a an 
ordinal, and let g: A -> A and h: 2A -> A be two given mappings. 
Then there exists a transfinite sequence f of type a-f 1 such that: 

(i) M = a, 
(ii) Λί+1) = *(ΛΟ). for £ < a , 

(iü) /(A) = h[f{r{X))] 

when λ is a limit ordinal < a. 
The proof is quite similar to the proof of Theorem 1. 
D e f i n i t i o n . A set M e Ä is called maximal (or saturated) 

in R if it is contained in no other member of R, i.e. if 

(M <=.ZeR)=> (Z = M). 

Theorem 2 implies the following theorem. 

t For a statement including both theorems, 1 and 2, see Kuratowski-
Mostowski, Set Theory, p. 239. 
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THEOREM 3.1" Let R be a family of subsets of a given set E such 
that for every monotonic and well ordered (by the inclusion relation) 
subfamily X a R the union U X belongs to R. Then every set 
A0 e R is a subset of a maximal set M e R. 

P r o o f . For each Z e R, which is not a maximal member of/?, 
denote by G(Z) a member of R such that Z c G(Z) Φ Z. If Z is 
maximal, then we put G(Z) = Z (we assume also that if Z φ R 
but Z c E, then G(Z) = Z). Finally put H(X) = U * whenever 
I c 2 £ . 

Then, we can define by transfinite induction a sequence 
A09 Al9 ..., Αξ9 ... suchthat 

Λξ+ι = 6(4$) and Λλ = {JMAi9 

where 2 is a limit ordinal. 
Obviously, this sequence is monotonic and for each f, Αξ e R, 

Hence, if a is a number such that all Αξ with ξ < α are different, 
then Γ(α) < R. Now let a be such that Γ(α) > Ä. Then there is 
β < α such that ^ + 1 = yi ,̂ i.e. G(Aß) = ^ . This means that 
Ap is a maximal set of R. 

The following statement will be proved in a similar way. 

THEOREM 4.* Let A be an ordered set such that, for each linearly 
ordered X c: A, there is c e A such that x < c whatever x e X is. 
Then there is a maximal element in A. 

P r o o f . Let a0 be an arbitrary element of A. If a is not a maxi­
mal element of A denote by g(d) any b e A such that a < b; if 
a is maximal, let g(a) = a. Similarly, for Z c A, let h(Z) be an 
element z of A following all elements of Z; if such a z does not 
exist, let us agree that h(Z) = a0. 

By Theorem 2 there exists a transfinite sequence 

a0 < a1 < ... < αξ < ... 

such that 
<*ξ+ί = g(%) and αλ = A(ZA) 

t See my paper in Fundamenta Mathematicae 3 (1922), p. 89. As shown 
in this paper, the theorem can also be proved without using ordinal numbers. 

t This statement is frequently called Zorn Lemma. 
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where ZA denotes the set of all αξ such that ξ < λ (λ being a limit 
ordinal). 

As in the preceding proof, we show the existence of ß such 
that αβ+1 = αβ. It follows that αβ is a maximal element in A. 

Exercises 
1. Prove that the conditions α < Ω and β < Ω imply that <χ+β < Ω 

and α · β < Ω. 
2. Every ordinal number is of the form Α+Λ, where A is a limit ordinal 

and n is a natural number or zero. 
Hint: Make use of the fact that in a well ordered set there does not exist 

an infinite sequence of the form ai > a2> a3> ... 
3. Prove the following implications: 

(a) ( a < 0 ) = > ( y + a < y + 0 ) , 
(b) (μ<β)=>(*+γ<β+γ). 

Does the condition β> 0 imply the inequality γ < β+γΊ 
4. Prove the distributive law: 

a-(j5+y) = a- j5+a-y. 

Show by means of an example that the formula (ß-fy)-a = / ? - a + y a 
is not true. 

5. Prove that if a > ß then there exists one and only one ordinal number 
γ such that α = β+γ (we call the number γ the difference oc—ß of the numbers 
a and ß). 

6. Prove that for every two ordinal numbers α φ 0 and β there exists 
a pair of numbers δ and ρ < α such that 

β = <*'δ+ρ 

and that the numbers δ (quotient) and ρ (remainder) are uniquely determined. 
7. A transfinite sequence <p whose values are ordinals < a0 is said to be 

continuous if for every limit ordinal λ < α0 the following identity holds: 

φ(λ) =limg?(£). 

Prove that the transfinite sequences φ(ξ) = α+f and φ(ξ) = α· ξ (for 
α > 0) are increasing and continuous. 

8. Prove that every increasing transfinite sequence φ satisfies the inequality 
ξ < φ(ξ) for every ξ. 

Hint: Assuming that the theorem is false, denote by a the least number 
such that φ(α) < a. 

9. Let φ be an increasing continuous transfinite sequence. Let us form the 
sequence 

<x0 = a, a1=<p(a0), ..., a„ = (p(<xn-l), 
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Let κ = lim αΛ. Prove that φ{κ) — κ (under the assumption that the 

numbers under consideration belong to the domain of the function <p). 
10. The number κ in Exercise 9 is said to be a critical number of the 

sequence <p. Find the critical numbers of the sequences 
φ(ξ) = * + ξ, φ(ξ) = *·ξ, φ(ξ) = <Χ*. 

11. Using the generalized principle of choice (see § 7) prove that every 
infinite cardinal number m satisfies the inequality m > a. 

12. Show that every proper ideal is contained in a maximal ideal. 
Hint: Use Theorem 3 of § 8 
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Topology is the study of those properties of spaces, sets, 
geometric figures, etc., which remain invariant relative to homeo-
morphisms (see Chapter XII, § 2). We call such properties topolog-
ical invariants. For example, the property of a circle of separating 
the plane into two regions is a topological invariant; if we trans­
form the circle into an ellipse or into the boundary of a triangle, 
this property is retained. On the other hand, the property of 
a curve of having a tangent line at every point is not a topological 
property; the circle has this property but the boundary of a triangle 
has not, although it may be obtained from the circle by means 
of a homeomorphism. 

As can already be seen from the above example topology 
operates with more general concepts than analysis; differential 
properties of a given transformation are nonessential for topology, 
but continuity is essential. As a consequence, topology is often 
suitable for the solution of problems to which analysis cannot 
give the answer. 

The generality of topological methods rests not only on the 
generality of the assumptions concerning the transformations 
considered but also on the generality of the sets considered to 
which these transformations are applied. These can be arbitrary 
point sets on the real line or in the plane, or in «-dimensional 
space, or still more general sets, provided only that they be sets 
for which—roughly speaking—it is possible to define the concept 
of open set, i.e. provided that they are topological spaces (see 
Chapter X). This generality has not only a methodological signifi­
cance; in modern mathematics there is a trend to confer upon 
the set of objects considered in a given investigation (be these 
functions, sequences or curves) a topology, and hence—to 
a geometrization or rather to a topologization—of the investi­
gation. This gives rise to numerous applications. Thus, e.g. 
theorems on the existence of a solution of certain types of differ-
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ential equations can be expressed as theorems on the existence of 
invariant points of a function space (the space of continuous 
functions) under continuous transformations; these theorems can 
be proved by topological methods in a more general form and in 
a simpler way than was formerly done without the aid of topology. 

How much more general ought the spaces considered in topology 
to be in order that they suffice for applications and yet, because 
of undue generality, not become too artificial? The answer to 
this question depends on the aims which a given topological 
work is to serve. 

In this book we are mainly concerned with topological spaces; 
their definition is given in Chapter X. The Chapter IX on metric 
spaces and on Euclidean spaces has a rather auxiliary character: 
it serves for the interpretation of theorems and notions of general 
topology on simple and familiar examples. At the same time, 
the metric spaces—though they are simple and geometrically 
elementary—have many important applications (e.g. in differen­
tial equations and in functional analysis). 

In Chapters X-XIII we give the fundamental concepts used 
in all parts of topology, and which are basic for general topology. 
The reader knows many of these concepts from analysis for the 
space of real or complex numbers (such as accumulation point, 
neighbourhood, closed set, and so on); this refers especially to 
Chapter XII on continuous functions. Theorems known from 
analysis, e.g. on uniform continuity, uniform convergence, the 
Darboux property, are proved here (and in Chapters XVI and 
XVII) under significantly more general hypotheses. This permits 
us to recognize the proper validity of these theorems (which also 
is of didactic significance). 

In the further chapters (XIV-XVIII) we are gradually leaving 
the scope of general topology, confining ourselves to more specific 
spaces: we consider spaces with a countable base (and in particular 
metric separable spaces), complete spaces (with the Baire theorem 
and its consequences), compact spaces (which generalize the 
concept of closed bounded subsets of Euclidean space), connected 
spaces (connectedness is the precise formulation of the concept 
of the continuity of a set) and locally connected spaces (as it 
turns out, curves, surfaces, multi-dimensional varieties or mani-
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folds, with which we have to deal in differential geometry, are as 
a rule locally connected continua). Many problems of that part 
of the book belong to analytic topology (devoted chiefly to the 
study of mappings). 

Chapter XIX deals with the concept of dimension. This 
concept—even though it dates from antiquity (it appears in Euclid's 
Elements)—was properly defined only in recent times and this 
thanks to the use of topological methods. 

We shall concern ourselves in more detail with the properties 
of the «-dimensional simplex, which is the fundamental concept of 
classical multi-dimensional geometry, in Chapter XX. In particular, 
we give a proof of the famous fixed point theorem, due to L. E. J. 
Brouwer (which has extensive applications in the theory of differ­
ential equations). 

Chapter XXI, conceptually closely related to geometry, concerns 
theorems on the separation of the plane. A detailed proof is given 
here of the Jordan theorem, which is a classical theorem of analysis, 
and some important far-reaching generalizations due to Jani-
szewski and Eilenberg. 

Most of the material contained in Part II (with the exception, 
for instance, of Chapter XX) belongs to point-set topology. 

An introduction to algebraic topology is given in the Supplement 
written by Prof. Engelking. 

In its initial stages, point-set topology and algebraic topology 
developed entirely independently and possessed completely 
different topics. Point-set topology, formerly called the theory 
of point sets, and concerning applications of set theory to arbitrary 
subsets of Euclidean space, was begun by G. Cantor, the creator 
of the theory of sets {circa 1880). Algebraic topology was created 
by H. Poincare in the last years of the past century; its objects 
were «-dimensional polygons and polyhedra. Some unification 
of these two theories came rather late, about 40 years ago; this 
was, to a large degree, the work of P. S. Aleksandrov. This 
period was preceded by the transition from the investigation 
of subsets of Euclidean space in set-theoretic topology to the 
investigation of arbitrary topological spaces. This extension of 
the thematics of topology appeared to a significant degree in 
connection with the new mathematical investigations concerning 
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the concept of function space and infinite-dimensional spaces 
introduced by Hilbert. 

In the last forty years or so there has appeared an unusually 
rich flourishing of topology; many fundamental problems of 
topology have been solved, new methods created and new branches 
developed; such is the fascinating differential topology, constantly 
increasing in importance and interest. Topology, which was 
a conglomeration of loosely related theorems, became a systematic 
science, and topological methods penetrated into a great many 
other domains of mathematics. 

The following list contains books which may be of interest 
to the reader who wishes to increase his knowledge of topology: 
P. S. A l e k s a n d r o v and H. H o p f, Topologie, I, Edwards, 

Ann Arbor, 1945. 
C. B e r g e , Espaces topologiques, Paris, 1959 (also an English 

translation). 
K. B o r s u k, Theory of Retracts, Monografie Matematyczne, 

Warszawa, 1967. 
N. B o u r b a k i , Topologie generate, Actualites Scientifiques, 

Nos. 1045, 1084, 1142, 1143, 1235, Paris, 1949-1961. 
D. C. J. B u r g e s s , Analytical Topology, Van Nostrand, New 

York, 1966. 
E. C e c h , Topological Spaces, Praha, 1966. 
G. C h o q u e t, Cours <¥analyse, t. II, Paris, 1964 (also an English 

translation). 
J. D u g u n d j i , Topology, Allyn-Bacon, 1966. 
R. E n g e 1 k i n g, Outline of General Topology, N.-Holland Publ. 

Comp. and PWN, Amsterdam-Warszawa, 1968. 
S.A. G a a l , Point Set Topology, Academic Press, 1964. 
F. H a u s d o r f f , Set Theory, Chelsea, New York, 1957. 
J. G. H o c k i n g and G a i l S. Y o u n g , Topology, Reading-

London, 1961. 
S. T. H u, Elements of General Topology, Holden-Day, 1965. 

Homotopy Theory, New York-London, 1959. 
Theory of Retracts, Detroit, 1965. 

W. H u r e w i c z and H. W a 11 m a n, Dimension Theory, 
Princeton, 1948. 
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J. L. K e 11 e y, General Topology, Van Nostrand, New York, 
1955. 

H. J. K o w a 1 s k y, Topologische Räume, Basel-Stuttgart, 1961. 
K. K u r a t o w s k i , Topology, vol. I, 1966, vol. II, 1968, 

Academic Press and PWN, New York-London-Warszawa, 
S. L e f s c h e t z , Introduction to Topology, Princeton Univ. Press, 

Princeton, 1949. 
T. O. M o o r e , Elementary General Topology, Prentice-Hall, 1964. 
J. N a g a t a, Modern General Topology, N.-Holland Publ. 

Comp., 1968. 
M. H. A. N e w m a n , Elements of the Topology of Plane Sets 

of Points, Cambridge Univ. Press, Cambridge, 1952. 
G. N ö b e 1 i n g, Grundlagen der analytischen Topologie, Sprin­

ger, Berlin, 1954. 
W. J. P e r v i n, Foundations of General Topology, Academic 

Press, 1964. 
H. S c h u b e r t , Topology, Macdonald, London, 1968. 
H. S e i f e r t and W. T h r e l f a l l , Lehrbuch der Topologie, 

Chelsea, New York, 1947. 
W. S i e r p i n s k i , General Topology, Univ. of Toronto Press, 

Toronto, 1952. 
W. J. T h r o n , Topological Structures, Holt, Rinehart and 

Winston, 1966. 
G. T. W h y b u r n, Analytic Topology, Coll. Public, New York, 

1942. 
Topological Analysis, Princeton, 1964. 

R. L. W i l d e r , Topology of Manifolds, Coll. Public, New 
York, 1949. 

We wish to quote also the following more elementary books: 

P. S. A l e k s a n d r o v , Einfachste Grundbegriffe der Topologie, 
Berlin, 1932. 

B. H. A r n o l d , Intuitive Concepts in Elementary Topology, 
Prentice-Hall, 1962. 

J. D. Baum, Elements of Point Set Topology, Prentice-Hall, 1964. 
D. B u s h a w, Elements of General Topology, J. Wiley, New 

York, 1963. 
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W. D. C h i n n and N. E. S t e e n r o d , First Concepts of 
Topology, New York-Toronto, 1966. 

E. T. C o p s o n, Metric Spaces, Cambridge Tracts, 1968. 
W. F r a n z , Allgemeine Topologie, Göschen, Berlin, 1960. 
M. M a n s f i e l d , Introduction to Topology, Princeton, 1963. 
E. M. P a t t e r s o n , Topology, Interscience Publ., New York, 

1956. 
F. S i m m o n s , Introduction to Topology and Modern Analysis, 

McGraw-Hill, New York, 1963. 
G. L. S p e n c e r and D. W. H a l l , Elementary Topology, 

J. Wiley, New York, 1955. 
R. V a i d y a n a t h a s w a m y , Treatise on Set Topology, Part I, 

Indian Mathematical Society, Madras, 1947. 



CHAPTER IX 

METRIC SPACES. EUCLIDEAN SPACES 

§ 1. Metric spaces 
D e f i n i t i o n . A set X is said to be a metric space if to 

every pair of its elements, i.e. to every pair of points x, y belonging 
to the set X, there is assigned a real number \x—y\ > 0, called 
the distance from the point x to the point y, which satisfies the 
following three conditions: 

(1) \x—y\ = 0 if and only if x = y, 
(2) l*-;rt = b - * l , 
(3) \x-y\+\y-z\>\x-z\; 
the last condition is the so-called triangle inequality. 

It follows immediately from this definition that every subset 
of a metric space is itself a metric space (the definition of distance 
remaining the same). 

EXAMPLES. 1. Every set of real or complex numbers forms 
a metric space if the distance between two numbers x and y is 
understood to be the absolute value of the difference of these 
numbers. This justifies the symbol we are using for the distance. 

2. Euclidean «-space, Sn
9 whose points are sequences of 

n real numbers {x1, x2, ..., xn), is a metric space under the usual 
definition of the distance from the point x = (xx, x2, ..., x„) 
to the point y = (y±, y2, ..., yn) given by the Pythagorean formula 

n 

(4) Ι*-^ = { 2 Ί * « - Λ Ι 2 ) 1 / 2 . 
Ϊ = 1 

This same formula "metrizes" the cartesian product X±xX2X ... 
... xXn of any n metric spaces, Χί9Χ2, >·,Χη· 

3. Hubert space. This space is the set of all sequences of real 
00 

numbers x = (xl9x2, · · . , *,· , ...) such that the series Σ x? *s 
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convergent. Here the distance between two such sequences is 
understood to be 

00 

(5) k - j ^ j ^ V i - j i l 2 } 1 ' 2 · 

4. The set of continuous real valued functions defined on the 
closed interval 0 < x < 1 forms a metric space if the distance 
between two functions / and g is defined by the formula 
(6) l / - g | = sup| /(x)-g(x) | . 

R e m a r k . An arbitrary set can be considered to be a metric 
space if we assume that the distance between each pair of distinct 
points is 1. 

§ 2. Diameter of a set. Bounded spaces. Bounded mappings 
D e f i n i t i o n 1. The least upper bound of the distances 

\x— y\ between all pairs of points x and y in the metric space 
Xis called the diameter of the space X and is denoted by the symbol 
δ(Χ). If Zis a circle or sphere, then its diameter 6{X) is the diameter 
in the usual sense. 

Metric spaces with finite diameter are said to be bounded. 
For example, the closed interval 0 < x < 1 is bounded. The 

same is true of a square and the «-dimensional cube. On the 
other hand, the half-line Λ; > 0, the real line, and the space Sn are 
examples of unbounded spaces. 

D e f i n i t i o n 2. A mapping f:X-+Y where Y is a metric 
space, is called bounded if the set f(X) is bounded. 

THEOREM 1. Iff and g are bounded mappings of the (arbitrary) 
set X into the metric space Y9 their distance \f—g\ given by formula 
(6) is finite. 

P r o o f . Let a be a given element of X. Then 
\m-g{x)\ <lf(x)-Aa)\+\f(a)-g(a)\+\g(a)-g(x)\, 

hence 
I / -SI < m^]+\f(d)-g(a)\ + d[g(X)]. 

THEOREM 2. Theset0(X, Y) of all bounded mappings f: X->Y, 
where X is an arbitrary set and Y a metric space, is a metric space 
with distance defined by formula (6). 

This follows easily from Theorem 1. 
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§ 3. The Hubert cube 

Under the assumption that the spaces Xl9X2, ...,Xm, ... are 
uniformly bounded (i.e. the upper bound of their diameters 
is finite; see also Chapter XII, § 3, Remark 2), we define the 
distance between two points x = (xl9 x2, ..., xm9 ...) and y = 
= Ο Ί > yi > · · · *ym > · · ·) °f the infinite cartesian product ^ x Z2 X ... 
...XA^X ..., by means of the formula 

00 

(7) l * - ^ ^ 1 / 2 " ) ! * - - * · ! · 

We shall leave it to the reader to prove that the distance defined 
in this way satisfies conditions (l)-(3), i.e. that the space 
XXXX2X ... is metric. 

We denote the closed interval 0 < x < 1 by J>. The space 
tf = / X / x ... is called the Hubert cube; it is a space all "co­
ordinates" xm of whose points x = (xl9 x2, ..., xm> ···) are 
contained in the closed interval [0, 1]. The space «̂ f, or the in­
finite countable power of the closed interval [0, 1], is clearly 
the natural generalization of the «-dimensional cube. 

§ 4. Convergence of a sequence of points 

We define the concept of the limit of a sequence of points, 
which is a fundamental concept in topology, by making use of 
the concept of the limit of a sequence of real numbers which 
is known from elementary analysis. 

D e f i n i t i o n . A sequence of points Ρι,ρ2, ~·>Ρη, ··· of 
a metric space is convergent to the point p of this space if the 
sequence of real numbers \p„—p\ is convergent to zero. We then 
call the point p the limit of the sequence Pi,p2, ...,pn, ··· and 
we write p = lim/v 

H->00 

Using the symbolism of logic, we write this definition in the 
following form: 

(8) (\impn =p)s (lim \pn-p\ = 0) 

(9) = Λ«\ΛΛ· [̂  > *) => ( ΙΑ- / Ί < *)]· 
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A sequence of points does not need to converge. However, 
if it does converge, then there is just one limit of this sequence. 

The definition of the convergence of a sequence of points in 
a metric space can be given in another form, very suitable for 
considerations in the sequel, by introducing the concept of ball. 

An {open) ball with centre /?, or more briefly K(p, ε), is the set 
of points x whose distance from the point p is less than e: 

(10) Κ(ρ,ε) = {χ: \χ-ρ\<ε}. 

In the space of real numbers an open ball is an open interval 
and in the plane it is a circular disk without the boundary. Hence 
our terminology corresponds to Euclidean space. 

Let us add that by replacing in (10) < by < we obtain the 
definition of a closed ball. 

§ 5. Properties of the limit 

THEOREM 1. A necessary and sufficient condition that \impn = /?, 
Λ- *00 

is that every ball K with centre p contains all the points of the 
sequence pl9p2, ..., with perhaps the exception of a finite number 
(i.e. there exists a k such that pn e Kfor all n > k). 

In order to prove this we substitute pn e K(p, ε) into formula 
(9) instead of \pn—p\ < ε (which we can do by virtue of (10)). 

THEOREM 2. Every convergent sequence is bounded; in other 
words: the set of terms in a convergent sequence is bounded. 

For let p = \impn and let Z be the set of terms of the sequence 
«-»■00 

Pi,P2, ~9Pn> · · · By virtue of our assumption there exists a k such 
that for n > k we have \pn—p\ < 1. Let ρ denote the maximal 
of the k+\ numbers 

\ΡΙ—Ρ\ΛΡΙ—Ρ\> —,\Pn—p\A. 
Hence we have \pn—p\ < ρ for every n. Therefore 

\Pn~Pm\ < \Pn-p\ + \p-Pm\ < 2ρ, i.e. <5(Z) < 2ρ. 

The proofs of the following theorems do not deviate from the 
proofs given in elementary analysis for sequences of real numbers. 

THEOREM 3. If pn= p for n= 1 ,2, . . . , then \\mpn = p. 
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THEOREM 4 (ON SUBSEQUENCES)· If lim/?n = p and k1 < k2 
Λ-»-00 

< ..., then 
\\mpkn=p. 
n -*oo 

THEOREM 5. Every sequence pl9p2, ···? which is not convergent 
to p, contains a subsequence none of whose subsequences is con­
vergent to p. 

THEOREM 6. Neither the convergence of a sequence nor its limit 
depend on the initial finite number of terms of this sequence. 

This means that the addition or the omission of a finite number 
of terms of a convergent sequence does not affect either its con­
vergence or the value of its limit. 

THEOREM 7. If\\mpn = p = \imq„, then the sequence Pi9qi,p2> 
n - > 0 0 7!-->00 

q2, ... is convergent to p. 

§ 6. Limit in the cartesian product 

Let Z = Χχ Υ be the cartesian product of the metric spaces 
X and Γ. 

THEOREM 1. A necessary and sufficient condition that a sequence 
of points zn = <Λ:η,^π> of the space Xx Y be convergent to the 
point z = {x,y} is that limxn = x and limyn = y. 

η-*·αο Λ - > Ο Ο 

P r o o f . Let limz„ = z and let ε > 0. Hence there exists 
Λ-Χ30 

k such that \zn—z\ < ε for n > k. But since 
\zn-z\ = {\Xn-X\2 + \yn-y\2y!2 > \χη-χ\ 

(cf. § 1, (4)), we also have \xn— x\ < ε for n > k, i.e. limxn = x* 
n->oo 

In an analogous manner we can prove that limyn = y. 
Λ-»00 

Let us assume conversely that limxn = x and limj;n = y. Let 
n~»-oo n-*oo 

ε > 0. Then there exists a k such that for n > k we have 

\xn— x\ < ε and \yn— y\ < ε, 
whence 

\Zn-z\ = { | * n - * | 2 + l ^ - j | 2 } 1 / 2 < e]/2. 

Therefore limz„ = z. 
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THEOREM 2. Let Xi9X2, ...,Xm9... be uniformly bounded spaces 
(see also Chapter XII, § 3, Remark 2). Let ρ > d(Xm) for m 
= 1,2,... Let xn = (χϊ,Χι, ...,*£> ···) for / i = l , 2 , ... te 
a point of the space XxxX2X ... xXmX ... (i.e.x^eXm for 
m = 1, 2, ...), metrized with the aid of formula (l)of§3.A nee-
essary and sufficient condition that this sequence be convergent to the 
point x = (xl9 x2, ..., xm9 ...) is that lim^J, = xmfor m = 1,2, 

rt->oo 

...,i.e. 

(limx* = x) = / \m(lim*i = xm). 
«-►00 Λ->00 

Proo f . Let 1 imx„ = * and let ε > 0. Therefore, for a fixed 

m there exists a fc such that 
I*"-*! < e/2m 

for n > k. 
Since, however, 

(l/2»)|*i-xM| < |*»-* | 
by (7), we have 

\xn
m-xm\ < 2m\xn-x\ < 2m · e/2m = c 

for n > k. 
This means that 

(11) ' l i m ^ = ^m. 
W->00 

Let us assume next that formula (11) holds for m = 1, 2, ... 
Let ε > 0. Let i be an integer such that 

(12) 1/21 < ε. 

Formula (11) for m = 1, 2, ..., / implies that there exists A: 
such that for n > k the inequalities 

(13) \Χ\-Χι\<ε, \χη
2~Χ2\<ε, . . . , |χ?-χ.| < c 

hold. Therefore, because of (12) and (13), 
00 

|*"-*|=21(l/2m)K-xJ 
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I 00 

= Σ a/2")i*:-*j+ Σ d/2M)w-^i 
m = l m = / + l 

/ oo 

< Σ (e/2m)+ Σ· ^xn>)Um < «+«· e 
m = l m = / + l 

for all w > fc, i.e. 

| * " - * | < * ( 1 + ρ ) . 
Hence 

limx" = Λ:. 
n->oo 

§ 7. Uniform convergence 
This concept can be introduced in the same way as in elementary 

analysis. 
D e f i n i t i o n . Let fn: X -> Y, n = 1,2, ..., where X is 

an arbitrary set and 7 i s metric. We say that the sequence/x , / 2 , ... 
converges uniformly to / if 

(i4) Λβ ν*Λ*Λ»>*ι/π(*)-/(*)Ι < «■ 
Let us consider (as in § 2) the space Φ(Χ, Υ) of all bounded 

mappings / : X -> Y with the distance defined by formula (6) 
o f § l . 

The definition of the limit in a metric space (see § 4) implies that 

( l i m / w = / ) E E l i m | / n - / | = 0 

Λ->00 Π->·00 

= Λ.ν*Λ->*(8«ρΐ/-(*)-Λ*)ΐ <«) 
s Λ.\ΛΛ.>*Λ*(Ι/.(*)-Λ*)Ι <ε)· 

Thus we have the following theorem. 
THEOREM 1. In the space Φ(Χ, Y), the condition lim/„ =f means 

Λ->00 

that the sequence of mappings f1}f2, ... converges uniformly to the 
mapping f 

THEOREM 2. The limit of a uniformly convergent sequence of 
bounded mappings is bounded. 

P r o o f . Let ε > 0. Let n be such that ! /„—/]<£. Since 

l/(*l)-/(*2)l < l/(Xl)-/n(^l)l + I/«(^l)-/W(^)l + l /n (^ ) - / f e )U 
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it follows that 
W ) ] < W.W1+2*. 

Exercises 

1. Let S2 be the complex number plane; for points z, z' e $2 (where 
z φ ζ') let \\z—z'\\ be defined as follows: in case the line zz' goes through 
the origin of the coordinate system, take \\z—z'\\ = \z—z'|, and in the con­
trary case take \\z—z'\\ = |z| + |z'|, where \z\ denotes as always the absolute 
value of z. Furthermore, let \\z—z\\ = 0. Prove that \\z—z'\\ can be treated 
as the distance of z from z', i.e. that it satisfies the conditions (l)-(3). 

2. Show that if the sets A and B are not void and if A <=: B, then δ(Α) 
< δ(Β). 

3. Prove the inequality 
δ(Α υ ΰ ) < δ(Α) + δ(Β) 

under the assumption that A Γ\ΒΦ0. 
4. A set of arbitrary elements is called an <&*-space if to certain infinite 

sequences Pi,p2, ··· of its elements (called convergent sequences) there cor­
responds an element p = lim p„, called the limit of the considered sequence 

n-*oo 
so that the Theorems 3-5 of § 5 hold true. Thus, metric spaces are «£?*-spaces. 

Show that Theorems 6 and 7 of § 5 hold in $£*-spaces. 
5. Let lim pn =/? in an j£?*-space. Show that, if the sequence ?i , ? 2 , . . . 

W->00 

is derived from the sequence Pi,p2, ■·· by finite repetition of its elements, 
then lim<7„ ~ P· 

W~>00 



CHAPTER X 

TOPOLOGICAL SPACES 

§ 1. Definition. Closure axioms 
A topological space is a set X and a mapping assigning to each 

set A cz X a set A a X satisfying the following four axioms: 

(I) Au B = AvB, 
(II) A <= A, 
(III) 0 = 0 , 

(IV) Q) = A. 
The elements of the space X are called points and the set 4̂ is 

called the closure of v4. 

§ 2. Relations to metric spaces 
We are going to show that every metric space (and in particular 

Euclidean space) can be regarded as a topological space if the 
following definition of the closure is assumed. 

D e f i n i t i o n , p belongs to A if and only if p is the limit 
of a sequence of points belonging to A. 

First, let us show the following theorem. 
THEOREM 1. p e A if and only if 

(1) KnA^0 
for every open ball K of centre p. 

For, if p = lim/?,,, where pn e A, then Kn A Φ 0 by virtue 
Λ->00 

of Theorem 1 of Chapter IX, § 5. 
Next, let us assume that condition (1) is satisfied for every K. 

Let Kn = K(p, I/n). By assumption, Kn r\A Φ 0, i.e. for every 
n there exists a point pn e Kn n A. By the definition of Kn we have 
\Pn—p\ < 1/n, and therefore p = \impn. Inasmuch as pn eA we 

n-x» 
have p e A. 

123 
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R e m a r k . The above theorem can be formulated as follows: 
A necessary and sufficient condition that the point p does not belong 
to the set A is, that there exist a ball with centre p which is disjoint 
from the set A. 

THEOREM 2. Let X be a metric space. If the above definition of 
closure is assumed, X becomes a topological space. 

We have to show that the conditions (I)-(IV) are fulfilled. 

P r o o f o f p r o p e r t y (I). Let p e Au B. This means 
that p — lim/?„, where pne Au B. It follows that there exists 

n->oo 

a sequence of indices kx <k2 < ... such that for every n we 
have pkn e A or for every n we have pkn e B. Since p = \\mpkn 

(by virtue of Theorem 4 of Chapter IX, § 5) in the first case we 
obtain p eA, and in the second case p e B. Hence, in every case 
we have p e A u B. 

We have thus proved that 

(2) A KJ B c l u B. 

In order to prove the converse inclusion we shall show that 

(Ι') (A c B) => (Ä c B). 

Ifp e A, then p = \impn, where pn e A. Because of the inclusion 
w-»oo 

A c B it follows that pn e B, and hence p e B. 
Since A a Av B and B c Au B, we deduce from (Γ) that 

Ä c AZTB and B c A u B, 

and hence, adding these two inclusions memberwise, we obtain 

(3) TLKJB CZÄÄJ~B. 

Inclusions (2) and (3) yield (I). 

P r o o f o f i n c l u s i o n (II). It suffices to note that if/? e A 
then p = limpn, where pn = p for n = 1, 2, ... (see Theorem 3 of 

Λ->00 

Chapter IX, § 5). 
Formula (IV) remains to be proved. By virtue of inclusion (II) 

we have A <= (A). Therefore, it suffices to prove that (A) c A. 
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Hence, let p e (A). By virtue of Theorem 1 for every ball K of 
centre p we have K n ΑΦ 0 . Hence, let q e K n A. Let us 
choose a ball L of centre q such that L a K. Since q e A, L is 
a ball with centre q, and hence (by virtue of Theorem 1) we have 
L n A Φ 0 . But since L a K, we therefore have (L n 4̂) 
<= (AT n Λί), whence Kn Αφ 0. We deduce from this that p e A 
(by virtue of the very same Theorem 1). 

§ 3. Further algebraic properties of the closure operation 

Let X denote a topological space. The following formulas hold. 

1. (AczB)=> (ÄczB). 

P r o o f (this formula denoted by (Γ) was proved for metric 
spaces in § 2). Obviously 

(A czB) = (B = AvB). 

Hence B = Au B and by (I) B = A u B. But this means that 
Ac: B. 

2. A-B c A-B. 

P r o o f . A v B = (A—B) u B, and therefore 

Ä~ü~B= (A-B)vB. 

From this, by virtue of formula (I), we have Au B = A ~B u B 
and hence A a A—BKJ B, whence A—B a A—B. 

3. A nBa^LnlB. 

P r o o f . Since A nB a A and A nB a B, we have, by 
virtue of (Γ), A c\Ba A and A nB c B, and therefore A nB 
a An B. 

More generally, the following formula is valid: 

4· (VA, c=n,Ät, 
where the variable t ranges over an arbitrary set T. 
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P r o o f . Since for every i e T w e have DtAt c As, hence 
by virtue of formula 1 we have C]tAt c As, and from this we 
get Π ί Λ c OsAs. Replacing the index s by r we obtain 
formula 4. 

P r o o f . For every s we have As c U f Λ > and hence by virtue 
of formula 1 we have Ascz | J f ^ h and [JSAS c [JtAt. From 
this we obtain formula 5. 

6. X = X. 
This follows directly from axiom (II). 

§ 4. Closed sets. Open sets 
D e f i n i t i o n s . A set is said to be closed if A — A, that is 

(because of axiom (II)) if A <= A. 
A set A is said to be open if its complement is closed, or in 

other words, if A = X—X—A, where X is the entire space. 
Thus, in a metric space, the condition for a set A to be closed 

can be expressed by the implication 
(lim xn = x){xn e A) => (x e A). 
«-►00 

The condition for a set A to be open (in a metric space) is that 
each point of A belongs to an open ball contained in A (compare § 2, 
Remark). 

EXAMPLES. 1. The null set is a closed set, i.e. 0 = 0 (§ 1, 
axiom (III)); the entire space is a closed set (§ 3, property 6). 
It also follows from this that the null set and the entire space are 
open sets. 

2. In the space of real numbers the closed interval a < x < b 
is a closed set. Our terminology is therefore in agreement with the 
terminology used in analysis. On the other hand, the open interval 
a < x < b is an open set (which is not closed). 

3. I f / i s a continuous real valued function defined on the closed 
interval a < x < b, then this function, i.e. the set of points 

A = {<*, y>: [y = / (*) ] (a < x < b)}9 

is a closed set. 
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For, let p e A, i.e. p = lim/?„, where pn e A. The points pn are 
n—>-oo 

therefore of the form 

(4) Pn = <Xn>f(xny>9 

(5) a^xn^b. 

Letp = (x, >>>. Since p = lim/?„, we have (compare Theorem 1 
n->oc 

of Chapter IX, § 6) 

(6) limx„ = x, 
n—>ao 

(7) lim/(x„) = y. 
n ->oo 

It follows from (5) and (6) that a < x < ό. 
But because of the continuity of the function / , it follows from 

(6) that 
lim/OO = / ( * ) , 
Λ->00 

and hence y =f(x) by virtue of (7), i.e. p = (x,f(x)} and by 
the definition of the set A we have p e A, 

We have thus proved that A a A, i.e. that A is closed. 
R e m a r k . As seen in Example 1, every nonvoid space 

X contains two closed-open subsets, namely 0 and X. A space 
which contains no other closed-open subset is called connected 
(connected spaces will be studied in Chapter XVII). 

§ 5. Operations on closed sets and open sets 

THEOREM 1. The union of two closed sets is a closed set. 
For, if the sets A and B are closed, i.e. A = A and B = B, then 

A v B = A \JB = A u B. 

This theorem can be generalized (by induction) to an arbitrary 
finite number of sets. The union of an infinite number of closed 
sets may be a non closed set; if e.g. An = {l/n} then the union 
Αχ u A2 u ... is not a closed set (in the space of real numbers), 
since the point 0 does not belong to it but it belongs to its closure. 

THEOREM 2. The intersection of an arbitrary number of closed 
sets is a closed set. 
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In fact, if the sets At are closed, i.e. At — At9 then by formula 
4 of § 3, we have 

and hence the set DtAt is closed. 
THEOREM Γ. The intersection of a finite number of open sets 

is an open set. 
THEOREM 2'. The union of an arbitrary number of open sets is 

an open set. 
These properties follow from Theorems 1 and 2 using De Morgan 

formulas (see Chapter II, § 4, (30) and Chapter IV, § 2, (4)): 

X-(A nB)= (X-A) u (X-B), J f - U r 4 = Hf (X-At). 
For, if the sets A and B are open, then the sets X—A and X—B 

are closed, and hence the set X—(A r\B) = (X— A)u (X—B) 
is also closed, i.e. the set A n B is open. The generalization 
of the theorems to the case of an arbitrary finite number of sets 
is immediate. 

If the sets At are open, i.e. the set X—At are closed, then the 
set X—{JtAt = P | , (X—At) is closed, and hence the set {JtAt 

is open. 
R e m a r k . Theorems 1, Γ and 2, 2' are examples of a duality 

in topology: to every theorem on closed sets there corresponds, 
by virtue of the De Morgan formulas, a theorem on open sets, 
and conversely. 

THEOREM 3. The set A is the smallest closed set containing A; 
in other words, A is the intersection of all closed F such that A c F. 

Equivalently 

(8) p e A = f\F (A a F) => (p e F), whenever F is closed; 
otherwise stated 

(9) p e A = / \ G (p G G) => (A nG ^ 0), whenever G is open. 

P r o o f . Let p e A and A ^ F. Hence A a F = F and con­
sequently p e F. 

Conversely, if (A c F) => (p e F), we obtain p e A substituting 
A for F (according to axiom (IV)). 
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(9) is equivalent to (8), since the implication (A a F)=> (p eF) 
is equivalent to (p φ F) => {A φ F), hence to 

(p eX-F) => [A n (X-F) Φ 0] ; 

thus it is sufficient to substitute the variable G (open) for F (closed). 

§ 6. Interior points. Neighbourhoods 
D e f i n i t i o n 1. The set Int(v4) = X-X-A is called the 

interior of the set A. 
Obviously, the condition p eX—X—A means that p φΧ—Α. 

Therefore (see § 5, (9)), p is an interior point of A (i.e. p e Int (A)) 
if and only if there is an open G containing p and such that 
Gn(X-A) = 0. 

It follows that A is open iff 4̂ = Int(y4). 
The interior operation is dual to the closure operation. Thus 

the following statements (which can be easily proved) are dual 
to the statements (I)-(IV) of § 1: 

(Γ) Int (AnB) = Int (A) n Int (B), 

(IF) Int(^)<=^, 
(III') Int (X) = X, 

(IV) Int[IntC4)] = Int04). 

It should be noted that the interior operation can be taken 
as the primitive term in the definition of topological space instead 
of the closure operation. 

Also one easily sees that Int 04) is the largest open set contained 
in A (this is dual to Theorem 3 of § 5). 

D e f i n i t i o n 2. A set A is said to be a neighbourhood of 
a point p if p e Int 04), i.e. if p is an interior point of the set A. 

Hence an open set is a neighbourhood of each of its points. 
Every neighbourhood of the point p contains an open neighbour­
hood of the point p, namely its interior. 

We say, more generally, that A is a neighbourhood of the set B 
if B czlnt(^). 

Every set containing a neighbourhood of/? is itself a neighbour­
hood of p. The intersection of two neighbourhoods of p is a neigh-
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bourhood of p (by (Γ)). Thus the family of all neighbourhoods of 
p is a filter. 

D e f i n i t i o n 3. The set Fr(^) = A nX—A is called the 
boundary of A. 

Clearly, every neighbourhood of a point peFr(A) intersects 
A and X-A. 

EXAMPLES. 1. The interior of the closed interval a < x < b 
in the space of real numbers is the open interval a < x < b and 
its boundary is the set consisting of its endpoints a and b. 

2. The interior of the closed disk {x: \x—p\ < ρ} on the plane 
is the open disk {x: \x—p\ < ρ} and its boundary is the circum­
ference {x: \x—p\ = ρ}. 

§ 7. The concept of open set as the primitive term of the notion 
of topological space 

Let X be an arbitrary set and let R be a family of subsets of X 
such that 

(i) the union of an arbitrary number of sets belonging to R 
belongs to R, 

(ii) the intersection of a finite number of sets belonging to R 
belongs to /?, 

(iii) 0eR, 
(iv) X E R. 
THEOREM. R gives a topological structure to X by assuming 

that R is the family of open sets of X. 
More precisely: define the closure operation by the condition 

(9) of § 5 where G ranges over R; then the axioms (I)-(IV) are 
fulfilled. Moreover, the family of sets which are open relative 
to this definition (according to the definition given in § 4) is 
identical with R. 

P r o o f . In order to show that the above defined closure 
satisfies (I), put p e A u B. We have to show that either p e A 
or p e B. Suppose the contrary is true. Then there exist by (9) 
two sets G E R and H e R such that p e G, p e H, G r\A = 0 
and HnB = 0. It follows that 

PE(G n H) and (G n H) n {A n B) = 0 . 
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Hence p φ A u B because by (ii) (G n H)e R. 
Thus A u B c A u B. The converse inclusion follows directly 

from (9). The case of conditions (II) and (III) is similar. 
Finally, in order to prove (IV), it is sufficient to show that 

(p E A) => (p e A). Now let p e G e R; we have to show that 
An G # 0 . Substituting in (9) Ä for A, we get An G φ 0 . Let 
q e A nG. It follows by (9) (where p has to be replaced by q) 
that A n G Φ 0 . 

We are now going to show that the family of open sets in the 
sense of the closure defined according to the condition (9) (with 
G e R) is identical with R. Let A be open. Hence by (9) 

(psA) = (p φΧ=Α) SE \JG(p E GER)[(X-A) nG = 0] . 

Thus, A is the union of some elements of R (namely, of elements 
contained in A), and therefore A E R (by (i)). 

Conversely, if A e /?, A is obviously open. 
R e m a r k 1. Another equivalent form of defining topological 

space (dual to the preceding) consists in assuming the term closed 
set as the primitive term. One will only need to replace in the 
conditions (i) and (ii) "union" by "intersection" and vice versa. 

R e m a r k 2. Conditions (iii) and (iv) follow from (i) and (ii) 
if we agree that the number of elements of R may be zero. 

§ 8. Base and subbase 

D e f i n i t i o n L A family B of open subsets of the space X is 
called its (open) base if every open G cz Xis the union of a certain 
number of members of B. 

A family S of open subsets of X is called its (open) subbase 
if the family of all finite intersections of members of 5 is a base 
of X. 

Thus the family R of all open subsets of X is generated by 
B by means of the union operation. R is generated by S by means 
of two operations: the finite intersection operation and the union 
operation. 

R e m a r k s . The notions of a base and of a subbase lead 
to a very general method of introducing topology in an arbitrary 
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set X. Namely if R fulfills condition (ii) of § 7, then X becomes 
a topological space if we declare that R has to be its base. 

Similarly, if F is an arbitrary family of subsets of X, then X be­
comes a topological space if we assume that F is its subbase. 

This follows easily from the formula 

(UsAs) n(UtBt) = UsA^s nBt) 

where Ase B and Bt e B (hence (As n Bt) e B). 
D e f i n i t i o n 2. A space having a countable base (but 

having no finite base) is said to be of weight a. 
Generally, the weight of a space is the least cardinal m such 

that the space has a base of cardinality m. 
D e f i n i t i o n 3.A (metric separable) space is called ^dimen­

sional if it contains a base composed of sets which are simul­
taneously closed and open. 

EXAMPLES. In the space $ the family of all open intervals with 
rational endpoints is a base. The open rays x > r and x < r 
form a subbase of $. 

In the space Sn the family of all open balls K(p,r) where 
r is rational and/? has rational coordinates is a base. 

The spaces: 2S (of integers), 0t of rational numbers, Jf of 
irrational numbers are O-dimensional. 

§ 9. Relativization. Subspaces 

Each subset E of a topological space X can be regarded as 
a topological space when we assume that the set Q <= E is open 
relative to E if Q is the intersection of E and of a set G open in X. 
It is easily seen that the family of open sets relative to E satisfies 
conditions (i)-(iv) of § 7, and thus E becomes a topological space 
(with the topology induced by the topology of X\ 

It follows that a subset P of E is closed relative to E if and 
only if it can be written in the form P = E r\F where F is closed 
in X. The closure of A <= E relative to E equals E nA. 

§ 10. Comparison of topologies 

Given a set X, there are—generally speaking—various ways 
of introducing topology in X. One can, for instance, assume that 
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every subset of X is open; this is the topology called discrete. 
One can, on the contrary, assume that the only two open sets 
are the void set and the whole space; this is the coarsest topology, 
the first one is the richest (the finest) topology. 

The totality of all topologies of a given set X can be ordered. 
Namely denote by (X, R) the topology of X having R as the family 
of all open sets and let us agree that 

[ ( * , * ! ) < ( * , Ä 2 ) ] = (Ä1 <=*2)· 

Thus (X, R^ is coarser than (or equal) (X, R2). Of course, 
the family of closed sets of the first is contained in the family of 
closed sets of the second; the closure of a set A in the first topology 
contains its closure in the second. 

§ 11. Cover of a space 

D e f i n i t i o n . A family C of open subsets of X is called an 
(open) cover of X if X = U C, i.e. if each point of X belongs 
to some member of C (compare Chapter IV, § 5). 

Cx is called a subcover of C if C\ c C 
The concept of a cover gives rise to a number of important 

topological notions which will be studied later. 
For instance, X is said to be compact, if every cover of X con­

tains a finite subcover. X is called countably compact if every 
countable cover contains a finite subcover. X is called a LindeWf 
space if every cover contains a countable subcover. 

THEOREM. Let B be an open base of X and C an open cover 
ofX. Then there exists a cover R which is a refinement (see Chapter 
IV, § 5 ) o / C suchthat R a B. 

P r o o f . Let C = {Gt} and let {Hs} be the family of members 
of B such that for each s there is t(s) such that 

0 ) HMcGtiay 

{Hs} is a cover of X. For let/? be a given point of X. Since {Gt} 
is a cover of X, there is t0 such that p e G,0, and since B is a base 
of X there is s0 such that p e HSQ <= Gto. Hence HSQ is a member 
of {#.}. 

R e m a r k . Let B be an open base of the space X. If every 
cover of X composed of elements belonging to B contains a finite 
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(resp. countable) cover, then X is compact (resp. is a Lindelöf 
space); in other words, in order to show the compactness or the 
Lindelöf property of a space X we can limit ourselves to the 
consideration of covers contained in B. 

Exercises 

1. Prove that if the set G is open, then the following rules are valid for 
every set A: 

(a) G n A <= Gn A, 

(b) GnA = G n A. 

2. Prove the formulas: 
(a) A ^ B implies Int (A) <= Int (B), 

(b) Uf In t (^ f ) c In t (U i^ f ) . 
(c) Fr(A) = A n ~X-A\J (A-A\ 

(d) A = A u F r ( / i ) , 

(e) Fr(A u B) u Fr(A n B) u (Fr(A) n Fv(B)) = Fr(A) u Fr(B), 

( 0 Fr[[nt(^)]GFr(/<) , 

(g) Tnt(>4)n Fr(A)=0, 

(h) Fr{Fr[Fr(/i)]} = Fr[Fr(>4)l. 

3. Prove the equivalences: 

(A is closed) = (Fr(^) = A n X-A), 

(A is open) = (Fr(A) = A-A). 

(A is a difference of two closed sets) = {A—A is closed). 

4. Let {At} be an arbitrary family of sets open relative to their union. 
Prove that 

(0 I n t ( U r ^ r ) = U f I n t ( ^ f ) , 

(") I n t ( U i ^ ) =UiIn t (^ f ) . 
5. Prove that the following two properties of a topological space are 

equivalent: 
(i) the closure of each open set is open (a space with this property is called 

extremally discontinuous), 
(ii) whenever two open sets are disjoint, then their closures are disjoint. 
6. Suppose that X contains a countable base. Then every base contains 

a countable subfamily which itself is a base. 
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7. A family of sets {At} is called locally finite, if each point p is contained 
in an open set G which intersects only a finite number of sets At. Show that 

OtAt = \JtÄt. 
8. Let Ci and C2 be covers of X. Recall that C2 is a refinement of Ci if 

each member of C2 is a subset of a member of Cx. Write in this case C1 < C2. 
Show that this relation is a quasi-order (see Chapter VII, § 1) in the totality 
of all covers of X and that this totality is directed by this relation. 

R e m a r k . X is called paracompact if each cover has a locally finite 
refinement. Each metric space is paracompact (A. H. Stone theorem).t 

9. Two sets A and B are said to be separated if 
Ar

n B = 0 = A n B. 
Show that A and 5 are separated iff they are disjoint and closed in A u B. 
10. If two subsets A and B of X are separated, the set X—(A u 5) is 

said to separate A from B. 
Show that Fr(A) separates lnt(A) from lnt(X-A). 
11. Prove that if we apply to a set A <= X two operations, A and Α'— Λ 

then the maximal number of sets that we can obtain is 14. Namely (write 
A~ instead of A and Ac instead of X~A): A, A~, Ac, A~C,AC- , ..., A-C-C~c

9 
^C—C-C—C^ 

Verify that all the general valid inclusions are exhibited in the following 
table :t 

X-c ^χ-c-c-c 
^χο-c-c 

12. Prove that in a metric space δ(Α) 

χο-c-c- _+Xc 

δ(Α). 

t A simple proof of this theorem is given by M. E. Rudin in Proc. Amer. 
Math. Soc. 20 (1969), p. 603. 

t For typographic reasons we write -> instead of c . 
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13. Let X be a metric space. We say that a point p e X belongs to the lower 
topological limit of the sequence of sets Alt A2,... contained in X, i.e. 

pe Li An 
n->oo 

if every neighbourhood of p intersects all A„ with sufficiently great indices. 
Prove the following formulas: 
1. LiAn = L\An = \AAn, 
2. An c Bn => Li^„ c UBn, 
3. Li^n vUBn c LM„ U5„), 
4. LiC4„ n £») c (LiA„) n (Lify, 
5. liminL4„ <= LiA„ (comp. Exercise 6 of Chapter IV), 
6. Li(^„x5n) = LiAnxLiB„. 
14. Let X be as before a metric space. We say that a point peX belongs 

to the upper topological limit of the sequence of sets Av, A2y ... contained in 
X, i.e. 

pe Ls An 
n->oo 

if every neighbourhood of p intersects A„ for infinitely many n. 
Prove the following formulas: 
1. LsAn = LsAn = Lsy4„, 
2. An c 5„ => Ls^„ c Ls5„, 
3. Ls(^„ u Bn) = hsAn vhsBn, 
4. LsG4n n £„) c Ls^M n Lstf*, 
5. if An = A then Lsy4„ = Λ, 

6. Ls.4n = Pl^=oU?=o^rt + fc, 
7. Ls(^„x5„) <= LsAnxLsB„, 
8. Ls^n-LS jßn c Li(^M-Βη), 
9. Li(^n u £„) <^LiA„ u Li£n u (Ls^„ n Ls£„). 
15. If Li An = Ls Λ„ we use the notation 

w->oo «->oo 

Lt A„ = Li Λπ = Ls Λ„ 
n->oo n->co Λ->ΟΟ 

and call the set Lt Λ, the topological limit of the sequence Al9 A2, ···. 
«-►00 

Prove the following formulas: 
1. UA„ =UA„ = UAn, 
2. Lt(^„ u £„) = Lt^„ u Lt5„, 
3. if/i„ = Λ, then Lt/i,, = /4, 
4. iL4x c Λ2 <= .. . , thenLt^„ = Uw°=i^n, 
5. ifAi ^ A2 ·=> ..., thenLt/l,, =(^\η

Χ>=\Αη, 
6. Lt04„ x Bn) = Lt^n x Lt£„. 



C H A P T E R XT 

BASIC TOPOLOGICAL CONCEPTS 

§ 1. Borel sets 

Borel sets are sets which belong to the smallest family R of 
subsets of a given space satisfying the following conditions: 

(a) every closed set belongs to R, 
(b) ifXHeRforn=l,2,...,then U - V . e Ä , 
(c) if XHeR for n = 1,2, ..., then n?=iX*eR. 
A family of Borel sets is therefore, in the sense of the terminology 

of Chapter IV, § 7, a Borel family generated by the family of closed 
sets. 

Making use of ordinal numbers we can classify Borel sets in 
classes l?a, where a < Ω, in the following manner. 

1. The class R0 is the family of all closed sets. 
2. For α = λ+η > 0, where λ is a limit ordinal and n is a non-

negative integer, the class Ra is the family of all sets of the form 

OlfLiXk or u r = A 
according to whether n is even or odd, and the sets Xi9 X2, ··· 
belong to classes of indices smaller than a. 

In particular, the class R1 is the family of all countable unions 
of closed sets; they are called ivsets . The class R2 is the family 
of intersections of a countable number of i^-sets (they are called 
iVa-sets), and so forth. 

It can be proved that for every α < Ω there exists in the space 
of real numbers a set of the class Ra which does not belong to any 
class with index smaller than a. 

R e m a r k . If we start with open sets, instead of closed sets 
(cf. condition (a)), we obtain the Borel family generated by the 
family of open sets (which, as can be proved, is in metric spaces 
identical with the Borel family, considered above, generated by 
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the family of closed sets; see Chapter XII, § 4). Here the open 
sets form the zero class, the G^-sets, i.e. countable intersections 
of open sets form the first class, the G^-sets form the second 
class, and so forth. This classification is dual to the classification 
previously considered. 

§ 2. Dense sets and boundary sets 

A set A is said to be dense if A = X. A set A is said to be a 
boundary set if its complement is a dense set, i.e. if X—A = X. 
(A set whose closure is a boundary set is also said to be a nowhere 
dense set.) 

Obviously, every set which contains a dense set is dense and 
a subset of a boundary set is a boundary set. 

In the space $ of all real numbers, the set of rational numbers 
is both a dense and a boundary set. In the plane S1 a straight 
line is a boundary set. 

It can be easily proved (applying formula (9) of Chapter X, § 5) 
that the following theorems are valid: 

THEOREM 1. A set A is dense iff in every open set (Φ 0 ) there 
exist points which belong to A. 

THEOREM 2. A set A is a boundary set iff in every open set (Φ 0 ) 
there exist points which do not belong to A. 

THEOREM 3. A closed set A is a boundary set iff for every open 
set (Φ 0 ) G there exists an open set {Φ 0 ) H cz G such that 
HnA = 0 . 

The union of two boundary sets might not be a boundary set. 
For example, the set of all rational numbers and the set of all 
irrational numbers are boundary sets (in the space of real numbers), 
but their union is not a boundary set. 

On the other hand, the following theorem can be proved: 
THEOREM 4. If a set A is a boundary set and the set B is a closed 

boundary set, then A u B is a boundary set. 
Hint for the proof. Applying formula 2 of Chapter X, § 3, we 

have 

X-B = X-A-B cz (X^A)-B = Χ^(ΑΛΓΒ). 
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§ 3. «^-spaces. ^ V s P a c e s 

D e f i n i t i o n L A topological space X is called a ^Ί-space 
if each single element set is closed: 

(1) {/?} = {p} for each p eX. 
Clearly, every metric space is a ^ - s p a c e . 
On the other hand, there are topological spaces which are not 

^ - spaces . Such is e.g. each space X containing more than one 
point and containing only two open sets: 0 and X. 

The topological spaces which are under consideration in this 
book are—as a rule—assumed to be ^Ί-spaces; this assumption 
will not always be explicitly formulated. 

D e f i n i t i o n 2. A topological space is called a Hausdorjf 
space (or a &2~space, or a separated space) if for each pair of 
points p Φ q there are two open sets G and H such that 

(2) peG, qeH and GnH=0. 
Clearly, each metric space is a ^Vspace. 
THEOREM. Each ΖΓ 2-space is a ?T\-space. 
Let p be a given point. By assumption, each χφ ρ belongs to 

an open Gx such that/? is not in Gx. Consequently, X— {p} ={JGX. 
χφρ 

Thus X— {/?} is open, and {p} is closed. 
R e m a r k 1. There exist ΖΓ\-spaces which are not ΖΓ2. Such 

is the space composed of the points \\n for n = 1, 2, ... and the 
point 0 with the following topology: Open sets which do not 
contain the point 1 are identical with open sets in the usual topo­
logy of real numbers; sets#containing 1 are open if and only 
if they are complements of finite sets. Obviously, each open set 
containing 0 is infinite, and consequently the points 0 and 1 cannot 
be separated by means of disjoint open sets. 

R e m a r k 2. It is easy to show that the properties of being 
a ^Ί-space and of being a ^2-space are hereditary; that means 
that every subset of a ^"Vspace is &Ί and every subset of a 5"2-
space is ΖΓ2. 

§ 4. Regular spaces, normal spaces 
A notion less general than that of a ^Vspace is the notion 

of a regular space. 

file:///-space
file:///-spaces
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D e f i n i t i o n 1. A topological space is called regular if 
every point p and every closed set F which does not contain p can 
be separated by disjoint open sets; i.e. if there are two open sets G0 

and Gi such that 

(3) peG0, FczGt and GonGl==0. 

This can be stated equivalently: if there exists an open set G such 
that 

(4) peG and GnF=0. 

A still less general notion than that of a regular space is the 
notion of a normal space. 

D e f i n i t i o n 2. A topological space is called normal if 
for each pair of disjoint closed sets A and B, there are two disjoint 
open sets G and H such that 

(i) A c G and B a H. 

Equivalently stated, if for each pair A <= C where A is closed 
and C open, there is G open such that 

(ii) A a G and G c C. 

The implication (i) => (ii) follows by substituting B = X— C. 
In order to obtain the converse implication we put C = X—B 
and H = X-G. 

R e m a r k 1. Obviously every normal ^Ί-space is regular. 
The converse is not true; moreover regularity is hereditary, while 
normality is not (see Exercise 10). 

On the other hand, every metric space is normal (see Chapter XII, 
§ 4, Theorem 6). 

R e m a r k 2, If X is regular and B is its base, then every open 
set G is the union of some members of B whose closures are con­
tained in G. 

For, let p e G and let p e H where H is open and H c G (the 
existence of H follows from the regularity of X). Since B is a base 
of X, we have H = \^JtRt where Rt e B. Hence there is / such 
that p e Rt. Obviously Rt c H a G. 

R e m a r k 3. If X is regular, the Theorem of Chapter X, 
§11 can be strengthened in the following way: we assume that 
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not only the cover R c B is a refinement of C but that the family 
of closures of members of R is a refinement of C. 

To show this one has only to replace in the proof Hs by Hs. 

§ 5. Accumulation points. Isolated points 

D e f i n i t i o n s , p is an accumulation point of the set A if 
peA-{p}. 

p is an isolated point of A if p belongs to A but is not its ac­
cumulation point. 

For example, the point 0 is the only accumulation point of the 
infinite set A of points 1, 1/2, 1/3, ...; all these points are isolated 
points of A. 

It is easy to prove the following theorems. 
THEOREM 1. p is an accumulation point of A iff every open set 

containing p contains a point of A different from p. 
THEOREM 2. p is an isolated point of A iff there is an open set 

G such that G nA = {/?}. 
Consequently, p is an isolated point of the space iff the set {p} is 

open. 
THEOREM 3. If X is metric, then p is an accumulation point of 

Xiff 
p = \imp„ where ρηΦ p. 

Λ-»00 

§ 6. The derived set 

The set of all accumulation points of A, denoted Ad, is called 
the derived set of A. 

In «^-spaces the derived set has the following properties. 

1. A = AuAd, 
2. (AuB)d = AduBd, 

3. L U f c OJAY, 
4. Add c A*9 

5. A* = Ad. 

The formulas 1-3 can be easily proved (they hold in every 
topological space). Let us establish formula 4. 
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Suppose that p φΑά, i.e. p φ A—{/?}. There is therefore an 
open G such that peG and GnA—{p} = 0 . Suppose (con­
trary to 4) that p e Add, i.e. p e Äd —{/?}. Since p e G, we have 
G r\Ad—p Φ 0 , and there is q Φ p such that ^ e G n y 4 d . It 
follows that 

? e (G-{/>}) n J - { 7 } , hence ((?-{/>}) n(A-{q}) Φ0, 

since G—{/?} is open (the space being supposed ^ Ί ) . But this 
contradicts formula G n ,4—{/?} — 0 . 

Formula 5 is an easy consequence of 1 and 4. 
R e m a r k 1. If the space is not &Ί, formula 5 (hence 4) may 

not hold. Such is the case if X = {p, q] where p Φ q and where 
the topology is trivial. For {p}d = {q} while {q} = {p,q}. 

R e m a r k 2. In contrast to the closure, the second derived 
set need not necessarily be equal to the first. If, for example, 
A consists of the points 1, 1/2, 1/3, ..., then Ad consists of the 
point 0, and Add is the null set. If A is the set of numbers of the 
form l/n+l/m (n, m = 1, 2, ...), then A Φ Add Φ Addd = 0 . 

§ 7. Sets dense in themselves 
D e f i n i t i o n . A set each of whose point is an accumulation 

point of this set is said to be a set dense in itself. 
Hence these sets are characterized by the inclusion 

A a Ad 

or—what amounts to the same—by the condition that they do 
not contain isolated points. 

In ^ - s p a c e s one has the following theorems. 
THEOREM 1. The closure of a set dense in itself is dense in itself 
P r o o f . Let A be a set which is dense in itself and therefore 

satisfies formula (4). From this, by virtue of formula 1 of § 6, we 
infer that 
(5) Ad = A u Ad = A, 

and therefore, applying formulas 2 and 4 of § 6, we obtain 

(Ä)d = (A u Ad)d = Adu Ad = Ad, 

whence by (5), we have (A)d = A. Hence, the set A is dense in 
itself. 
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THEOREM 2. The union of an arbitrary family of sets which are 
dense in themselves is a set dense in itself 

For, if At cz A?, then, by virtue of formula 3 of § 6, we have 

\JtAtc:Ad
t c=(U^)d. 

THEOREM 3. Each 3Γ\-space is the union of two sets of which one 
is closed and dense in itself and the other does not contain any 
non-empty subset which is dense in itself 

P r o o f . Let C denote the union of all subsets of the given 
space which are dense in themselves. It follows from Theorem 2 
that the set Cis dense in itself and therefore, by virtue of Theorem 1, 
the set Cis also dense in itself and hence is a subset of the set C. 
Thus C a C, i.e. the set C is closed. Finally, the set X— C, being 
disjoint from C does not contain non-empty sets which are dense 
in themselves. 

R e m a r k . Sets which are simultaneously closed and dense 
in themselves are also called perfect sets. They are therefore 
characterized by the identity A = Ad. Sets which do not contain 
any non-empty subset which is dense in itself are called scattered 
sets. 

Exercises 
1. Prove that: (a) the complement of a G -̂set is an iv-set, (b) the union 

of an infinite sequence of /v-sets is an T -̂set; the intersection of two i^-sets 
is an /vset. State theorems on G -̂sets which are the duals of (b) (use the De 
Morgan rules). 

2. Prove that the intersection of any collection of topologies for X is 
a topology for X. 

3. Every open subset of a dense in itself space is dense in itself. 
4. If the sets A and X— A are boundary sets, then the space X is dense 

in itself. 
5. The set Int [Fr(/1)] is dense in itself. 
6. We say that a 3Γτ -space X has the property (A) if 

(A, B c X and A n B = 0 ) =* Ad n B* = 0 . 
Prove that X has property (A) iff for every accumulation point x e X the 

family of sets { K : K u {*} is a neighbourhood of X} is a maximal filter. 
7. Show that every subset of a regular space is regular. 
8. Prove that X is normal iff the condition X — G u H, where G and 

H are open sets, implies the existence of closed sets A and B such that 
X=AvB, A^G and B c H. 

file:///-space
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9. Prove that, if every open set of a normal space is normal, then the set 
is hereditarily normal (i.e. every subset of the space is normal). 

10. Let X = {a : a < Ω} and Y = {β: β < ω} with the natural (order) 
topology (i.e. with topology generated by sets {a: a < β) and {α: α > β}). 
Show that the cartesian product (see Chapter XIII, § 1) Xx Y is normal, 
while the set ( Ι χ 7 ) - < β , ω > (called the Tychonov plank) is not. 

11. Show that a space is hereditarily normal iff for each pair of separated 
sets A and B there are two disjoint open sets G and H such that A ^ G and 
B<= H 

12. Let X be a normal space. Two systems of sets Ai9..., An <= X and 
Β^,..., Bn <= X are called combinatorially equivalent if the equivalence 

(Aix n ... r\ Aik = 0) = (B^ n - · n £;fc = 0) 

holds for every sequence of indices (< n). 
Prove that for every system Fl9..., Fn of closed sets there exists a com­

binatorially equivalent system Gl9...; (?n of open sets such that Ff <= G- for 
/ = l , . . . ,w. 

Hint: The proof is by induction. First define an open set Gi in such a way 
that the systems Gl9 F29 .>.,Fn and Fi , . . . , Fn are combinatorially equivalent 

13. Deduce the following corollary from the preceding theorem: 
Let X be a normal space. If the sets Gl9Gl9 -.*9Gn are open and 

X=Gi u G2 u . ·. u G„, then there exist closed sets Fl9F29.-9Fn such that 
^ υ ^ υ . . . υ ^ = Ι and Ft <= Gf for j = 1, 2 , . . . , /i. 

14. Consider in the space of rational numbers the subbase S consisting 
of open bounded intervals and of the set of dyadic numbers (of the form 
k\2\ 

Show that the space generated by S is a non-regular «^1-space. 



CHAPTER XII 

CONTINUOUS MAPPINGS 

§ 1. Continuity 
D e f i n i t i o n . Let X and Y be topological spaces and let 

/ : X -* Y. / i s said to be continuous at the point x0 if 

(1) x0 e A =>f(x0) ef(A) for each A a X. 

Mappings continuous at each point are called, briefly continuous. 
The set of these mappings is denoted (Y*)top, or briefly Yx—when 
no confusion can occur with the notation of Chapter IV, § 1. 

THEOREM 1. Condition (1) is equivalent to 

(2) x0 ep^B) => f(x0) G B for each BczY. 

P r o o f . 1. Suppose that (1) is true and that x0 ef-1^). 
Put A=f-X(B) in (1). It follows that f(x0) eflf-^B)]. But 
fU"x(ß)\ <= B (by Chapter IV, (18)). Hence f(x0) e B. 

2. Suppose that (2) is true and that x0 e Ä. Put B =f(A) in 
(2). As A czf-i [f(A)] =J~\B) (by Chapter IV, (19), so x0 ef-^B), 
and (2) yields f(x0) e B, hence f(x0) ef(A). 

COROLLARY 1. The continuity offatx0 is equivalent to the 
following condition: if C is a neighbourhood off(x0), then f~x(C) 
is a neighbourhood of x0. In other words: if f(x0) e H and H is 
open (in Y), then there is an open G (in X) such that x0 EG and 
f(G) <= H. 

P r o o f . Substitute Y—C for B in (2). One obtains the equiva­
lent formula (compare Chapter IV, (17a)): 

(2;) f(x0) e Χ-Ϋ1^ =>x0e X-f~\Y-C) = X-X-f-i(C)9 
i.e. 
(2") f(x0) e Int(C) => x0 e Inttf-^C)]. 

This completes the proof of the first part of the Corollary. 
Its second part follows from the fact that in each neighbourhood 
of a point there is an open set containing this point. 
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THEOREM 2. / is continuous iff 

(3) f(A) c=7(I) for each A aX. 

Equivalently: iff 

(4) jF'jB) czf-^B) for each B c Y. 

P r o o f . 1. Suppose that / is continuous and let y0 ef(A). 
Hence there exists x0 e A such that JO = / ( * O ) · B V 0 ) / ( * O ) e/04), 
hence y0 ef(A). Thus inclusion (3) is true. 

2. Suppose (3) is true and let x0 e A. Hence 

f(x0) ef(Ä) c f\A)\ therefore f(x0) ef(Ä). 

Thus / is continuous at x0. 
The proof of the second part of Theorem 2 is similar. 
COROLLARY 2. / : X -» Γ w continuous ifff'1 (B) is closed whenever 

B a Y is closed; equivalently—ifff^iB) is open whenever B c Y 
is open. 

P r o o f . To prove the necessity of the condition, we put 
B = ~B in (4). 

Conversely, suppose that the inverse image of each closed set 
is closed. Then we have, for arbitrary B a Y, f-x{B) = / - 1 ( 5 ) , 
and (4) follows since f-x(B) ^f~l{B). 

The second part of the Corollary follows from the first one by 
virtue of the identity f~l(Y-B) = X-f~l(B). 

COROLLARY 3. Let S be a subbase of Y and let f: X -+ Y. If 
f~x(G) is open for each G e S, then f is continuous. 

P r o o f . Since the family of all open subsets of Y is generated 
from S by means of two operations, the finite intersection and the 
union, our conclusion follows from the formulas 

/-'(Π,ο,) = η,Ζ-Ηβ,), /-'(Uß,) = UJ-'iQ,). 
THEOREM 3. The composition of two continuous mappings is 

a continuous mapping. 
More precisely, if f: X -> Y, g: Y -► Z, h = gof and f is 

continuous at x0 and g is continuous at y0 = f(x0)> then h is con­
tinuous at x0. 
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P r o o f . LetXp e A. Then/(x0) ef(A), henceg[f(x0)] eg[f(A)], 
i.e. h(x0) e h(A). 

§ 2. Homeomorphisms 

D e f i n i t i o n . If the mapping / of the space X onto (the 
whole) space Y is continuous and one-to-one, and its inverse 
f-1 is also continuous, then we say that / is a homeomorphism, 
and the spaces X and Y are said to be homeomorphic (or of the 
same topological type). We then write 

X = Y (topological equivalence). 
top 

If X = Y, a homeomorphism is called a topological automor­
phism. 

The homeomorphism relation is clearly reflexive, symmetric, 
and transitive. 

THEOREM 1. Each of the following conditions is necessary and 
sufficient for a one-to-one mapping f to be a homeomorphism: 

(i) f(Ä) =f(Ä) for every i d , 

(i') f-'iB) =f:r(B) for every B c Y. 

P r o o f . By § 1, (3), the inclusion f(A) <=^f(A) is equivalent 
to the continuity off, while the inclusion f(A) <=-f(A), by § 1, (4), 
is equivalent to the continuity of/-1. The second part of the theo­
rem can be proved in a similar way. 

THEOREM 2. A necessary and sufficient condition for f to be 
a homeomorphism (where X is supposed to be a ΖΓ\-space) is the 
following: 

(ii) A =f-i(f(A)) for every A cz X, 

or equivalently 

(ϋ') {xeÄ) = (f(x)ef(Ä)). 

P r o o f . I f / i s one-to-one, our statement is true, for then (ii) 
is equivalent to (i). It remains to show that a function satisfying 
(ii) w one-to-one._Let/(^=/(^). Then {p} - / ^ ( T W ) =f~1{M>) 
= {q}, whence {p} = {q} and finally p = q. 

file:///-space
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R e m a r k 1. Each property of the space which is invariant 
under homeomorphisms is called a topological property. It follows 
from (ii') that every property expressed in terms of the operation 
A (and of operations of set theory and of logics) is topological. 

More generally, if a point a (or a set A, or a family A of sets, 
and so on) has a given property with respect to the space X and 
i f / i s a homeomorphism which maps X onto a space Y, then the 
point f(a) has the same property with respect to Y (provided 
that the property is expressed as above). 

Thus it is impossible to distinguish between two homeomorphic 
spaces by any topological means. Similarly, if A and B are two 
sets situated in the spaces X and F, respectively, and if there 
exists a homeomorphism of X onto Y which maps A onto B, 
then the sets A and B are indistinguishable in their spaces from the 
topological point of view (with respect to the spaces X and Y). 

It should be remarked that two sets may be homeomorphic and, 
at the same time, they may be situated in the space in a different 
manner so that there is no equivalence between them. For example, 
in the space of real numbers, the set composed of a point, a segment, 
and a second point (in that order) is not topologically equivalent 
(though it is homeomorphic) to the set composed of two points 
and a segment following them. However, the same sets (regarded 
as subsets of the plane) are equivalent with respect to the plane. 

EXAMPLES. 1. Let a < x < b and c < y < d, where a < b 
and c < d, be two given closed intervals of real numbers. The 
function 

y = {(d-c)l(b-ä)}x+(bc-ad)/(b-a) 

is a homeomorphism which maps the first interval onto the second. 
Hence, any two closed intervals are homeomorphic. 

The same function maps the open interval a < x < b homeo-
morphically onto the open interval c < y < d. 

2. The function y = tan* maps the open interval —π/2 < x 
< π/2 homeomorphically onto the entire set of real numbers. 

3. A necessary and sufficient condition for a continuous real 
valued function, defined on the closed interval a < x < b, to be 
a homeomorphism, is that it be strictly monotonic. 
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4. Let us consider in Euclidean 3-space £* the surface of the 
sphere x2+y2+(z—l)2 = 1 and let us draw a line, which is not 
parallel to the ΑΎ-plane, from the point b = (0 ,0 ,2) . Let us 
assign to the point p of intersection of this line with the surface 
of the sphere, the point f(p) which is the point of intersection of 
this line with the plane z = 0. 

The function/so defined is, as is easy to verify, a homeomor-
phism which maps the surface of a sphere with the point b removed 
onto the entire plane. Hence the plane is homeomorphic to the 
surface of the sphere with one point removed. One makes use of 
this fact in the theory of analytic functions when it is said that the 
plane of complex numbers is completed with "the point at infinity" 
to the surface of the sphere. 

R e m a r k 2. In the definition of homeomorphism, the con­
dition of continuity of the inverse map is essential, which means 
that the continuity of the mapping/does not imply the continuity 
of the mapping / - 1 . For example, the function z = e2nix maps 
the set 0 < x < 1 onto the set of complex numbers lying on the 
circle with equation \z\ = 1 in a continuous and one-to-one 
manner. However, the inverse mapping is not continuous at the 
point z = 1. 

• R e m a r k 3. The totality of all topological spaces which have 
the same cardinality can be ordered assuming that Y % X if there 
exists a one-to-one continuous mapping / of X onto Y. This is 
equivalent to saying that Y is coarser than X (compare Chapter 
X, § 10). 

R e m a r k 4. The space X is said to be topologically contained 
(or imbedded) in the space Y if it is homeomorphic to a subset of Y. 
We write in this case 

X a Y. 
top 

§ 3. Case of metric spaces 

First, let us suppose that X is an arbitrary topological space 
and that Y is metric. 
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THEOREM 1. Let f: X -> Y. f is continuous at x0 iff for each 
ε > 0 there is an open G containing x0 and such that 

xeG=> \f(x)-Ax0)\ < e. 
This follows from Corollary 1 of § 1, since 

(l/(*)-/(*o)l < B) = (f(x) e K[f(x0\ ε]) 

and, on the other hand, if H is a neighbourhood of f(x0), then 
K[f(x0), ε] c H whenever ε is sufficiently small. 

Similarly, if both spaces, X and Y, are metric, then the conti­
nuity o f / a t ΛΤ0 is equivalent to the Cauchy condition 

(5) Λ * V « Λ χ {0*-*ol < *) => (l/(*)-/(*o)l < ή] ■ 
It is also equivalent to the following Heine condition. 
THEOREM 2. / is continuous at x0 iff the condition 

(6) lim xn = x0 
n—>ao 

implies 

(7) l i m / ( x n ) = / ( x 0 ) , 
n-^-oo 

whatever the sequence xl9 x2, ... of points of X. 
P r o o f . 1. Let us suppose that / is continuous at x0 in the 

sense of Heine and that — contrary to our assumption — (5) is 
not true, i.e. that 

V . A * V * ( l * - * o l < <5)(|/(*)-/(*o)l > *). 

Put δ = l fn. Then there exists (by the choice axiom) a sequence 
xl9x29 ··· such that 

(8) \xn-Xo\ < 1/Λ, 
(9) \f(xn)-f(Xo)\>e. 

(8) implies (6) hence (7) (by the Heine continuity). But this 
contradicts (9). 

2. Let us assume (5) and (6). Hence there is a k such that 
I*»—*ol < <5 for n > k. It follows by (5) that \f(xn)-f(xo)\ 
< ε. This means that (7) is true, and thus / i s continuous at x0 

in the sense of Heine. 
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R e m a r k 1. Iff is a continuous real valued function, then the 
sets 

{x: fix) < <*}, {x: f(x) > a}, {x: a < / ( * ) < b} 

are closed and the sets 

{x: f(x) < a}, {x: f(x) > a}, {x: a <f(x) < b) 

are open. 
This follows from Corollary 2 of § 1 because these sets are 

inverse images of the closed sets 

0>: (y<a)}, {y: (y ><*)}, {y: (a<y<b)}, 
and of the open sets 

{y: (y<a)}, {y: (y>a)}, {y: (a < y < b)}9 

respectively. 
THEOREM 3. The limit of a uniformly convergent sequence of 

continuous mappings f:X^Y, where X is topological and Y 
metric, is continuous. 

P r o o f . Put/(x) = lim/„(*). Let ε > 0 and let x0 be a given 
« = 0 0 

point of X. By assumption, k exists such that 

(10) \fk(x)-f(x)\ < Φ for each xeX. 
Therefore, substituting x = x0, we have 

(11) ΙΛ(*ο)- / (*ο)Ι<*/3 . 
Since fk is continuous at the point x0, there is an open set G 

containing x0 such that 

(12) \fk(x)-fk(xo)I < Φ for each xeG. 

Inequalities (10) to (12) yield \f(x) —f(x0) I < e, which means 
that x0 is a point of continuity off 

THEOREM 4. Lei Xl9X2,... be a finite or infinite sequence of 
(uniformly bounded) metric spaces. Put Z = XlxX2X ... and 

f:Z-+Y where Y is metric. Put z° = (*?, x2, ...) where x„ eXm. 
Then f is continuous at z°, iff 

[A Oim*i = x°m)) => [lim/(z») = / (z 0 ) ] 
Λ-*ΟΟ n-»oo 

where zn = (x\, x2, ...). 
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THEOREM 5. Under the same assumptions on Xm,m = 1,2, ...9 
andZ9 letf: T-+Z (where T is metric). Put f(t) = (ΛίΟ,ΛίΟ* ···)· 
Then f is continuous at t0 iff 

(limtn= t0) => Am [lim/m(0 =/m(/<>)], 
«-»•00 rt->00 

which means that each fm is continuous at t0. 
Theorems 4 and 5 are easy consequences of the Heine condition 

and of Theorem 2 of Chapter IX, § 6 (the assumption of uniform 
boundedness can be omitted by virtue of the Theorem 8 below). 

THEOREM 6. The distance between two points of a metric space X 
is a continuous real-valued mapping of Xx X into S. 

P r o o f . Let 
limx„ = x, limj„ = y 

and let e > 0 be given. Then there exists a k such that for n > k 
we have 

(13) \x—xn\ < ε, \yn-y\ < e. 
From the triangle inequality we obtain (see Fig. 5): 

(14) \x-y\ < \x-XH\ + \Xn-yn\ + \yu-y\. 

It follows from (13) and (14) that 

(15) \x-y\ < \xn-yn\+2e. 

Similarly, from the inequality 

k·-.vJ < \xn-x\+\x-y\+\yn-y\ 
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we obtain the inequality 
(16) \xn-yn\ < \x-y\+2s. 

By (15) and (16) we have for n > k 

\\xn—yn\-\x—y\\ <2ε. 
This means that lim |JC„ —ĵ „| = \x—y\ and hence the function 

n ->-oo 

\x—y\ is continuous. 
THEOREM 7. Let X and Y be two metric spaces and f: X -► Y 

onto. Then f is a homeomorphism iff 

(17) (limxn = x0) = [lim/(x„) =f(x0)] 
n-*co n->oo 

for every sequence of points in X. 
This is an easy consequence of Theorem 2. 
THEOREM 8. Every metric space X is homeomorphic to a bounded 

space X*. 
P r o o f . We denote by X* the set X with a "new distance" 

II*— y\\ defined as follows. If \x—y\ < 1, then \\x— y\\ = \x—y\; 
if \x-y\ > 1, then | | * - j | | = 1. 

It is easy to see that the new distance satisfies conditions (1)-
(3) of Chapter IX, § 1, which means that X* is a metric space. 
Moreover δ(Χ*) < 1. 

The mapping / : X -> X* defined by f(x) = x is a homeo­
morphism. This follows from the equivalence of the conditions 

lim ||JC„—>Ί| = 0 and lim|*„— y\ = 0. 
Λ->00 Λ->·00 

R e m a r k 2. Referring to the assumption of boundedness 
in the definition of the distance in the infinite product X± X X2 X ... 
(see Chapter IX, § 3 and § 6), let us note that this assumption may 
be omitted if we denote the distance between the points 
x = (xl9 x2, ...) and y = (yi,y2, .·.) using the formula 

°° 1 
(18) lx-y\ = ^]pr\\xm-ym\\. 

Also the Theorem 2 of Chapter IX, § 6 and the above proved 
Theorems 4 and 5 remain valid without the assumption of uniform 
boundedness. 
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§ 4. Distance of a point from a set. Normality of metric spaces 

The distance of the point x from the non-empty set A is defined 
to be the number 

(19) ρ(χ, A) = greatest lower bound of 
the numbers \x—a\9 where aeA. 

We assume, moreover, that ρ(χ, 0 ) = 1. Let us note that: 
THEOREM 1. If A = {y}, then ρ(χ, A) = [JC— y\. 
THEOREM 2.If0^AczB, then ρ(χ, Β) < ρ(χ, A). 
THEOREM 3. [ρ(χ, A) = 0] Ξ (xeA). 

In fact, if x e A, then for every ε > 0 there exists a point aeA 
such that \x—a\ < ε. This means that ρ(χ, A) = 0. 

Conversely, if ρ(χ, A) = 0, then for every ε > 0 there exists 
a point aeA such that |JC—α| < ε, and hence x e A. 

From this it follows that: 
THEOREM A. If A is a closed set, then 

[Q(x,A) = 0] = (xeA). 

THEOREM 5. The function ρ(χ,Α) is continuous (for fixed A). 
P r o o f . The theorem is obvious if the set A is empty. Thus, 

we can assume that A φ 0 . Let d > 0 and let 

(20) \x-x'\ < δ. 

By virtue of (19), there exists a point aeA (see Fig. 6) such 
that 

(21) \χ-α\<ρ(χ,Α)+δ. 

If follows from (20) and (21) that 

(22) ρ(χ', A) < \x'-a\ < \x-a\ + \x-x'\ < ρ(χ, Α)+δ+δ. 

Similarly, we have 

(23) ρ(χ9Α)<ρ&,Α)+2δ. 

Inequalities (22) and (23) yield 

(24) \ρ(χ,Α)-ρ(*9Α)\<2δ. 
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This means that inequality (20) implies inequality (24). Hence 
the function ρ(χ, A) is continuous. 

FIG. 6 

THEOREM 6. Every metric space X is normal, i.e. for every pair 
of disjoint closed subsets A and B9 there exists a pair of disjoint 
open sets G and H such that 

(25) A cG and B a H. 

P r o o f . Let 

G = {x: ρ(χ, A) < ρ(χ, B)}, H = {x: ρ(χ, Β) < ρ(χ, A)}. 

The sets G and H are open. In fact, by virtue of the conti­
nuity of the functions ρ(χ, A) and ρ(χ, Β), the function f(x) 
= ρ(χ, Β)—ρ(χ, A) is also continuous. Since 

G = {χ: ρ(χ, Β)-ρ(χ, A) > 0}, 

the set G is open (cf. Remark 1, § 3). Similarly, the set H is open. 
The proof of the formula G n H = 0 is immediate. 
Finally, the formulas (25) hold. For, if x e A, then by virtue of 

Theorem 4 we have ρ(χ9 A) = 0, but ρ(χ, B) Φ 0, because x 
does not belong to B (since An B = 0 ) . Therefore, ρ(χ, A) 
< ρ(χ, B), and from this it follows that x eG. 

This means that A a G. Similarly, B a H. 
THEOREM 7. Every closed set in a metric space is a Gd-set. 
P r o o f. Let F = F. Let us set 

K(F, ε) = {χ: ρ(χ9 F) < ε}. 
In view of the continuity of ρ(χ, F) the set K(F9 ε) is open (cf. 

Remark 1, § 3). We shall show that 
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If x e F9 then ρ(χ, F) = 0 and x e K(F9 l/ri). Conversely, if 
x φ F, then by virtue of Theorem 4, ρ(χ, F) > 0 and hence there 
exists an n such that ρ(χ9 F)> \\n\ therefore x φ K(F, I In). 

R e m a r k s . 1. It follows immediately from Theorem 7 that 
in a metric space every open set is an iVset (and hence every 
Grset is an i^-set). It also follows that condition (a) in the defini­
tion of Borel sets (Chapter XI, § 1) can be replaced by: 

(a') every open set belongs to R. 
2. Normal spaces in which closed sets are Gs are called per­

fectly normal 

§ 5. Extension of continuous functions. Tietze theorem 

LEMMA 1. For every pair of disjoint closed sets A and B in the 
metric space X, there exists a continuous real valued function f 
defined on the entire space X and satisfying the following conditions: 

( 2 6 ) / ( * ) = { i r 
' JK ' i 1 for xeB9 

(27) - 1 < / ( J C ) < 1 for- χφΑ v B . 

It is easy to prove, using Theorems 3-5, § 4, that the function/ 
defined by the formula 

f(x) = {Q(X, A)-Q(X, B)}I{Q{X, A)+Q(X, B)} 

satisfies the conditions set forth in the lemma. 
LEMMA 2. If f is a continuous real valued function defined on 

a closed subset of the metric space X such that \f{x)\ < μ ( # 0), 
then there exists a continuous function g defined on the entire 
space X and satisfying the following conditions: 

(28) \g(x)\ < (1/3)// for all xeX9 

(29) |g(jc)| < (1/3)μ for all xeX-F9 

(30) \f(x)-g(x)\ < (2/3)/* for all xeF. 

P r o o f . Let 

A = {x: f(x) < (-1/3)/*} and B = {x: f(x) > (1/3)/*}. 
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The sets A and B are disjoint and closed (see Remark 1 of § 3). 
The function 

(31) g(x) = (Ιβ)μ{ρ(χ, Α)-ρ(χ, Β)}/{ρ(χ, Α)+ρ(χ, Β)} 

satisfies the required conditions in virtue of Lemma 1. 
THEOREM 1 (TIETZE EXTENSION THEOREM). Every continuous real 

valued function f defined on a closed subset F of the metric space 
X can be extended to the entire space X; i.e. there exists a real 
valued continuous function f* defined on the entire space X such that 

(32) f*(x)=f(x) far xeF. 

Moreover, iff is bounded, i.e. 

(33) \f(x)\ < μ (Φ 0) for every xeF, 

then 

(34) \/*(*)\<μ for every xeX-F. 

P r o o f . Consider first the case where the function/is bounded 
and hence satisfies inequality (33). We define a sequence of con­
tinuous functions g0,gl9 ... inductively. Let g0(x) = 0 for every 
x eX. For given n ̂  0 let us assume that the functions g0{x), ..., 
g„(x) satisfy the inequality 

n 

(35) \Λχ)-^ι(χ)\<(2β)"μ for xeF. 
1 = 0 

In the case n = 0 this inequality reduces to inequality (33). 
n 

Replacing in the assumptions of Lemma 2:f(x) by/(x)— $] gi(x) 
/=o 

and μ by (2/3)"μ, we obtain a continuous function gn+l defined on 
X and such that 

(36) |g.+ i(*)| < (2ηβη+ί)μ for xeX, 

(37) |&+i(*)| < (2ηβη+1)μ for x eX-F, 

n+l 

(38) \f(x)- ] £ f t ( x ) | < (2/3)"+V for xeF. 

Thus the functions gn are defined for all n = 0, 1, 2, ... 
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For every x e X let us set 
oo 

(39) f*(x) = £*,(*)· 
1=0 

It follows from (36) that the series (39) is uniformly conver­
gent in the space X; and hence by virtue of Theorem 3, § 3, the 
function/* is continuous. 

Moreover, condition (35) implies condition (32), and because 
of inequality (37), we have for x e X—F: 

00 OQ_ 00 

1 = 0 i=0 i = 0 

and therefore inequality (34) is also satisfied. 
Thus the theorem has been proved for the case where the function 

/ is bounded. 
I f / i s unbounded, we first apply the homeomorphism h which 

maps the space of all real numbers onto the open interval — 1 
< y < 1, e.g. h(x) = (2/^arctanx. The function h o / ( the com­
position of the functions/ and h) is continuous and bounded; 
hence there exists by virtue of the part of the theorem already 
proved a continuous function A* defined on the space X and such 
that 

A*(JC) = hf[x) for xeF, \h*(x)\ < 1 f o r x e l . 

Now let 
f*(x) = trlh*{x) 

for every x e X. The function/* is continuous and for every x e F 
we have 

f*(x) = h-1hf(x)=f(x). 
Thus the theorem has been proved in all generality. 
COROLLARY 1. Every continuous function defined on a closed 

subset F of a metric space X with values belonging to one of the 
spaces Sn, Jn, ^ X ^ x . . . , / can be extended to the entire space X. 

We shall prove this corollary, e.g. for the Hubert cube Jf 
= « / X J X ... (the proof in the other cases is analogous). 

For every x e F w e have f(x) e / X / X ..., and hence 

(40) f(x) = [Mx),f2(x), . . . , /„(*), . · .], 
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where fn(x) is the nth coordinate of the point f(x) in the Hubert 
cube, hence a continuous real valued function. Extending each 
of the functions fn to a continuous function/** defined on the entire 
space X, we obtain a function 

(41) /*(*) = lfi(x),f%(x), ...,/·*(*), ...] 

which is the extension of the function / (see Theorem 5, § 3). 

COROLLARY 2. Every continuous function f defined on a closed 
subset F of a metric space X with values belonging to the sphere 
Sfn (i.e. to the set of points x\+ ... +xl+1 = 1 of the space £n+l) 
can be extended to some neighbourhood of the set F (with respect to 
the space X). 

P r o o f . By virtue of Corollary 1 there exists an extension 
/ * G (gH+1)x of the function/ Let us set 

G = {*:/*(*) * 0 } . 

Because of the continuity of the function /**, G is an open set 
containing the set F (since |/*(x)| = |/(*)| = 1 for x e F). Thus 
the function 

g(x)=f*(x)I\f*(x)\ 
is the required extension of the function / onto the set G which 
assumes values belonging to Sfn. 

R e m a r k s . Spaces which can be substituted in Corollary 
1 for Sn

9 Jn, etc., are called absolute retracts. Spaces which in 
Corollary 2 can be substituted for Sfn are called neighbourhood 
retracts. (These concepts were introduced by K. Borsuk.) 

This terminology is connected with the concept of retraction. 
We say, namely, that a subset R of the space X is a retract of this 
space if there exists a continuous transformation / of the space 
X onto the set R such that f(x) = x for x e R (this transforma­
tion is called a retraction; a projection is an example of a re­
traction). 

Thus, an absolute retract is, as can be proved, a space which 
is a retract of every metric space containing it and in which it is 
closed. A neighbourhood retract is not necessarily a retract of the 
entire space, but of some one of its neighbourhoods in this space. 
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These concepts are important generalizations of the concepts 
of classical «-dimensional geometry: the «-dimensional cube is 
an absolute retract, every «-dimensional polyhedron is (as can be 
proved) a neighbourhood retract. 

We are going now to extend Tietze theorem (which was proved 
for metric spaces) to arbitrary normal spaces. The proof will be 
based on a Lemma analogous to Lemma 1 (whose proof for 
metric spaces was immediate). 

LEMMA Γ (of Urysohn). Given two disjoint closed sets A and B 
in a normal space X, there exists a continuous function f\ X -* f 
such that 

(42) f(x) = 0 for xeA and fix) = 1 for xeB. 

P r o o f . First we shall assign to every fraction of the form 
r = kj2n (k = 0, 1, ..., 2"), an open set G(r) so that 

(i) AczG(0),X-B=G(l), 
(ii) the condition r < r' implies G(r) c G(r'). 

We proceed by induction with respect to the exponent «. 
For « = 0 the conditions (i) and (ii) are fulfilled by normality 

of X. Suppose that they are fulfilled for « — 1. We must define 
G(k/2tt) for an odd k. By hypothesis 

G[(Är-l)/2"]<zG[(A:+l)/2»]. 

By normality of X, there exists an open set, which we denote 
by G(k/2n), such that 

G[(fc-l)/2n] cz G(k/2n) and G(k/2n) c= G[(fc+l)/2"]. 

Thus the function G(r) is defined for every r. 
Let f(x) = 0 for x e G(0) and f(x) = least upper bound of the 

/•'s such that x e X-G(r) for x φ G(0). By (i), f(x) = 0 for x e A 
and f(x) = 1 for x e B. 

It remains to prove that the function/ is continuous, i.e. that for 
every x0 and every natural number « there exists an open set H 
containing x0 such that the condition xe H implies \f(x0)—fi*)\ 
< 1/2". 

Let r be a (finite dyadic) fraction such that 

(43) f(xo)<r<f(x0)+l/2n+K 
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Let H= G(r)-G(r—1/2") with the convention G(s) = 0 for 
s < 0 and G(s) = X for s > 1. It follows that x0 e # . For, the 
inequality f(x0) < r implies x0 e G(r), while the inequality 
r—\ßn+1 <f(x0) implies 

x0 e I - G ( r - l / 2 B + 1 ) c A r - G ( r - l / 2 n ) . 

Moreover, the hypothesis xeH implies x e G(r), hence f(x) 
< r. It also implies 

(44) x e X-Gir^^T) c X-G(r-1/2") ; 

hence r—1/2" < / ( * ) . Therefore 

(45) / ( * o ) - l / 2 " < / ( * ) < / (x 0 )+ l / 2 w . 

This completes the proof. 

LEMMA 2'. G/vew a continuous function f defined in a closed 
subset F of a normal space X and satisfying \f(x)\ < c, where c > 0, 
there exists a continuous function g defined in the whole space X 
and satisfying the conditions 
(46) I^WKic for xeX, 

(47) \f(x)~g(x)\<ic for xeF. 

P r o o f . Let 

(48) A ={x: f{x) < - ± c } , B = {x: f(x) > ^c} 

and 
(49) J={y: b K i c } . 

The sets A and i? being closed and disjoint, there is, by the 
Urysohn Lemma, a continuous function g: X-* J such that 
g(x) = —%c for x e A and g(x) = ^c for x e 5 . Obviously g-
satisfies the conditions of the lemma. 

THEOREM Γ (GENERALIZED TIETZE EXTENSION THEOREM). Let 
X be normal, F closed and f\F-*$ continuous. Then there is a 
continuous / * such that 

(50) / < = / * : * - * * . 

Moreover, <£* may be replaced by J. 
Iff is bounded, the proof is completely analogous to the proof 

of Theorem 1 (except that condition (37) is not required). 
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The case of/unbounded can be reduced to the former case as 
follows. 

$ being homeomorphic to the open interval J0 = (—1 < >> < 1), 
we may assume that / : F -► I0. As shown, there is a continuous 
extension/**: X -» 70 of/. Let B denote the two-element set { — l , 1} 
and let H=f*~1(B). Then H is closed and H n F = 0 . By the 
Urysohn Lemma, there is a continuous h: X -► J such that h(x) 
= 0 for x E H and h(x) = 1 for x e F. Put g(x) = /* (* ) · *(*). 
Then g: X -> I0 and g is the required continuous extension of/. 

§ 6. Completely regular spaces 

D e f i n i t i o n . A topological space X is called completely 
regular if for each point p and each closed set F which does not 
contain p there is a continuous mapping/: X ^ J such that 

(51) /(/?) = 0 and f{x) = 1 for xeF. 

THEOREM 1. Each completely regular space is regular. 
P r o o f . Let p, F, and / be as defined previously. Put G 

= {x: f(x) < 1/2}. Then G is open, p e G, and G n F= 0. 
THEOREM 2. itac/z normal 2F\-space is completely regular. 
This follows directly from the Urysohn Lemma (see § 5). 
THEOREM 3. The range of variability of F in the definition of 

complete regularity can be restricted to sets such that X—F belongs 
to a subbase of X. 

P r o o f . Let us first consider a finite system Fi9 ..., Fn of 
closed sets, a point p e X—F0 where ^0 = ^1 u ··· u Fn, and 
a system of continuous functions/!, ... ,/„ satisfying conditions 
(51). Put 

(52) A*) = max/,(x). 

Obviously / satisfies conditions (51) for F0. 
Moreover, / is continuous. This follows from the identity: 

{x: u <f(x) <v}= U?=i{*: u </ ,(*)} n n " - i { * : /7(JC) < Ό], 

according to which the set {x: u <f(x) < v) is open for each 
pair of real numbers u < v. 

file:///-space
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Now let us consider an arbitrary closed F such that p e X—F. 
We shall show that there is a continuous / satisfying (51). 

Let B be a subbase of X. Then there is a system of members 
Fl9...9Fn such that (X-Fd e B, 

p EX—F0 and F c ,Ρ0 where ^0 = ^ 1 ^ ··· u F„. 
The function/defined by formula (52) obviously satisfies (51). 
R e m a r k s . A regular space may fail to be completely regu-

larJ Moreover, there are regular «^-spaces on which every real 
continuous function is constant. 

There are also completely regular spaces which are not normal 
(see Chapter XI, Exercise 10); in fact, complete regularity is heredi­
tary, while normality is not. 

Exercises 

1. Let the sets A and B be both open or both closed, and let/be a mapping 
defined on the set A u B. Prove that if / is continuous on the set A and on 
the set B, then it is also continuous on the set A^J B. 

2. Let / be defined on the space X. If the space A" is a union of open sets, 
and if on each of these sets individually / is continuous, then / is continuous 
on the entire space X. 

3. Let/be defined on the space X. If X = U^Li An where An c int (Λη+1) 
and if/is continuous on each of the sets Ant then it is continuous on the entire 
space X. 

4. The set of all sequences of natural numbers forms a metric space (the 
so-called Baire space), if for the distance between distinct sequences 
x = (wi, m2, ·..) and y = (ηί9 n2f ·.·) we take the number 1/r, where r is the 
smallest index such that mr Φ nr. Show that this space is homeomorphic to 
the set of all irrational numbers of the interval [0,1]. 

Hint: Assign the continued fraction 

to the sequence of natural numbers x = (mi, w2, ·..)· 
5. A necessary and sufficient condition for the limit f(x) = lim/„(.*) of the 

Λ->00 

sequence of continuous mappings / 1 , f 2 , . . . defined in the space JTand with 
values in a metric space to be continuous is, that for every ε > 0, X be the 
union of open sets An(e)y where 

Hint\ In order to establish the continuity of/under the assumption of our 
condition at an arbitrary point x 0 e l , we find an index n0 such that 

t See R. Engelking, Outline of General Topology, p. 76. 
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Xo e Α„0(εβ). Further, we make use of the fact that the set Α„0(εβ) is open 
and the function /«0 is continuous. 

6. Introducing a "new" distance into the metric space X with the aid of 
the formula 

<p(x,y) = \x-y\l{\ + \x-y\}, 
we define a homeomorphism of X onto X. 

Deduce from this that the set of all sequences with real terms x = (χι, x2, 
..., xm,...) is a metric space under the following definition of distance: 

00 

\x-y\ = Σ 0 /2")Ι*«-Λ.Ι / {1 + Ι*«.-Λ.Ι} 
m—i 

(this is the so-called Frechet space). 
7. Let B{X) denote the family of nonvoid closed bounded subsets of a metric 

space X. By the distance between two sets Α,Βφ Β(Χ) we understand the 
maximum of the two numbers 
least upper bound ρ(χ, B) for x e A, and least upper bound ρ(>>, A) for yeB. 

Prove that the distance defined in this way, which we denote by the symbol 
dist(y4, B), metrizes the set B(X) (i.e. it satisfies conditions (l)-(3) of Chapter 
IX, § 1). 

8. A metric (bounded) space X is called totally bounded iff for every ε > 0, 
there is a cover composed of a finite number of sets of diameter < ε. 

Show that X is totally bounded iff for every e > 0, there is a finite set F8 
such that, for each x, ρ(χ, Fe) < ε. 

9. Show that if X is totally bounded, then so is B(X) (see Ex. 7) 
10. Let Xl9X2, ··. be totally bounded spaces such that δ(Χη) < 1. Show 

that their product XiXX2x ... is totally bounded (the distance being defined 
by formula (7) of Chapter IX). 

11. Show that in Theorem 6 of § 4, the property of A and B of being closed 
and disjoint sets can be replaced by the weaker assumption of being separated. 
Deduce that each metric space is hereditarily normal. 

12. Show that the Hubert cube ffl is homeomorphic to the subset of the 
Hubert space (cf. Chapter IX, § 1, Example 3) composed of points x = (xx, x2, 
..., xi,...) such that 0 < xi < \ji. 



CHAPTER XIII 

CARTESIAN PRODUCTS 

§ 1. Cartesian product I x F o f topological spaces 

Xand 7 being two topological spaces, the topology in Z = XX Y 
is introduced in the following way: 

D e f i n i t i o n . A set © c Xx Y is called open in Xx Y iff it 
is the union of cartesian products GxH where G and H are open 
subsets of X and Y respectively. 

In other words, the family of all sets Gx H is a base of XX Y. 
By Chapter III, (21), (G.xH,) n (G2xH2)= (Gx n G2)X 

X ( # ! n # 2 ) . 
Therefore, assuming that Gl9G2,Hi and H2 are open sets 

(in X and 7 respectively), the intersection (GiXHi) n (G2XH2) 
is open (in Xx F). It follows that the intersection of any two open 
sets in Xx Y is open. 

As the union of an arbitrary family of open sets in XX Yis open, 
we have the following theorem: 

THEOREM 1. The cartesian product of two topological spaces is 
a topological space. 

As (XxY)-(x0,y0) = ((X-Xo)xY) u (Jfx(r-tt>))wehave: 
THEOREM 2. TAe cartesian product of two 2Γ ̂ spaces is α^Ί-space. 

EXAMPLE. In the case of the plane <f2, the usual topology 
agrees with the above definition. For every open set in S2 can be 
represented as the union of open squares with sides parallel to 
the X and Y axes. 

Another theorem can also be easily shown (compare Chapter 
IV, Exercise 3). 

THEOREM 3. If {Bt} is a base of X, and {Cs} a base of Y, then 
{BtxCs} is a base of XxY. 

The same remains true of subbases. 

165 
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THEOREM 4. X and Y being topological spaces, the family of sets 
GxY and of sets Xx H, where G is open in X and H in Y, is a subbase 
of XX Y. 

Because GxH = (GxY) n (XxH). 
R e m a r k . Recall that a relation is a subset of Xx Y, namely 

the set {{x,y}: xoy}. Consequently a relation will be called 
closed if this set is closed (in Xx Y). 

§ 2. Projections and continuous mappings 

Given z — <x, y} eXxY consider x as function of z. Put 
x = Tt^z) and similarly y = ττ2(ζ). Thus 

πχ:ΧχΥ-+Χ and 7t2:XxY-+Y9 

where πί and τΐ2 are called projections of Xx Y on the axes X 
and Y; nx(z) is the abscissa of z and n2(z) its ordinate. 

THEOREM 1. The projections are continuous mappings. 
P r o o f . If G is open in X, we have &Tl(G) = Gx Y, which 

is open by definition. Thus πγ is continuous. 

THEOREM 2. Let h: T -► Xx Y. Put h(t) = </*i0), h2(t)} where 
hi(t) e X and h2(t) e Y. Then h is continuous iff hx and h2 are con­
tinuous. 

More precisely, h is continuous at t0 iffh1 and h2 are continuous 
at t0. 

P r o o f . Suppose that h is continuous at t0. As h^t) = nxh{t), 
it follows by Theorem 1 that hx is continuous at t0. 

Suppose that hx and h2 are continuous at t0. Let © c Xx Y 
be open and let t0 e /z_1(©)· We have to show that t0 e Inthrl(&). 
According to Corollary 3 of Chapter XII, § 1, we can assume that 
© belongs to a subbase of Xx Y. Put (see § 1, Theorem 4) ® = Gx 
X Y. Hence / r ^ © ) = h^{G) and therefore t0 e Ar^G). As hx is 
continuous at t0, it follows that t0 elnthj^G) = Int/T^©)· 

THEOREM 3. Every continuous mapping of two variables is conti­
nuous relative to each variable. 

In other words, iff: Xx Y-* W is continuous and if y0 e F, then 
the mapping f: X -> W defined by the condition ft(x) =f(x, y0) 
is continuous. 
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P r o o f . Define the mapping h: X -► XX {y0} by the condition 
h(x) = (x,y0y. Obviously h is continuous (more precisely, h is 
a homeomorphism), and a s / ! =f<>h, fY is continuous. 

R e m a r k . Elementary examples show that the converse of 
Theorem 3 does not hold. 

THEOREM 4. Let f:U-+X and g: V -+ Y. The product-mapping 
h = (fxg): UxV'-* XxY (compare Chapter IV, Exercise 17) 
is continuous iff f and g are continuous. 

P r o o f . By definition h(u, v) = <J(u)> g(v)y. Hence, if we put, 
for a given v0,h1(u) = h(u, v0) = </(«), g(v0)}, then f=n1ohl. 
If we assume that h is continuous, then so is / (by Theorem 3); 
similarly, g is continuous. 

On the other hand, i f / and g are continuous, then so is h. This 
follows from the identity (see Chapter IV, Exercise 17): 

h-i(GxH)=f-\G)Xg-1(H). 

§ 3. Invariants of cartesian multiplication 

THEOREM 1. The product of two closed sets is closed. 
Let A be closed in X and B in Y. By Chapter III, (24) 

(XX Y)-(AXB)= [(X-A)X Y] u [XX (Y-B)]. 

Thus (XxY)—(AxB) is the union of two open sets, hence is 
open. 

THEOREM 2. The following properties are invariant under carte-
sian multiplication: 

(a) of being a ^2space, 
(b) of being completely regular. 

P r o o f , (a) Suppose that X and Y are ^ - spaces . Let z1 

= <ΛΙ>>ΊΧ ^2 = <*2».V2>> a n d ζι Φ z2- Then, either xx Φ x2 

or yi φ y2. We may suppose that x1 Φ x2. Since X is a ^Vspace, 
there are two open sets Gx c= X and G2 c: Z such that χλ e Gl9 

x2eG2, and G1 n G2 = 0 . It follows that zx e (GXX Y), 
z2 e (G2X Y), and that GxX Y and G2X Y are open and disjoint. 

(b) Let z0 = <jc0, y0} e((XxY)~-5) where S is closed. In 
order to show that XX Y is completely regular, we may restrict 
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ourselves to the case where i? = Ax Y and A = A c X (see 
Theorem 3 of Chapter XII, § 6). It follows that x0 e X-A. Now, 
as X is supposed to be completely regular, there exists a continuous 
mapping g: X -» J such that g(x0) = 0 and g(x) = 1 for x e A, 
Put f(x, y) = g(x). Thus, f(z0) = 0 and /(z) = 1 for z e ff. 

R e m a r k . One can show also that regularity is invariant 
under cartesian multiplication and that normality is-not; in fact, 
there is a normal X such that XxJ is not normal (M. E. Rudin). 

§ 4. Diagonal 
We call the set 

A = {(x,y>: (x = y)} 
the diagonal of X2 = I x l . 

THEOREM 1. J = AT. 
top 

The required homeomorphism is the projection (x,y}^>x. 
THEOREM 2. If X is a Zr^space, the diagonal is closed (in X2). 
P r o o f . Put V = X2—A. We have to show that V is open, 

i.e. that given a point (x, y) of F7, there are two open sets G and 
H such that xeG, y e H and GxH a V. Now, as x Φ y there 
are (X being y2) t w o ° P e n sets G and H such that x eG, y e H, 
and G n # = 0 . Hence (Gxff) n 4 = 0 , i.e. (GxH) c P7. 

R e m a r k . The assumption of A" being ^"2 is essential. In fact, 
if the diagonal of Xx X is closed, X is J"2. 

The following theorem is an important generalization of The­
orem 2. 

THEOREM 3. If f: X -* Y is continuous, its graph 

F={<x,y>: y=f(x)} 
is homeomorphic to X. 

If Y is a ^2-space, F is closed (in XX Y). 
P r o o f . Put h(x) = <*,/(*)>. As in the proof of Theorem 1, 

one sees that A is a homeomorphism of X onto F. 
To prove the second part, put g(x9 y) = </(*),}>>· Obviously 

[g(x,y)GA] = ly=Ax)]=[<x,y>eF], i-e. F=g~1(A). 
Since g is continuous (by Theorem 4 of § 2) and A is closed, 

so F is closed. 
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§ 5. Generalized cartesian products 

Let us now consider the general case 

Z = UteT^t, 

where T is an arbitrary set and Xt is a topological space. 
As in the case of two factors, we denote by rtt(f) the /th coordi­

nate o f / e Z, i.e. (compare Chapter IV, (32)) 

(1) Kt(f)=f(t), hence nt\ Z-+Xt. 

nt is the projection of Z on the A^-axis. 
We introduce topology in Z (called Tychonov topology) by 

means of the following definition. 
D e f i n i t i o n . The family of sets of the form 

(2) Qt,G = *rl(G) = {f:f(t)eG}, 

where G is open in Xt, is a subbase of Z. 
Thus QtG is the product of G and of all Xv with t' Φ t. Con­

sequently, the products \\tGt where Gt is open in Xt and, except 
for a finite set of indices, is identical with Xt, form a base of Z. 

It follows also that if T is composed of two elements, the above 
definition agrees with the definition given in § 1. 

The theorems of the preceding paragraphs can be easily extended 
to generalized products. In particular, we have the following 
statements. 

THEOREM 1. nt is continuous. 

Because 7tjx(G) is open in Z if G is open in Xt. 
THEOREM 2. Let h: W'-* Z. h is continuous iff ht = nt o h is 

continuous for each t e T. 
Because, if ht is continuous, then A~1(öf,ö) is open since 

A"1(a.G) = A"1[^T1(G)] = Ar1(G). 

THEOREM 3. If At = At a Xt, then Y\tAt = Tlt^t c Z. 

Since nt is continuous, the set Ttf1 (At) is closed, and so is J7* At 

because 

/7»^ = ΠίΛΓ1(Λ). 
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R e m a r k . The range of variability of G in (2) can be restricted 
to a subbase S of Xt. 

Because, if G is open in Xt, then nj1{G) is generated by the 
sets π;~ *(//), where HeS, in the same way that G is generated 
by the sets H (with the aid of the union operation and the finite 
intersection operation). 

THEOREM 4. The properties of being a ^Ί-space, a tT^-space, 
a completely regular space, are invariant under the generalized 
cartesian multiplication. 

The proofs are similar to those given in § 3. 

§ 6. XT considered as a topological space. The cube JT 

Let X be a topological space and T an arbitrary set. XT is 
obviously a particular case of the product UtXt, namely when 
Xt = X for each t sT. Thus XT can be regarded as a topological 
space with the Tychonov topology. In other words, it has a subbase 
composed of sets QtG defined by formula (2) of § 5, where G is 
an open subset of Zand nt is the evaluation of XT at t, i.e. (com­
pare Chapter IV, (32)): 

(1) nt (/) = fit), hence nt: XT - X. 

Theorems 1 and 2 of § 5 imply the two following theorems. 
THEOREM 1. The mapping nt: XT -> X is continuous. 
THEOREM 2. Let W be a topological space. Then the mapping 

φ: W -► XT is continuous iff each mapping φί = πίοφ is contin­
uous. 

THEOREM 3. Let T be a topological space. Assume that the ele­
ments of Φ a XT are continuous mappings. Then the evaluation e 
of0 is a continuous mapping of T into ΧΦ. 

P r o o f . Let gf denote the evaluation of Χφ a t / e Φ; this means 
that (compare Chapter IV, (34)): 

(2) gf(h) = h(f) for each h e Χφ, hence gf : Χφ -► X. 

Therefore gfoe=ffov each fe Φ (compare Chapter IV, (35)), 
and it follows by Theorem 2 that, since the mapping gf © e is con­
tinuous (because/is continuous), so is e. 
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R e m a r k . We will now consider the important case where 
X — J. Thus JT is a generalized cube. In particular JN is the 
Hubert cube (N denoting the space of positive integers). 

THEOREM 4. Every completely regular ^Ί-space X is topologi-
cally contained in a generalized cube. 

More precisely, let e denote the evaluation of Φ = (*/x)top (the 
set of all continuous mappings <p: X -* J). Then e: X-* J® is a 
homeomorphism. 

P r o o f . Recall that (see Chapter IV, (33)) 

(3) [ex](f) = fix) for / e Φ, hence ex: Φ ■-> J. 

In order to show that e is one-to-one, suppose that x1 φ χ2. 
As A" is a completely regular «^Vspace, there is fe<P such that 
/ (*ι) Φ f(x2)' Since ex(f) =f(x), we have ex£f) Φ eX2(f) and hence 
eXl Φ eX2. 

It remains to show that the inverse mapping to e is continuous. 
In other words, that if G c X is open, then e(G) is open in e(X); 
that means that, if x0 e G there is Q <= Z = J0 open and such 
that 

(4) eXoeQ and [Q n e(X)] c e(G). 

As X is completely regular, there i s / e Φ such that 

(5) f(xQ) = 0 and f(x) =\ for x e X-G. 

Define Q by the condition 

(6) (A e Q) - [g/A) * 1], i.e. β = Z -g 7 » (1 ) . 

Since the mapping gf is continuous, the set g jHO is closed, 
hence Q is open. Moreover eXo e β since by (2) and (3) 

gAeXo) = eXo(f)=f(x0)*l. 

To show the second part of (4), note that by (6) 

(7) Qne(X) = e(X)-g7
1(l), 

and since (see the Remark to Chapter V, § 1) 

/ o e~l c gf9 hence [f° e ' T 1 <= g?1* i e · * ° / - 1 c S/1* 



172 SET THEORY AND TOPOLOGY 

it follows that elf'1 (I)] c g/KO- Therefore, by (7) and Chapter 
IV, (15a), 

ß n e(X) c e(X)^e[f^(l)] c= e[X-f-'(\)] c= e(G) 

since Χ-Γχ(\) c G-
COROLLARY. A ^Ί-space is completely regular iff it is topologi-

cally contained in a generalized cube. 
P r o o f . Since a generalized cube is a product of completely 

regular spaces (namely, of intervals), it is completely regular (by 
Theorem 4 of § 5). It remains to refer to the fact that each subset 
of a completely regular space is completely regular (Chapter XII, 
§ 6, Remarks). 

R e m a r k . The second part of Theorem 4 remains true and 
the proof remains valid if the set (fx)iov is reduced to a set Φ 
such that 

(8) if x0 φ F = F c X, there is fe Φ for which f(x0) φ]ψ). 

It follows that, if Φ is countable, X can be imbedded in the 
Hubert cube JN. Such is the case of a metric space X with a count­
able base (see Chapter XIV, § 4). 

§ 7. Cartesian products of metric spaces 

The product Y\nXn of a finite or infinite sequence of metric 
spaces Xl9X2, ... can be considered as a metric space if we use 
the definition of distance given by formulas (4) and (7) of Chapter 
IX. We are going to show that the topology induced by this dis­
tance agrees with the topology (of Tychonov) defined in this 
chapter. 

THEOREM. A set i / c Z = I 1 x ! 2 X ... is open in the metric 
sense iff H is open in the Tychonov topology. 

P r o o f . With no loss of generality (see Chapter XII, § 3) we 
can assume that δ(Χη) < 1 for each n and that the distance is 
defined by formula (7) of Chapter IX. 

First, suppose that H is open in the metric sense. Let z e H. 
Hence there is ε > 0 such that K(z, ε) a H. Let n be such that 
2~n < e/2. Put z — (xl9 x29 ...) where jcf e l , · , and let Gf 

= K(xh e/2) c Xi for i < n and let Gj = Xj for j > n. There-
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forez eGxxG2X ... <= H; because, if z' e G±xG2X ..., it follows 
from (7) that \z'—z\ < ε, i.e. z' e K(z, ε). 

Thus H is the union of some sets belonging to the base of Z 
(compare § 5), and consequently H is open in the Tychonov topo­
logy. 

It remains to show that each member Q of the subbase of Z, 
considered in § 5, is open in the metric sense. We can assume, of 
course, that Q = GxX2xX3X ... where G is open in Xx. Let 
z = (xl9 xl9 ..·) e β. Hence χγ e G. Put ε = ρ(χί9 ΑΊ—G), hence 
ε > 0. It follows that K(z9 ε/2) c ζ>, and consequently Q is open 
in the metric sense. 

Exercises 
1. Let A <= X, B <= Γ. Prove the following formulas: 

Int (A x B) = Int (Λ) x Int (B), 
FrG4x£) = [Fr(^)xA] u [ZxFr(B)]. 

2. A necessary and sufficient condition for the cartesian product AxB 
to be dense in itself is that one of th? sets A and B be dense in itself. 

3. Suppose that, for each a e A, Xa is a topological space. Let B and C 
be disjoint subsets of A such that A = B v C. Then the product space IIbsB Xb x 
X 7Tcec Xc is homeomorphic to the product space IIaeA Xa. 

For each fixed topological space X the product XA is homeomorphic to 
XB xXc and (XB)C is homeomorphic to ArßxC, all spaces being given the prod­
uct topology. 

4. Let F be a closed subset of the metric space X, and let 
f(x) = 1 /ρ(χ, F) for * e X-F. 

Prove that the set 

is closed in the space A'x^. 
Deduce from this that every open set in X is homeomorphic to a closed 

subset of the space XxS (making use of Theorem 2, § 4). 
5. Let Q be a GO subset of the metric space X, i.e. β = 6 1 η ( ? 2 π . . . nGfl 

n ..., where Gn is an open set. Let 
fn(x) = 1/ρ(*,*-£„) for * 6 G„, and /(*) = [/i(x),/2(*),...]. 

Prove that the set 
{<*,*>: b = / ( * e Ö ) } 

is closed in the space XxSxSxSx ... 
Deduce from this that every (7<5-set is homeomorphic to a closed subset 

of the space XxSxSxSx ... 
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6. Let {Γ, F,g) be an inverse system (comp. Chapter VIII, § 5). Let Ft, 
for / e T, be a metric space (or more generally a completely regular space), 
and gt0t1 be a continuous mapping (for /<, < 'i)· 

Prove that: 
(1°) the set Z = Lim{r, F, g} is closed in IJteT Ft (with Tychonov's topo­

logy) and hence is completely regular; 
(2°) sets of the form Z n {/: fteG}, where t e T and G is an arbitrary 

open set in Ft, form a base of Z; 
(3°) if M <= Z, then feM=/\tfteMt, where Mt is the projection of 

M onto Ft; 
(4°) if the mappings ht in Chapter VII, § 5, are homeomorphisms, then hoo 

is a homeomorphism. 
7. A continuous mapping which maps open sets onto open sets is called 

an open mapping (similarly we define closed mappings). 
Prove that: 
(a) an open (closed) one-to-one mapping is a homeomorphism; 
(b) the projection of Xx Y onto X is an open mapping; 
(c) extend the preceding theorem to generalized cartesian products. 
8. We say that a uniform structure on X is defined with respect to a (non­

empty) family U of subsets of the cartesian product XxX, if the following 
axioms hold: 

(a) if Ve U, then Vcontains the diagonal of XxX (i.e. the set {<*, x>: 
xeX}), 

(b) if Ve U, then the set {<*, y>: <y,x>e V} belongs to U, 
(c) if Vl9 V2e U9 then ( ^ n V2) e U9 

(d) if Ve U and V <= Z, then Z e U, 
(e) if Fe # , then there exists a set Vie U such that the set 

{<*,>»: VzK*,z>e Kt] [<z,^>e KJ} 
is a subset of F. 

Prove that 
( f ) i fOt/ is the diagonal of XxX, then Λ" becomes a completely regular 

^-space, if we assume that 
xe A = /\v {y: <y,x>eV}n A*09 where Ve U. 

Prove that a uniform structure is given to every metric space X by the 
family of all sets containing sets of the form 

Ve = {<*,;v>: \x—y\ < ε}, where ε> 0. 
9. A proximity relation on the set A" is a relation A δΒ defined for A9 B <= X 

and such that 
(a) the relation ö is symmetric, 
(b) [A δ(Β u C)] s [(Λ (55) (/* δ Q], 
(c)A^(*<W =(* = >>), 
<d) 0 non-OX, 
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(e) if A non-<52?, then there exists a pair of sets C and D such that 
Λ <= C, J3 <= D, C r\D=0, A non-<W-C), B non-ö(X-D). 

Prove that X is completely regular, if the closure is defined by the formula 
(xsÄj= (χδΑ). 

10. Let X be a completely regular &Ί-space. Assume that A ηοη-δΒ iff 
there exists / e Jx such that/(^) = 0 and/(B) = 1. Prove that the relation δ 
is a proximity relation. 

Prove that in an arbitrary metric space a proximity relation can be defined 
by the equivalence 

(AδΒ) Ξ [ρ(Α, B) = 0] (where A Φ 0 Φ B). 



CHAPTER XIV 

SPACES WITH A COUNTABLE BASE 

§ 1. General properties 

Let Gi9G29 ... denote the base (composed of open nonvoid 
sets) of the given «^Vspace X. This means that every open set is 
the union of some of the sets G„. 

THEOREM 1. The property of containing an open countable base 
is hereditary. 

Namely, if E a X, then E n Gl9 E n G2, ... is an open base 
of E. 

THEOREM 2 (of Lindelöf). Every space X with a countable base 
is a Lindelöf space. 

This follows immediately from the Remark of § 11 of Chapter X. 
* THEOREM 3 (BROUWER REDUCTION THEOREM). Let X be a space 

with a countable base and let A be a family of closed subsets of X 
such that, for each decreasing sequence F0 z> Ft => ... of members 
of A, the intersection F0 n F1 n ... belongs to AJ Then each 
M0 e A contains an irreducible member (i.e. a set M e A such 
that no proper closed subset of M belongs to A). 

P r o o f . We assume that M is the intersection of a sequence 
of members M0 ID MX Z> ... of A defined by induction as follows. 
Let n > 0 be a given integer. Let Mn_t e A. If there is B e A such 
that B c M„_l—G„, then Mn is such a set B (thus in this case 
Mn n Gn = 0 ) ; if such a B does not exist, then we put Mn = M„_lt 

Thus in any case Mn e A, and consequently M e A. 
We have to show that M is an irreducible member of A. Suppose 

it is not. So let B e A, B c M and Βφ Μ. Accordingly there 
is Gn such that M n Gn φ 0 and B n Gn = 0 . Therefore B <= 
c M—Gn a M„_1—Gn and (by the definition of Mn) Mnr\ Gn = 0 . 
But then M n Gn = 0 , which is impossible. 

t A family of sets having the above property is called inducible. 
176 
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THEOREM 4. If the spaces Xl9X29... have a countable base, then 
so does XtxX2X ... 

P r o o f . Let G„tl9G„i29 ... denote the base of Xn. According 
to the Remark of Chapter XIII, § 5, the base of XxxX2x ... is 
composed of sets of the form HiXH2x ... where for each index 
n9 except a finite number of indices, Hn = Xn9 while for the excep­
tional indices Hn is a term of the sequence G„>l9 G„f29 ... This 
base is obviously countable (compare Chapter V, § 3, Theorem 5). 

§ 2. Separable spaces 
D e f i n i t i o n . A space is said to be separable if it contains 

a countable dense subset. 
Hence, a metric space is separable if it contains a sequence of 

points ρχ, p2, ... such that every point p is of the form 

(1) p = limpkn. 
/!->00 

The space of all real numbers is a separable space, for the set 
of rational numbers is countable and dense. An example of a space 
which is not separable, is an arbitrary uncountable set in which 
|JC—ĵ | = 1 for every pair of points x Φ y. 

THEOREM 1. Every space with a countable base is separable. 
For the proof, it suffices (according to the axiom of choice) to 

choose a point p„ from each G„. 
THEOREM 2. Every metric separable space contains a countable 

base. 
Thus, for metric spaces, the concepts of a separable space and 

of a space with a countable base are equivalent. 
Proo f . LetP\9p29 ... be a dense sequence in the given metric 

space. Let us consider the balls with centres pn and with rational 
radii: 

(2) Kn,r = {x: ( l * - A l ) < r } . 

The set of these balls is countable (cf. Chapter V, § 3, Theorem 3) 
and forms a base. 

In fact, for an arbitrary point p and every number ε > 0, there 
exists a point pn such that \p—p„\ < ε. Let r be a rational number 
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such that \p—Pn\ < r < ε. Then p e Kn r and d(K„tr) < 2ε, and 
hence the sets K„tr form a base. 

§ 3. Theorems on cardinality in spaces with countable bases 

We assume in § 3 that the space X under consideration has 
a countable base. 

THEOREM 1. The family of all open sets is of power < c. 
The same applies to closed sets. 
P r o o f . Let Gi, G2, ... be a base of the space. Hence to every 

open set H there corresponds a sequence of natural numbers 
kl9k29 ... such that 

(3) H=U:=iGkn. 

It follows that the number of open sets is < the number of all 
sequences of natural numbers, i.e. is < c. 

The second part of the theorem follows immediately from the 
first, for, if we assign to each open set its complement, then we 
map the family of open sets onto the family of closed sets in a one-
to-one manner. 

THEOREM 2. Every ^Ί-space with a countable base has power 
< c 

This follows at once from the second part of Theorem 1. 

* R e m a r k. More generally, we can prove that the family 
of all Borel sets has power < c. Hence, if the space is of power c, 
it contains non-Borel sets; and furthermore, since the family of all 
subsets of this space has power 2C, the family of non-Borel sub­
sets has power > c (and therefore, e.g., on the real line there exist 
more non-Borel than Borel sets). 

THEOREM 3. Every family R of disjoint open sets is countable. 
P r o o f . Let px,p2, ... be a sequence dense in the space under 

consideration. Hence, if H is a non-empty set belonging to the 
family R9 then there exists an index n such that pn e H; we denote 
this index by n(H); if 0 eR then we put n(0) = 0. We have 
therefore assigned to each non-empty set H belonging to R a num­
ber n(H) so that 

(4) pn(H) e H. 
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Distinct numbers correspond to distinct sets. For if n{Hx) 
= n(H2), then by (4) we have 

Pn(H{) e / / i n H2, 

which is possible only if Hl = H2 (because the sets belonging 
to the family R axe disjoint). 

Therefore, there are at most as many elements of the family R 
as there are non-negative integers, which was to be proved. 

THEOREM 4. The set of isolated points is countable. 
P r o o f . Since each isolated point of the space constitutes an 

open set (see Chapter XI, § 5, Theorem 2), it follows that the one-
element sets, whose single element is an isolated point, form a 
family of disjoint open sets. This family is countable by virtue of 
Theorem 3, and hence the set of isolated points is also countable. 

COROLLARY. Let Z <z X. Then the set of isolated points of Z is 
countable. 

The set Z, being a subset of a space with countable base, can 
itself be considered as such (by virtue of Theorems 1, § 2, and 1, 
§1). 

THEOREM 5. If the spaces X and Y have countable bases, then the 
space Yx (i.e. the set of continuous mappings/: X -> Y) has power 
< c 

P r o o f . By virtue of Theorem 2, Chapter XIII, § 4, if fe Yx
9 

t hen / i s a closed set in the space Xx Y; but since the latter space 
has a countable base (Theorem 4, § 1), the family of all its closed 
subsets has power < c (Theorem 1). 

R e m a r k . If the space Y has power c, then the space Yx has 
the same power, because the set of constant functions is then of 
power c. Under the assumption that the space X also has power c, 
we note that there are more discontinuous than continuous map­
pings, because the set of all mappings of X into Thas power cc > c 
(cf. Chapter VI, § 4, (45)). 

§ 4. Imbedding in the Hilbert cube 
URYSOHN THEOREM. Every separable metric space X is homeomor-

phic to a subset of the Hilbert cube Jf, i.e. 
X a#>. 

top 
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P r o o f . By the Theorem 8 of § 3, Chapter XII, we can assume 
that 

ä ( I ) < l . 

tetPitPi* ··· be a sequence of points dense in the space X. To 
each x e l w e assign the point of the Hilbert cube with "coordi­
nates": \x-pi\9 \x—p2\, ·.·> i.e. 

(5) h(x) = (Ix-zM, \x-Pi\,..., \x-Pn\, ...)· 
The functions 

(6) hn(x) = \x-pn\ 

are continuous (Chapter XII, § 4, Theorem 5), and therefore, by 
Theorem 2, Chapter XIII, § 5, the function h is also continuous. 
We shall prove that this function is a homeomorphism. 

We assume that 

(7) lim Afo) = *(*)· 
k->oo 

We must show that 
(8) lim** = x. 

Ac-*oo 

Let ε > 0. Since the sequence pl9p2, · · . is dense in the space 
A", there exists a point /?y such that 

(9) \x-Pj\ < a. 

It follows from formulas (7) and (5) that 

\imhj(xk) = hj(x). 
£-►00 

Because of (6) this means that 

\im\xk-pj\ = |*—£/|; 
A:->oo 

therefore, there exists a Λ0 such that 

(10) \xk-Pj\ < \x-Pj\+* 

provided that k>k0. 
By the inequalities (9) and (10), we therefore have 

\x-Xk\ < \x-Pj\ + \Pj-Xk\ < 3ε 
for k > kQ. This means that formula (8) is valid. 
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R e m a r k 1. Since every subset of the Hubert cube is a sepa­
rable metric space, it follows from the above theorem that from 
the topological point of view separable metric spaces are equivalent 
to subsets of the Hilbert cube. 

* R e m a r k 2. Instead of assuming that X is metric separable, 
we could have assumed that X is a &Ί normal space with a countable 
base. In this case the proof would run as follows. 

Let Gl9 G29 ... be a base of X. Consider all pairs </,7> such 
that Gi c Gj. By the Urysohn Lemma (Chapter XII, § 5), there 
is a continuous function fj: X -> J such that 

(11) fijipc) = 0 for x e Gj and ffJ(x) = 1 for x e X-Gj. 

Arrange the double sequence {fj} into a simple sequence {g„} 
and put 
(12) h(x) = (gl(x),g2(x),...)ejr. 

We shall show that A is a homeomorphism: 
As the continuity of h follows from the continuity of gn, it re­

mains to show that p φ A implies h(p) φ h(A). 
Now, as I is a normal ^Ί-space and Gl9 G2, ... is its base, 

it is easy to see that there exists a pair of indices </,/> such that 
p e Gi and Gt c Gj c X-A. Put gn =fu. By (11), gn(p) = 0 
and gn(x) = 1 for x e A. According to the definition of the dis­
tance in Jff (see Chapter IX, (7)), we get for x e A 

(13) \h(x)-h(p)\ > l /2\ i.e. h(A) n K[h(p), 1/2"] = 0 . 

Thus h(p) φΈ(Α). 
Let us add that another proof of the theorem under considera­

tion was referred to in Chapter XIII, § 6 (Remark to Theorem 4). 

*§ 5* Condensation points. The Cantor-Bendixson theorem 
A point p of a set A is said to be a condensation point of A if 

every neighbourhood of p contains a non-countable set of points 
of the set A. 

We denote the set of condensation points of the set A by the 
symbol A0. 
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Every condensation point of the set A is an accumulation point 
of A, i.e. 

(14) A0 c Ad. 

It is also easy to prove that the set A0 is closed, i.e. 

(15) A0 = Ä°, 

and that 

(16) (AuB)° = A°uB°. 

The following generalization of Theorem 4, § 3, is valid: 
THEOREM 1. In a space X with a countable base the set A—A° 

is countable. 
P r o o f . Let Gl9G2, ... be a base of the space. Let p eA—A°. 

Then there exists a neighbourhood Kofp such that A n K is count­
able. There exists also an index n(p) such that p e Gn(p) <= K, 
whence A n Gn(p) a A n K, and therefore the set A n Gn(p) is 
countable. 

Since the union of a countable number of countable sets is 
countable (Chapter V, § 3, Theorem 4), the set 

S= Up A n Gn(p)9 

where p e A — A0, is countable. Now, we have A — A0 c S, 
for p e A n Gw(p). Therefore the set A—A0 is countable. 

Since a countable set clearly has no point of condensation, it 
follows from the theorem that 

(17) (A-A°)° = 0. 

From this we deduce that 

(18) X° = X00. 

In fact, the identity X = X° u (X-X°) yields, by virtue of (16) 
and (17), that 

X° = χοο u ( J^_^0)0 = χ ο ο # 

THEOREM 2. Every 3Γ\-space X which contains a countable base 
and does not contain non-empty sets dense in themselves (i.e. a scat­
tered space) is countable. 

file:///-space
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P r o o f . By virtue of (18) and (14), we have X° = X00 a Xod; 
i.e. X° <z Xod, which means that the set X° is dense in itself. There­
fore X° = 0 by hypothesis; it follows that X = X-X°, and 
this last set is countable by virtue of Theorem 1. 

THEOREM 3 (CANTOR-BENDIXSON). Every F^-space with a count­
able base is the union of two disjoint sets, one dense in itself and 
closed (i.e. perfect) and the other countable. 

This is an immediate consequence of the preceding theorem 
and of Theorem 3, Chapter XI, § 7. 

Exercises 

1. Define a dense sequence in the Hubert cube 2tf. 
2. Let Xbe the set of all real numbers having the topology induced by 

the family B of all half-open intervals (a, b) = {x: a < x < b}, considered as 
base. 

Prove that 
(a) The members of the base B are both open and closed. 
(b) The space X is separable but has no countable base. 
Hint: Notice that for every JC e A'each base contains a set whose infimum 

is x. 
(c) Every subspace of X is separable. 
3. Show that the space considered in Exercise 1, Chapter IX, is not sepa­

rable. 
Hint: Show that there exists a continuum of disjoint open sets in this 

space. 
4. Prove that A°-B° ^ (A-B)°. 
5. Prove that 

(Γ),*)°<=η,Αο, UtA°^({JtA,)°. 
6. Assign to every ordinal number ξ < α an open set Αξ lying in the space 

X (with a countable base), so that Λξ+ι <= Αξ and Αξ+ι Φ Αξ. Prove that 
α < Ω (i.e. that there is but a countable number of sets Αξ). 

Hint: Let Gl9 G2, ··. be a base of the space X. Assign to each ξ (with 
perhaps the exception of the last one) a number η(ξ) such that 

Gntf) c A and Gn^)—Αξ+± Φ 0. 
7. Prove the analogous theorem for closed Αξ. 
8. Deduce the following corollary from the above theorem: every set of 

real numbers which is well ordered with respect to the "less than" relation 
is countable. 

9. The derived sets of transfinite order are defined inductively by means 
of the formulas (where the space is ^ with a countable base): 

XW = X*, JT(£+i) = (X&Y, XW = Γ\ξ<λΧ{ξ) (* a limit ordinal). 
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Prove (making use of Exercise 7) that beginning with some α < Ω the 
derived sets of all orders are equal. 

10. Deduce the Cantor-Bendixson Theorem from the above theorem 
making use of Theorem 4, § 3. 

11. Prove that every totally bounded space is separable (comp. Chapter XII, 
Exercise 8). 

12. The product TItXt has a countable base iff each Xt has a countable 
base and all but a countable number of Xt have the trivial topology (comp. 
§ 1, Theorem 3). 

13. We say that a topological space satisfies the first axiom of countability 
if for every point x there exists a countable family of open sets such that every 
neighbourhood of x contains a member of that family. 

(i) Give an example of a space which satisfies the first axiom of counta­
bility but has no countable base. 

(ii) Prove that every metric space satisfies the first axiom of countability. 
(iii) Let Xt be a topological space satisfying the first axiom of countability 

for each teT. Then the product IItXt satisfies the first axiom of countability 
if and only if all but a countable number of the spaces Xt are trivial. 

14. A space is said to be locally separable at the point/? if there is a separable 
neighbourhood of p. Give an example of a metric space which is locally sepa­
rable at none of its points. 

Hint: Use a construction analogous to the construction used in Exercise 1, 
Chapter IX. 



CHAPTER XV 

COMPLETE SPACES 

§ 1. Complete spaces 
D e f i n i t i o n . We say that a sequence of points Pi,p2, ... 

in a metric space is a Cauchy sequence if for every ε > 0 there 
exists a k such that for every n > k we have 

(1) \Pn-Pk\ < ε, 

i.e. if 
ΛΛΛΛ.Κΐ > k) => (|A-A| < «)]. 

A metric space is said to be complete if every Cauchy sequence 
Pi>P2> ··· is convergent, that is, there exists a point/? of this space 
such that p = limpn. 

Π-ΧΧ) 

The space of all real numbers is complete according to the known 
Cauchy theorem from analysis. Let us note that completeness is 
not a topological property of the space. The space of all real num­
bers is homeomorphic to the open interval 0 < x < 1 (see Chapter 
XII, § 2) which is not a complete space inasmuch as the sequence 
1/2, 1/3, 1/4, ... is a Cauchy sequence but is not convergent (in 
this space). 

THEOREM. Every convergent sequence in an arbitrary metric space 
is a Cauchy sequence. 

Proo f . In fact, if the sequence pl9p2, ··· is convergent to 
the point p, then for every ε > 0 there exists a k such that for 
every n > k we have the inequality 
(2) \Pn-p\ < e/2. 

In particular, for n = k we have 
(3) \pk-p\ < e/2. 

For n > k9 inequality (1) follows from the inequalities (2) 
and (3). 

185 
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§ 2. Cantor theorem. Let {F„} be a decreasing sequence of non­
empty closed sets in a complete space: 

(4) F 1 = > F a 3 . . . =>F„=>F.+1=> ... 

/ / 
(5) lim«5(F„) = 0, 

«-»•OO 

then 
(6) nr=ii^0. 

P r o o f . Let pneFn. Then Pi,p2,... is a Cauchy sequence. 
In fact, by virtue of (5), there exists for every ε > 0 a k such that 
<5(Fn) < ε provided n^k. 

By (4), p„eF„ c FÄ, and hence for n > fc 

Pn,PkeFk, whence |/?„-/>k| < <5(Τ*) < £; 

i.e. Ρι,ρ2, ··· is a Cauchy sequence. Since the space is complete, 
this sequence is convergent. Hence, let p = l im/v 

n-*oo 

For every m, the terms of the sequence Pi,p2> · · · with the excep­
tion of at most the first m—\ terms belong to Fm, and since the 
set Fm is closed, the limit of this sequence also belongs to Fm, i.e. 

peFm for m = 1,2, ..., i.e. p e f l ^ A . 

R e m a r k . The set C)m=iFm consists of only one point p. 

§ 3. Baire theorem. In a non-empty complete space X the union 

(7) E = F1 u F2 u ... u Fk u ... 

Ö/ closed boundary sets cannot fill the entire space; furthermore, 
this union is a boundary set.^ 

P r o o f . In order to prove that the set E is a boundary set 
in the space X, it suffices to show that every neighbourhood S0 of 
an arbitrary point contains points of the set X—E (see Chapter 
XI, § 2, Theorem 2). 

Since the closed set F1 is a boundary set, there exists a ball Sx 

such that Sx c S0 and 5Χ n Fx = 0 (see Chapter XI, § 2, 
Theorem 3). Clearly, we can assume that β(5Ί) < 1. 

t Sets of the form (7) (where the sets Fk are closed boundary sets), as 
well as all their subsets, are said to be sets of the first category. 
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Similarly, we find an S2 such that S2 <= Sl9 S2 n F2 = 0 
and 6(S2) < 1/2. 

Continuing in this manner, we obtain a sequence of balls which 
satisfy the conditions 
(8) S0 z> Sx z> S2 3 ... z> Sn ■=>... , 

(9) SnnF„ = 0 
and 
(10) ί (5„)<1/«, whence lim *(£,)*= 0. 

From the Cantor theorem, we deduce by virtue of (8) and (10) 
that there exists a point p belonging to all the sets Sn. Therefore 
(by (9)) 

hence by (7) p e X—E. Also p eS0. 
R e m a r k s . 1. Since a subset of a boundary set is a boundary 

set, Baire theorem can also be stated in the following manner: 
in a complete space every set of the first category is a boundary 
set, 

2. It follows from the Baire theorem that every nonvoid com­
plete dense in itself space is noncountable. 

In fact, if the space were countable: X — (ρι,ρ2, ···)> then it 
would be the union of a sequence of sets each consisting of one 
point: X — {px} u {p2} u ... But each of these sets is a closed 
boundary set, inasmuch as each of the points/?« is an accumulation 
point of the space X. 

Since the space & of real numbers is complete and dense in 
itself, we have thus obtained another proof of the inequality 
c > a. 

3. The set of irrational numbers is not an ivset in the space 
$ (and therefore the set of rational numbers is not a Gd-set). 

For, if the opposite were true, the set of irrational numbers 
would be the union of a countable number of closed boundary 
sets (because the set of irrational numbers is itself a boundary set). 
But since the set of rational numbers is the union of a countable 
number of one-element sets—and hence of closed boundary sets— 
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the entire space $ could be represented as the union of a count­
able number of closed boundary sets; but this contradicts Baire 
theorem. 

§ 4. Extension of a metric space to a complete space 
LEMMA. Let X be a topological space and Y a metric complete 

space. Then the space Φ(Χ, Υ) of all continuous bounded mappings 
f: X -► Y metrized by the formula (6) of Chapter IX is complete. 

P r o o f . Suppose that \fn—fk\ < ε for n > k. Then, for each 
x, \fn(x)—fk(x)\ < e and fi(x)9f2(x), ... is a Cauchy sequence, 
hence is convergent. Put/(x) = limfn(x). The convergence is uni-

n-»-oo 
form. Because, for every m > k, we have 

\fm(x)-fk(x)\ < e, hence \fu(x)-fm(x) I < 2ε. 

Consequently \fn(x)—limfm(x)\ < 2 ε and finally |/„(*)—f(x)\ 
m-*OQ 

< 2 ε . 
It follows that fe Φ(Χ, Υ) since the limit of a uniformly con­

vergent sequence of continuous bounded functions is continuous 
and bounded (compare Chapter XII, § 3, Theorem 3 and Chap­
ter IX, § 7, Theorem 2). On the other h a n d / = lim/n (by Theorem 

n->oo 
1 of Chapter IX, § 7). 

THEOREM. Each metric space X is isometric with a subset of 
a complete space. 

More precisely: let us define Φ = Φ(Χ, S) as in the Lemma, 
let a be a fixed point of X and let 

(11) hp(x) = \x-p\-\x-a\; 

then ^ΕΦ for each p e X, and h: X -► Φ is an isometric mapping, 
which means (according to the general definition of isometric 
mappings) that 

02) |Α,-ΛΙ = Ι/>-?Ι· 
P r o o f . hp is bounded since \hp(x)\ < \p— a\ by (11). Accord­

ing to the Lemma, we have to prove (12). Now 

\hp(x)-hq(x)\ = | | * - ; , | _ | * - ? | | < \p-q\, 

file:///x-p/-/x-a/
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hence \hp—hq\ < \q—p\. On the other hand 
hp(p)-hq(p)= -\p-a\-\p-q\+\p-a\, 

hence \hp—hq\ > \p—q\, and (12) follows. 
R e m a r k . If X is bounded, the definition of hp may be simpli­

fied. We can assume, namely, that hp(x) = \x—p\. 

Exercises 
1. Show by means of an example that Baire theorem is not valid in 

arbitrary metric spaces. 
2. The cartesian product Xx Y of two complete spaces, metrized with 

the aid of the formula 
\<xi,yi>-<x2,y2>\ = {\xi-x2\2 + \y1-y2\2Vf2 , 

is complete. 
3. The cartesian product Xx xX2 xXz x ··· of complete spaces is complete 

if the distance between two points x — (xi9x2t ···) and y = (yi9y29 ·..) 
is defined by the formula 

oo 

I*-*I = Σ π/^οι^-Λΐ/α+ΐΛ,,-Λΐ). 

4. Prove that every G -̂set lying in a complete space is homeomorphic 
to a complete space (Alexandrov theorem). 

Hint: Use Exercise 5 of Chapter XIII. 
5. Let/be a continuous mapping of a complete space and let the sequence 

Fi, F2,... satisfy the assumption of Cantor theorem. Then 

/(Π~=Λ)=η?=ι/(^). 
6. Prove that the set Z of convergence points of a sequence / i , / 2 , . . . of 

mappings with values in a complete space satisfies the equivalence 

( * e Z ) = A k V m A i l / m + i W - / m W I < Wc. 

Infer that if fi are continuous mappings, then Z is Fad (Hahn's theorem). 
7. Prove that if JIT is complete, then so is B(X) (comp. Chapter XII> 

Exercise 7). 
8. Let X be metric (bounded). Denote by OL(X) the infimum of all ε such 

that there exists a finite cover composed of sets of diameter < ε (compare the 
concept of a totally bounded space, Chapter XII, Exercise 8). 

Prove the following generalization of Cantor theorem. 
Let {Ft}t t G Γ, be a family of closed sets such that 
(i) each finite intersection of the sets Ft is non-empty, 

(ii)infa(F,)==0; 
then C]tFt Φ 0 . 

9. Define a space which is bounded, complete and separable,t but is 
not totally bounded. 

t A complete separable space is called a Polish space (see Bourbaki). 



CHAPTER XVI 

COMPACT SPACES 

§ 1. Definition 

A topological space X is called compact if every open cover of 
X contains a finite cover of X. 

In other words, if {Gt} is a family of open sets such that UiG, 
= X, where t ranges over an arbitrary set Γ, then there is a finite 
system tl9 ..., t„ such that X = Gti u ... u Gtn. 

It is easy to show that the above condition, called the Borel-
Lebesgue condition, is equivalent to the following Riesz condition: 
if {Ft} is a family of closed sets such that Π Λ = 0 , then there 
is a finite system tl9 ..., tn such that Ftlr\ ... n Ftn = 0 . 

EXAMPLES. The interval «/, the cube Jn are compact. More 
generally, each closed and bounded subset of the space £n is com­
pact (see § 5). 

§ 2. Fundamental properties of compact spaces 

THEOREM 1. Each compact subset of a Sm
7rspace is closed. 

P r o o f . Let i c l b e compact. We have to show that X—A 
is open, i.e. that given a point b eX—A, there is an open G such 
that beG c X—A. 

Since A" is a «^Vspace, there is for each x e A SL pair of open 
sets Ux and Vx such that 

beUX9 xeVx and UxnVx = 0. 

Consequently, the family of sets A n Vx, where x e A, is an 
open cover of A (considered as a space). Since A is compact, 
there is a finite system xl9 ..., xn such that 

A = 04 n KXl) u ... u (Λ n F J , i.e. Λ <= VXl u ... u ΚΛη. 

Put G = l/Xl n ... n ί/Χη. Therefore G is open and beG 
cz X-A. 

190 
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THEOREM 2. Each closed subset of a compact space is compact. 
P r o o f . Let F = F <= X. Let {GJ, t e T, be a cover of F, where 

Gf is open relative to F. Hence there is an Ht open (relative to X) 
such that Gt = F n i/f. Consequently the family of sets Ht, 
where t eT, augmented of the set H = X—F, is an open cover 
of X. Since X is compact, there is a finite system tl9 ..., tn such 
that X= Hv Htiv ... v Htn. Hence F = Gfl u ... u Gfn. 

THEOREM 3. The image under a continuous mapping of a compact 
space is compact. 

Proo f . Let X be compact and f: X -* Y continuous and 
onto. Let {Gj be an open cover of Y. Hence {/_1(Gf)} is an open 
cover of X. Since Xis compact, there are tx, ..., tn such that 

X=f-i(Gti) u ... vf-^GJ, hence Γ = Gfl u ... u Gfn. 

COROLLARY 1. ItacA continuous mapping of a compact space 
into a 3T2-space is a closed mapping (i.e. if F <= X is closed, so is 
/(iO). 

Proo f . LetXbe compact and/: X -* 7continuous. Let i7 c l 
be closed. By Theorem 2, JF is compact. Therefore, by Theorem 3, 
/(F) is compact, hence closed by Theorem 1 (since Fis a «^2-space). 

COROLLARY 2. Each one-to-one and continuous mapping of 
a compact space into a F^-space is a homeomorphism. 

P r o o f . Put g=f-K Hence g~i(F)=f(F), and since F is 
closed, so is g-1(^)· 

THEOREM 4. Each compact y2"sPüce is normal (hence completely 
regular). 

P r o o f . Let A and B be two closed disjoint sets. As in the 
proof of Theorem 1, one can assign to each b e B two open sets 
Gb and Hb such that 

beGb, A c Hb and GbnHb=0 

(in fact, it is sufficient to put Gb = UXi n ... n UXn and Hb 
= VXl u ... u VXJ. 

Since 2? is compact (by Theorem 2), it follows that 5 c G 6 l u 
u. . .uG*m. Put G = Gi>1u...uGi,m, H= Hbln ...nHbm. Hence 
,4 c # , £ c G and G n i7 = 0. 
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Moreover, G and H are open. This completes the proof. 
THEOREM 5. A topological space which is the union of two compact 

sets is compact. 
We leave the proof to the reader. 

§ 3. Cartesian products 
THEOREM 1. Let X be an arbitrary topological space and let 

Ybe compact. Then the projection ofXxYon the X-axis is a closed 
mapping of Xx Y onto X. 

Equivalently: if G is open in Xx Y, then the set Q of all points 
x of Xsuch that (x)xY a G is open in X. 

Proo f . We shall prove the theorem in the second formulation. 
By the definition of product topology, G is of the form G 
= UtGtXHt where Gt is open in Xand Ht in Y. Let x0 be a fixed 
point of g, i.e. (*0)X Y <= G. Hence for each y eY there is an 
index t(y) such that (xo,y} ^Gt{y)xHt^y Thus 

(1) *0 eGr(y), ye Ht{y) and Gt(y) X Ht(y) c G. 

Since the family {Ht(y)}, where y ranges over Y, is an open 
cover of Y9 there is a finite system yx,..., yn such that 
(2) Y=Htiyuv ... u Ht(yn). 

Put R(x0) = Gt(yi) n .·. n Gt(yn). Hence R(x0) is open, 
xQ 6 R(x0) by (1), and by virtue of (2) and (1): 

[R(x0)xY] c [(Gt(yi)xHt(yi)) u ... u (Gt(yn)xHt(yn))] cz G. 

Thus R(x0) <= Q. Since R(x0) is open and contains x0, it follows 
that Q is open. This completes the proof. 

The main object of this section is to show that the cartesian 
product of compact spaces is a compact space. We shall start 
with the case of two spaces (which is simpler). 

THEOREM 2. The cartesian product Xx Y of two compact spaces 
is compact. 

Proo f . Let C be a cover of Xx Y. We have to show that it 
contains a finite subcover. Since the sets GxH, where G is open 
in X and H in Y, form a base, we are allowed to assume that 
C = {Gt X Ht) (see the Remark of Chapter X, § 11). 
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Let R be the family of all open sets Q a X such that 

(3) QxYcz (GtlXHtl) u ... u (GtnXHtn) 

for an appropriate system tl9 ..., tn. 
We shall show that I? is a cover of X. 
Let x0 e X. Since {x0} X Y is homeomorphic to Y and Y is 

compact, so {x0} X Y is contained in a finite subcover of C: 

{x0}xY c= (GtiXHtl) u ... u (GtnXHtn). 

By Theorem 1, there is an open g containing x0 and satisfying 
(3). Thus R is a cover of X. 

Since X is compact, R contains a finite subcover: X = Qx u 
u ... u ßft. Since we have by (3), for f < k, 

QtXY c (G,, ,XFt. ,) u ... u (G,,.n(0X//,,„,,), 

SO 

A-xy= U?-iß,xr <= U i - i U Ä ^ x ^ , 
and the right-hand side is a finite subcover of C. 

This completes the proof for the case of the product of two 
spaces. The proof of the general case will be based on the Alexander 
Lemma. 

Let us call essentially infinite every cover which contains no 
finite subcover. (Thus compact spaces are spaces which have no 
essentially infinite subcover.) 

ALEXANDER LEMMA. Let A be an open subbase of the topological 
space X. Suppose there exists an essentially infinite open cover of 
X, Then there exists such a cover contained in A. 

P r o o f . Denote by 9QZ the totality of all essentially infinite 
open covers of X. By assumption 90? φ 0 . We shall show first 
that 90? has the following property: whenever {Pa} is a trans-
finite (see Chapter VIII, § 7) monotone sequence (i.e. a < β 
=> Ρα c Έ>β) of members of 90?, then (UaP«) e ^ . 

U£Pa is obviously a cover of X. It is essentially infinite. For 
otherwise, it would contain a finite cover Gl9 ...,G„ and con­
sequently there would be a finite system α ΐ 9 . . . 9 α η such that 
Gt e P a r Denote by β the greatest or* ( ! < / < « ) . Hence G{ e Vß 
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for each i— 1, ...,n and it follows that P^ is not essentially 
infinite. 

From the property of 9ft just shown, it follows (see Chapter 
VIII, § 8) that 90? contains a maximal element. Denote it by P. 
Thus, if H is open and does not belong to P, then P u {H} is not 
essentially infinite, which means that there is a finite system 
Gl9 ..., G„ such that 
(4) HKJG1KJG2^ ...vGn = X and Gt eP for i = 1,..., n. 

We shall show that the family of open sets which do not belong 
to P is a filter, i.e. that (H and G being open) 
(50 Hx φ P and H2 φ Ρ imply (Ht ηΗ2)φΡ 
and 
(52) H φ P and H c G imply ΰφΡ. 

The condition Hj φΡ, j = 1,2, implies (see (4)) the existence 
of sets Gyfl ..., Gjt„. such that 

# , u G i ( 1 u G,->2 u ... u Gi>Wj. = X and G,v e P. 
It follows that 

Ä n / / 2 ) u U ; Ä i = ^ 
hence ( ^ n i/2) ί Λ since P is an essentially infinite cover. 

Thus (50 has been established. 
Now let H ^ P. We may suppose that (4) is fulfilled. Therefore, 

if H c G, we have 
G\J Giu G2u ...uG„ = Z 

which yields G φΡ. 
We shall show that (5t) and (52) imply that A n P is a cover 

of X 
Let Λ:0 e X. Since P is a cover of X, there is a G e P such that 

x0 e G, and since A is a subbase of X, there is a finite system 
Ht, ..., Hn of elements of A such that 

x0 e (Hl n ... n Zf„) c= G. 

It follows by (5Χ) and (52) that there is an / such that Ht e P. 
Hence x0s Ηιβ A n P. Thus 4̂ n P is a cover of X. 

Finally, since P is essentially infinite, so is A n P. 
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THEOREM 3 (of Tychonov). The product Z = f[teT Xt of 
compact spaces Xt is compact whatever is the set T. 

In particular, the generalized cube J** is compact for each a. 
P r o o f . Let A be an open subbase of Z composed of sets (see 

Chapter XIII, § 5, (2)): 

(6) QtG = {/: f(t) e G} where t e T and G <= Xt is open. 

Suppose that Z is not compact. Then by the Alexander Lemma 
there is an essentially infinite cover U <=· A. 

Denote by Vt the family of sets defined by the condition 

(7) GeVt = QttG E U. 

We shall show that Vt is not a cover of Xt. 
Suppose that the contrary is true for some t e T. Since Xt is 

compact, if follows that 
(8) Xt = Gt u ... u Gn where Gf e Vt, i.e. QttGi e U for i < n. 

Therefore, by (6) and Chapter IV, (8), 

UiQ<,Gi = Ut{/: fit) e GJ = {/: ViUCO e GJ} 
= {/: fit) e UiGt} = {/: fit) e J j = Z. 

Thus £7 contains a finite cover of Z, which is impossible. 
Consequently, Vt is not a cover of Xt. This means that there 

isf(t) in Zf which belongs to no member G of Vt. Thus 

(9) G e Vt => f(t) φ G, i.e. QttG e U => f(t) φ G 
by (7). 

On the other hand, since U is a cover of Z and U a A, there 
is a pair (/, G) such that feQttG e £Λ But this contradicts (6) 
and (9) because 

fe QttG => fit) e G while Qt>G eU=> fit) φ G. 

§ 4. Compactification of completely regular spaces 
A compact space Y is called a compactification of the space 

X if it is compact and X is homeomorphic to a dense subset of Y. 
For example the interval J and the circle ^ are compacti-

fications of the space $ of reals. 
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It was shown in § 6 of Chapter XIII (Theorem 4) that if X is 
a completely regular «^Vspace, the evaluation e of the set Φ 
= C/*)top ( = the set of continuous functions / : X -> J) is 
a homeomorphism of X into Z = £φ. Put 

(1) /JJT = 5 ( ϊ ) . 

Since Z is compact by the Tychonov Theorem, so is ßX (by 
Theorem 2 of § 2). Thus ßX is a compactification ofX (called the 
Cech-Stone compactification). It may be considered as a maximal 
compactification (see the Remark below). 

FUNDAMENTAL LEMMA. Let f: X -> J be continuous. Then the 
function f o e~x: e(X) -> £ has a continuous extension /"*: Z -> */. 
Namely f* = nf (compare the Remark of Chapter V, § 1). 

In other words: let us identify Xwith e(X) (which is homeomor-
phic to X by Theorem 4 of Chapter XIII, § 6); then 

(2) / c z / * : Z-+J> and / * is continuous. 

GENERALIZED LEMMA. Let T be an arbitrary set and let X be 
identified with e(X). Iff: X -> JT is continuous, then 

(3) / c z / * : Z-*JT, where / * is continuous. 

P r o o f . Let ft denote the tth coordinate of / and let ft c / * : 
Z -> J. Then the complex mapping / * which has ft* as its tth 
coordinate is the required mapping. 

THEOREM. Let X be a completely regular ^^space, Y a compact 
3Γ2-space and f: X -> Y continuous. Then, identifying X with e(X), 
we have 

(4) / cz g: ßX -► Y where g is continuous. 

P r o o f . Since Y is a completely regular «^Vspace (by Theorem 
4 of § 2), it may be assumed to be a subset of a cube JT for an 
appropriate set T. Thus / : X -► JT. Applying formula (3) put 
g =f*\ßX. It follows that / c z g. Finally g: ßX-+Y, since the 
continuity of g and the compactness of Y imply: 

g(ßX) = g(X) cz tfX) = / ( Z ) cz F = Y. 

R e m a r k . The Cech-Stone compactification is maximal in 
the following sense. Given a compactification Y of X (where Y 
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is a ^Vspace), there exists a continuous mapping of ßX into Y 
which is the identity on X. 

This is just another form of the preceding theorem. For, let 
A be a topological immersion of X into Y and h <= A*: ßX -> Y. 
By identifying x with h(x), one obtains the required mapping A*. 

§ 5. Compact metric spaces 
D e f i n i t i o n . A topological space 9£ is called countably 

compact, if it satisfies the following condition (called the Borel 
condition): 

every countable open cover contains a finite subcover. 
Obviously a compact space is countably compact, while the 

converse is not true (as seen in the example of the space of ordi­
nals α < Ω). If, however, the space is supposed to be metric, 
then compactness and countable compactness are equivalent 
(see Theorem 1). 

The Borel condition is equivalent (by duality) to the following 
condition: 

(i) if Fi9 F29 ... is a sequence of closed sets such that 
0) Fkln...nFkm* 0 
for every finite system kl9 ..., km9 then 
(2) ΠΓ=Λ#0. 

It is also equivalent to the following condition (of Cantor). 
(ii) if Fl9F29 ... is a sequence of closed nonvoid sets such that 

(3) Fx ZDF2 ID... D F „ =>..., 

then condition (2) is fulfilled. 
P r o o f . Suppose (3) is true. Then Fki n ... n Fk^ = Fj Φ 0, 

where j is the largest among the indices kl9 ...,fcm. Therefore, 
if (i) is supposed to be true, condition (2) follows. Thus (i) implies 
(Ü). 

The implication (ii) => (i) follows directly from the formulas: 
F± nF2n... = F1n(F1 nF2)n... r\(F1 n...nFn)n... 

and 
Ft z>(Fx nF2)z> ... z>(Fi n ... O F B ) D . . , 
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LEMMA 1. For metric spaces, the condition of countable compact­
ness is equivalent to the following Bolzano-Weierstrass condition'. 

(iii) each sequence of points Pi,p2, ··· contains a convergent 
subsequence; i.e. there is a point p and a sequence of indices kx 

< k2 < ... such that 

(4) p = limpkn. 
rt->CO 

P r o o f . 1. Suppose that X is metric and countably compact. 
Therefore the condition (ii) of Cantor is fulfilled. Let ργ,ρ2, ··· 
be a sequence of points of X and put Pn = {p„,pn+i, ·..}· By 
(ii) there is a point p such that p ePn for each n. Consequently 
the ball K(p, \jri) has points in common with Pn and there exists 
an infinity of indices m > n such that \pm—p\ < 1/n. The defini­
tion of the sequence kt < k2 < ... can easily be derived. 

2. (iii) => (ii). Choose from each Fn a point p„, and let (4) be 
fulfilled. By (3) each Fn contains all points Pi9p29-~9 except 
a finite number, and hence p e Fn (since Fn is closed). This implies 
(2)· 

LEMMA 2. Every countably compact metric space is separable, 
and hence contains a countable open base (by Theorem 2 of Chapter 
XIV, § 2). 

Furthermore, for every number ε > 0, there exists a finite number 
of points Αε = {Ρί,ρ29 -..,Pk} (called an ε-net) such that 

(40 ρ(χ, Αε) < ε, 

i.e. such that every point x is at a distance less than ε from some 
point of the set AE. 

We define th^set Αε inductively. Let pt be an arbitrary point 
of our space. Let p2 be an arbitrary point such that \p1—p2\ ^ ε> 
provided that such a point p2 exists; if such a point does not exist, 
then we take Αε = {pi}. 

In general, pn is a point such that 

(5) \pn—Pm\ > £ for all m < n, 

provided that such a point pn exists; if such a point does not exist 
we take As = {Pu ...9pu^}. 
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The sequence pl9p2, ··· constructed in this manner must be 
finite; for in the contrary case, it should contain a convergent 
subsequence (by virtue of the compactness assumption), which 
however is impossible because it follows from condition (5) that 
no subsequence of pl9p2, ... is a Cauchy sequence, and hence it 
cannot be convergent. 

We have thus defined the set Αε. It remains to show that the 
space is separable. 

Let B = Ai v Av2 u ... u AUn u ... This set is countable. 
It is dense in the space because for every x and every n we have 
ρ(χ, Β) < g(jc, Aun) < \\n (by virtue of (4') and Theorem 2 of 
Chapter XII, § 4); this means that there exists a point b e B such 
that \x—b\ < \jn. And therefore x e B. 

THEOREM 1. Every countably compact metric space X is compact. 
Thus, for metric spaces, compactness and countable compactness 

are equivalent. 
Proof . Let {Gt} be an open cover of X. By Lemma 2, X con­

tains a countable base, and it follows (see Chapter XIV, § 1, 
Theorem 2) that A" is a Lindelöf space; consequently 

* = u r = ,<?,„. 
Applying the Borel condition we get 

X=Gtl u . . . vGtm, 

which completes the proof. 
THEOREM 2. Every compact metric space is complete. 
Proof . Let us assume that the sequence p^, p2, ... is a Cauchy 

sequence. We shall show that it is convergent. 
By assumption, for a given ε > 0, there exists a j such that for 

« > j w e have the inequality 

(6) \Pn~Pj\ < e-

Since the space is compact, we can select a subsequence from 
the sequence Pi,p2, ··. which satisfies condition (4). 

We shall prove that 

(7) \impn=p. 
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By virtue of (4) there exists an m >j such that 
(8) \Pkm~p\ < e. 

Since km^m >j9 we therefore have by (6): 

(9) \Pkm-p\ < B. 
Adding inequalities (6), (8) and (9) memberwise, we obtain 

(10) \Ρη~ρ\<1ε for n>j, 
which proves (7). 

THEOREM 3. Every compact metric space is bounded. 
Put ε = 1 in Lemma 2. It follows that δ(Χ) < δ(Αχ)+2. 
COROLLARY 1. For subsets of Euclidean spaces, compact sets arid 

closed bounded sets coincide. 
P r o o f . If Fis bounded, Fis contained in a (sufficiently large) 

cube, hence in a compact space. If F is supposed to be closed, F 
is compact (by Theorem 2 of § 2). 

Conversely, if A a Sn is compact, then A is bounded by The­
orem 3 and is closed by Theorem 1 of § 2. 

COROLLARY 2 (GENERALIZED WEIERSTRASS THEOREM). Every 
continuous real valued function f defined on a compact space X is 
bounded and attains its least upper and greatest lower bounds. 

P r o o f . The set/(Z) is, by virtue of Theorem 3 of § 2, a com­
pact subset of the set of real numbers and hence (cf. Corollary 1) 
it is a closed and bounded set. Since the set/(Z) is closed, the 
least upper bound m0 and the greatest lower bound m1 of the 
function / belong to f(X). Therefore, there exist an x0 such that 
w0 =/(*o) a n d an x1 such that m± = f(xi), which was to be 
proved. 

We introduce the concept of uniform continuity in a way similar 
to the way it is done in analysis. 

We say, namely, that the mapping / : X -> Y where X and Y 
are metric is uniformly continuous, if for every ε > 0 there exists 
δ > 0 (depending only on ε) such that the condition \x'—x"\ < δ 
implies the inequality \f(x')—f(x")\ < ε for arbitrary pairs of 
points x\ x" of the space X; we write this condition symbolically 
in the form 

(ii) Λ . ν * Λ * Λ*»{[1*'-*"1 < fl => [!/(*')-/(*")! < *]}· 
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Continuity in the usual sense follows from uniform continuity. 
The converse theorem is not true as shown by: 

y = l/x (0 < x < 1), y = ex (— oo < x < + oo). 

On the other hand, the following theorem is valid in compact 
spaces: 

THEOREM 4 (GENERALIZED HEINE THEOREM). Let f: X -> Y be 
continuous and X and Y metric. IfX is compact, f is uniformly con­
tinuous. 

P r o o f . Let us assume that / is not uniformly continuous. 
Hence there exists an ε > 0 such that for every δ > 0 there exists 
a pair of points x\ x" in the space X which satisfies the conditions 

(12) \x'-x"\ < δ and |/(*')-/(*")| > ε, 

i.e. 

(i3) ν * Λ Ö V * ' \ Λ " { [ Ι * ' - * Ί < fl [i/(*')-/(*'')i > *]}. 
From this it follows in particular for δ = \\n that there exists 

a pair of points x'n, x'n' such that* 

(14) K-*n\ < l//i, 

(15) \f(Xn)-f(Xn)\ > e. 

Since the space X is compact, we can select a convergent sub­
sequence x'k^x'ki' ··· from the sequence x[yxf

29... Let 

(16) limx£n = x. 
#i->oo 

It follows from conditions (14) and (16) that 
(17) l i m < = x. 

w-»oo 

Since / i s continuous, we deduce from (16) and (17) that 

lim/(4J = fix) and l i m / « ) = f(x\ 
w-*oo n->oo 

whence 
l i m | / « ) - / « ) | = 0 , 
Λ->00 

which is a contradiction of inequality (15). 
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R e m a r k . Theorem 4 can be derived from the following 
more general statement, in which we do not assume that X is 
metric. 

* THEOREM 4'. Let f: X -> Y be continuous, X compact and Y 
metric. Let ε > 0. Then there exists an open finite cover Gx, ..., Gn 

of X such that 

(17') dUiG,)]<e for i = 1,2, ...,*. 

P r o o f . Let Ky denote the open ball with centre y e Y and 
radius ε/2 (see Chapter IX, (10)). Obviously, the family of all Ky 

is an open cover of Y, and consequently (since / is continuous) 
the family of a l l / - 1 (Ky) is an open cover of A". Since X is compact, 
the last cover contains a finite cover / - 1 (Kyt), ...,/ -1(A^n) of X. 
It remains to put G, = f~~1(Ky.) for i = 1, ..., n. 

In order to derive Theorem 4 from Theorem 4', we denote by 
δ ( > 0) the Lebesgue coefficient of the system of sets X—Gu ..., 
X—Gn (see Theorem 7). Then the condition \x' — x"\ < δ implies 
that both points x' and x" belong to one of the sets Gi} and hence 
by (170, \f(x')-f(x")\ < e. 

* THEOREM 5 (on continuous convergence). A necessary and 
sufficient condition for a sequence of continuous mappings ft, f2, ... 
defined on a compact metric space X to be uniformly convergent to 
f is that the condition 

(18) limxn = x 
n->oo 

implies 

(19) \imfn(xn)=f(x). 
n->oo 

[We say that the sequence/ l 5 / 2 , ... is continuously convergent 
if condition (18) implies condition (19).] 

P r o o f . Necessity. Let us assume that the s e q u e n c e / ^ / ^ ··· 
is uniformly convergent to / . Let ε > 0. Hence, there exists a k 
such that 

(20) \Mx)-f(x)\ < e. 

for all x and for n > k. 
Let us assume (18) is satisfied. We must prove (19). 
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Applying (20), we have 

(21) \fn{Xn)-AXn)\ < B 
for n > k. 

Since the function/is continuous, being the limit of a uniformly 
convergent sequence of continuous functions (cf. Chapter XII, 
§ 3, Theorem 3), therefore by (18), we have 

(22) \f(Xn)-f(x)\ < e 
for sufficiently large n. 

From inequalities (21) and (22) we deduce for sufficiently large n 
\fn{*n)-f{x)\<2e, 

which proves that (19) is satisfied. 
Sufficiency. Let us assume that the sequence of continuous 

mappings /„ is continuously but not uniformly convergent to /. 
Hence 

V, Λ- V* V*{(^ >») [i/*(*)-/(*)i > *]}> 
i.e. for some ε > 0 and for every natural number n we can choose 
a point xn and an index kn in such a way that 
(23) kl<k2< ... <kn < ..., 

(24) \hn(xn)-Axn)\ >* for « = 1,2,... 
The space X being compact, we can choose a convergent sub­

sequence from the sequence xi9x2, ... Clearly, we can assume 
that the points xn are so chosen that the sequence xi9x29 ... is 
convergent. Now, let (18) be satisfied. We shall prove that 
(25) \imfkn(xn)=f(x). 

n->oo 

Let us construct the sequence x[, x2 ... in the following way: 
(26) x'm = xn for /:„_! < m < kn (where k0 = 0). 
Obviously 

limx^ = limx„ = x. 
rt!->00 Π-+00 

From this, by virtue of the continuous convergence of the 
sequence fx, f2, ..., we have 

\imfm(x'm)=f(x), 
m-»>oo 
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and hence 

(27) limfkn(x'kn)=f(x). 
Λ->00 

But since, by virtue of (26), x'kn = xn, (27) yields (25). 
Since the sequence {/m} is continuously convergent, we have 

limfm(x0) = f(x0) 
m->oo 

for fixed x0. Therefore, for every n we have 
limfm(xn)=f(xn), 

m-+oo 

whence we deduce that the inequality 

(28) \fmnM-f(xn)\ < \\n 
holds for some increasing sequence of indices 
(29) m1<m2< ... <mn< ... 

We showed above that conditions (18) and (23) imply (25). 
Therefore, taking (28) into account, we have 
(30) limfmn(xn)=f(x). 

n-+oo 

Formulas (25) and (30) yield 

Hm | fkn(Xn)-fmn(Xn)\ = 0 , 

n-*oo 

whence by virtue of (28) we have 
lim\fkn(xn)-Axn)\=0; 
n-+oo 

'but this contradicts inequality (24). 
This also concludes the proof of the theorem. 
THEOREM 6. In a compact metric space X the family of sets 

which are simultaneously closed and open is countable. 
Proo f . By Lemma 2, X contains a countable open base 

Gl9 G2, ... Thus every open H is the union of a number of sets 
Gn; if moreover X is compact, this number may be assumed to 
be finite. Thus to every open-closed set H we can assign a finite 
system kl9k2, ..., kn in such a way that 

H=GklKj Gk2u . . .u Gkn. 
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To distinct sets H there obviously correspond distinct systems 
of natural numbers. Hence, there are at most as many open-closed 
sets as there are finite systems of natural numbers, and the number 
of the latter is countable (see Chapter V, § 3, Theorem 5). 

THEOREM 7. Let {Ft} be a family of closed subsets of a compact 
metric space such that DtFt = 0 . Then there is ε>0 (called 
the Lebesgue coefficient of the system {Ft}) such that every set of 
diameter < ε is disjoint from at least one of the sets Ft. 

P r o o f . Note that (since the space is compact) we have Ftl n 
n ... n Ftn = 0 for an appropriate system tl9 ..., tn of indices. 
Put 

f(*i, ··.,*„) = maxlxi-xj l where xkeFtk9 

and denote by ε its lower bound (observe t h a t / : Ftix ... x F i n 

-+ $ is continuous). As Ftlc\ ... n Ftn = 0 , we have ε > 0. 
Suppose that A n Ft Φ 0 for each t e T. Put xtk e A n Ftk. 

Then δ(Α) > δ(χΐ9 ..., xn) > ε. 
The following statement is dual to Theorem 7. 
COROLLARY. Let C be an open cover of the compact metric 

space X. Then there is ε > 0 such that every cover of X composed 
of sets of diameter < ε is a refinement of C. 

R e m a r k s . In many cases the assumption that the compact 
space is metric leads to simpler proofs. Such is the case of Theorems 
1-3 of § 2. Here we shall give a simple proof of the invariance of 
compactness under finite or countable cartesian multiplication. 

1. The product XX Y of two compact metric spaces is compact. 
P r o o f . Let zn = (xn9 yn} eXx Y, i.e. xneX9yneY. We 

must show that the sequence z1, z2, ... contains a convergent 
subsequence. 

We can choose a convergent subsequence from the sequence 
xt, x2, ... since the space X is compact. Hence, let 

(31) limxfcn = x. 

Similarly, since the space Y is compact we can select a conver­
gent subsequence from the sequence j ^ , j>*2, ... Let 

(32) limyrk=y. 



206 SET THEORY AND TOPOLOGY 

By (31) we have 

(33) limxrk = x. 
n-*oo 

Because of (32) and (33) we get 

lim<xrfcn, yrk > = <x, y>, i.e. limzrk = z. 
/i-*oo " " η-+οο η 

We have thus selected a convergent subsequence from the 
sequence zl9 z2, ...; this completes the proof. 

In an analogous manner it can be proved that the cartesian 
product of an arbitrary finite number of compact spaces is a com­
pact space. 

2. If the metric spaces Xl9X29... are compact, then the space 
XiXX2X ...is also compact. 

P r o o f . Let pi9p29 ... be a sequence of points belonging to 
the space XxxX2X ... Hence 

Pn = (* ! ,* ; , . . . , *? , . . . ) , where x%eXm for n9m = 1,2,... 

Since the space X1 is compact, there exists a sequence 

(34) l<k1<k2< ... 

such that the sequence xll9 x*2, ... is convergent. Let 

(35) limxin = x1. 
/i-»oo 

Similarly, there exists a sequence 

(36) 1 <j\ <j2 < ... 

such that the sequence x\. , x\ , ... is convergent. Let 

(37) limxj. = x2. 
/i->oo ^ 

Continuing this process, we define an infinite sequence x1, x2, 
x3, ... Let us set 

q= (x\x2,x3,...). 

Hence we have qeXiXX2X ... We shall prove that q is the 
limit of the sequence 

(38) PiiPk^Pkj^ ··· 
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In fact, making use of formulas (34) and (36) we verify that 
1 <kt <kjl <kj^ < ..., 

and therefore the sequence (38) is a subsequence of the sequence 
Ρι>Ρι>Ρζ> · · · 

The sequence 

is therefore a subsequence of the sequence x\l9 x\2, x{3, ...; 
hence, by virtue of (35) it is convergent to xl. Similarly the sequence 

r 2 Y2 

•^kj 5 •A'kj. > 
1 Ί 

converges to x2 by virtue of (37). 
In general, the sequence 

y.Tl y.1t y l Λ 1 9 ΛΛ ι 9 •A'kj 9 · · · 

converges to xn. 
Thus, we have proved that the sequence (38), which forms 

a subsequence of the sequence pl9p29 ···, is convergent to q. 
This means that the space ΧχΧΧ2Χ ... is compact. 

§ 6· The topology of uniform convergence of Yx 

Let X be compact and Y metric. The set Yx of all continuous 
mappings f: X -> Y can be considered as a metric space if the 
distance between its elements is defined by formula (6) of Chapter 
IX (the topology induced by the distance thus defined is called 
topology of uniform convergence). 

We refer here to the fact that the mappings / are bounded 
(because of the compactness of X, comp. § 5, Theorem 3) and 
hence Yx = Φ(Χ, Υ) (the latter symbol denoting the space of 
continuous bounded mappings / : X -► Y). 

This identity implies the following theorem: 
THEOREM 1. IfXis compact and Y complete, then Yx is complete. 
Because according to the Auxiliary Theorem of Chapter XV, 

§ 4, if Y is complete, so is Φ(Χ, Υ). 
R e m a r k s . In particular, the space S^ is complete; this 

space is not compact, as is shown by the example fn(x) = xn. 
This same remark applies to the space J . 
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Theorem 1 allows us to apply the Baire theorem of Chapter XV, 
§ 3, to function spaces (in the case where the space X is compact 
and the space Y is complete) for the purpose of proving existence 
theorems. 

As an example of the numerous applications to analysis let 
us quote the following theorem: 

BANACH THEOREM. In the space S^ the set of functions which 
possess a derivative in one point at least forms a boundary set. 

Banach theorem is a remarkable sharpening of Weierstrass 
theorem on the existence of continuous functions which do not 
possess a derivative at any point. 

THEOREM 2. Let X be compact metric and Y metric. Then the 
set of all one-to-one mappings f: X -+ Y (i.e. the set of homeo-
morphisms) is a Gö-set in the space Yx. 

P r o o f . Let Γ denote the set of mappings / which are not 
one-to-one. Thus feT means that there are x± φ χ2 such that 
/ (*i) =f(x2)- L e t / e Γη mean that there are x1 and x2 such that 
l*i-*21 > 1/« a n d / f o ) = f(x2). 

Hence Γ = Γχ u Γ2 u ... Obviously the limit of a uniformly 
convergent sequence of members of Γη belongs to Γη; and hence 
Γη is closed in Yx. This completes the proof. 

§ 7. The compact-open topology of 7* 

Let X and Y be arbitrary topological spaces. We introduce 
in Yx topology, called compact-open, in the following way. 

D e f i n i t i o n . For C a X and H a Y, put 

A C , H) = {/: / (C) cz H}9 where fe Yx. 

The compact-op^n topology of Yx is defined by assuming 
that the totality of sets r(C, H), where C is compact and H open, 
is an open subbase of Yx. 

THEOREM I. If X is compact and Y is metric, then the uniform 
convergence topology of Yx coincides with its compact-open topology. 

P r o o f . 1. Let G be open in the compact-open topology of 
Yx. We must show that it is open in the uniform convergence 
topology. Without loss of generality we may assume that G 
= r(C, H). 
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Let /o e T(C, H). We have to define ε > 0 such that 

(1) l / - /ol < e implies fe T(C, H). 
Put 

(2) ε = Ίηΐρ[/0(χ), ^—#] where x e C . 

Since f0(x) e H for each x e C9 then ρ[/ο(*)> ^—Η] > 0 (comp. 
Chapter XII, § 4), and since C is compact and ρ a continuous 
function of x (ibid., Theorem 5), ρ attains its lower bound on 
C (by the Corollary of § 5). Thus ε > 0. 

Let \f—fo\ < e. Suppose, contrary to (1), that /φ T(C, H), 
i.e. that f(x0) e Y—H for some x0 e C Hence 

(?[/o(*o), y - Ä ] < l/o(^o)-/(^o)l < e. 

But this contradicts (2). 
2. We must show that each open set in the uniform convergence 

topology is open in the compact-open topology. Clearly, it suffices 
to prove that, for each f0 e Yx and ε > 0, there are two finite 
systems Ci, ..., Cn and Hi9 ..., Hn (where Cf c X is compact 
and Hi <= F is open) such that 

(3) /o G r(Ci9 H,) n ... n r(Cni Hn) a K(f0, ε). 

Since X is compact and f0 continuous, there is a finite open 
cover X= G0 u ... u (?„ such that d[f0(Gi)] < ε/3 and Gf φ 0 
for ί = 1, ..., «. Choose x{ e Gf and put 

(4) Q = G, and tf, = ^ [ / 0 ( ^ ) , e/2] 

= {y: \y-fo(xd\ < e/2}. 

Now, since d[f0(Ci)] < ε/2, we have for x e Ci the inequality 

l/o(*)-/o(*i)l < £ /2 , 
and hence 

fo(x)eHi9 i.e. / o e / X C f f , ) . 

This is true for each 1 = 1, . . . , « . Thus the proof of the first 
part of (3) is completed. 

To prove the second part of (3), p u t / e r(Ci9 Hi). Then for 
each A; e Cj we have f(x) e Hi9 and by (4), 

\f(x)-fo(xd\ < e/2. 



210 SET THEORY AND TOPOLOGY 

Since <5[/o(C0] < e/2, it follows that 

\Ax)~fo(x)\<\f(x)-Mxd\ + \fo(xd-fo(x)\ < B. 
Therefore fe K(f0, ε). 
R e m a r k . It follows from Theorem 1 that the uniform 

convergence topology for X compact and Y metric is a topo-
logical invariant (it does not depend upon the metric of F); for 
^compact metric this follows also from Theorem 5 of § 5. 

THEOREM 2. Let X be a compact ^2space and Y arbitrary. 
Given a continuous f: X -> Y, put φ(/, x) = f(x). Then the map­
ping φ: YxxX -> F is continuous. 

P r o o f . Let H c= F be open. We have to show that the set 
r1(H)={<f9xy:Ax)eH} 

is open in YxxX. In other words, that for each/0(*o) e H there 
is Q open in YxxX such that 

(5) < / o , * o > e ß 
and 
(6) Q cz <p~i(H), i.e. [</, x) e Q] => [f(x) e H]. 

Since f0 is continuous and X regular (cf. § 2, Theorem 4), there 
is G open in X such that 

x0eG and f0(G) c H, i.e. f0er(G,H). 
Put 

(7) Q = l\G,H)xG. 
It follows that Q is open in YxxX and that formula (5) is 

fulfilled. 
Formula (6) is also true because the condition (/, x) e Q means 

(by (7)) that /(G) cz H and x GG, hence f(x) e H. 
R e m a r k . Instead of assuming that the compact space X is 

a «^Vspace one could assume that F is regular. The proof would 
be similar. 

§ 8. The Cantor discontinuum 
The Cantor discontinuum is the set # of all numbers t of the 

form 
(1) t = tl/3+t2l9+...+tn!3n+..., 
where tn assumes one of the values 0 or 2. 
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They are therefore numbers of the interval [0,1] which can be 
written in the ternary system of calculation without using the 
digit 1. 

For example, 1/3 belongs to # because 
1/3 = 0/3+2/9+2/27+ ... +2/3"+ ... - (0.0222 ...)3, 

but 1/2 does not belong to #. 
We can also define the set # geometrically as follows. 
Let us divide the closed interval [0, 1] into 3 equal parts and 

let us remove the middle open interval. We divide the remaining 
two intervals (0,1/3) and (2/3,1) into three equal parts and 
remove their (open) middle parts. Continuing in this way we 
obtain an infinite sequence of deleted intervals 

(1/3, 2/3), (1/9, 2/9), (7/9, 8/9), (1/27, 2/27), ... 

Deleting from the interval [0, 1] the union of the removed 
intervals we obtain the set # which was defined previously 
arithmetically. 

FIG. 7 

It is therefore a closed set and—as is easy to see—it is dense 
in itself (and hence perfect), and also a boundary set in the interval 
[0, 1] (it does not contain any interval). 

Next, let us note that every number of the set %> possesses 
only one development of the form (1), where tn is either 0 or 2 
(without this last assumption this uniqueness would not hold). 
It follows easily that a necessary and sufficient condition for the 
sequence of numbers of the Cantor set i(1), t{2\ . . . ,i ( r t ) , ... to 
converge to t, is that the kth digits in the development of these 
numbers converge to the kth digit in the development of the 
number t (for k = 1,2, ...), i.e. 

(2) (ί = 1ίπιί«) = Λ*(ί* = Μπιίί">). 
B-*00 W->00 

This means that the following theorem holds (cf. Chapter IX, 
§ 6, Theorem 2): 



212 SET THEORY AND TOPOLOGY 

THEOREM 1. The Cantor discontinuum is homeomorphic to the 
infinite power of the set consisting of two elements: 

^t={o,2}x{o,2}x{o,2}x... 

Hence, we may identify the points of the Cantor discontinuum 
with sequences of zeros and twos; in other words, we identify 
a number belonging to ^ with the sequence of its digits in the 
ternary expansion (of type (1)). 

We deduce from this the following theorem: 
THEOREM 2. <$2 = #. 

top 

In fact, every point p of the set #2 can be represented in the 
form p = <Λ;, y} where x and y are sequences of zeros and twos: 

x= (x1,x2,...) and y = (yl9y29 )· 

From these two sequences we form one: xt, y±, x2, y2, · · · 
and we denote this sequence by f(p). 

It is easy to verify that / is a homeomorphic transformation 
of the set #2 onto the set/(^2) = V. 

We could prove similarly that <βη == # for arbitrary n. More­
over, the following theorem holds: 

THEOREM 3. WxtfxVx... = «\ 
The points p of the set #X#X ... are sequences of points 

belonging to # : 

(3) Ρ=[ρ™,ρ<2\...,ρ™,...], p^eV. 

In turn, p{n) being a point of the Cantor set, can be considered 
as a sequence of zeros and twos: 

Ρ{Η) = [ΑΗ\ιΚ\...,ρφ,...]-

The double sequence {p^}, where n = 1,2, . . . andm= 1,2,..., 
can, by a known method (cf. Chapter V, § 3, (13) and (14)), be 
transformed into a single sequence 

Αι\ήι\ρ^,ήι\ρψ,Ρ?\.: 
Denoting this last sequence by /(/?), we obtain—as is easily 

proved—a homeomorphism mapping #X#X ... onto <%. 
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R e m a r k . Let us consider the (closed) "non-deleted" intervals 
which appear in the construction of the Cantor discontinuum, i.e. 

(0,1/3), (2/3,1), 
(0,1/9), (2/9, 1/3), (2/3, 7/9), (8/9,1), 

The intersections of these intervals with the set # we denote 
successively by P 1 , P 2 , P 3 , . . . The following theorem holds: 

THEOREM 4. The sets Pl9P29... are open-closed in the space 
# and form a base of the space. Furthermore 

lim<5(P„) = 0. 
/i->oo 

The proof that the sets Pn are open-closed does not offer any 
difficulty. In order to prove that these sets form a base of the 
space #, it suffices to note that the intervals of the first row have 
length 1/3, those of the second 1/9, of the nth 1/3"; furthermore 
the intervals of each row form a covering of the set #. 

§ 9. Continuous mappings of the Cantor discontinuum 
THEOREM 1. The interval J is a continuous image of<6. 
P r o o f . We define a so-called step function which maps the 

Cantor discontinuum onto the interval [0,1]. Namely, the number 
t Ε%> being represented in the form (1), we set 

(4) 9,(0 = i ( ' i /2+ ' 2 /4+ ... +φ'+ ...). 

FIG. 8 
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It is easy to verify that the function φ has the same value at 
both endpoints of each deleted interval; we take this value as 
a constant value of the function / in this interval; otherwise, 
i.e. for t e Ή, we set f(t) = φ(ί). Figure 8 is the graph of this 
"step" function. 

THEOREM 2. The Hubert cube 2tf is a continuous image of <β. 
P r o o f . Since, by virtue of Theorem 3, § 8, the set # x ' # x 

X ^ X ... is a continuous image of the set # , it suffices to prove 
that the space « # = / χ / χ / Χ . . . is a continuous image of the 
space ^ X ^ X ^ X ... Thus, if we represent the point p of this 
last space in the form (3) we set 

(5) ÄP) = [φ(ρ(1)), ?(/>(2)), ..., <p(pw), . . . ] , 

where φ is the step function defined by formula (4). 
The function / is continuous, as can easily be seen (cf. Chapter 

XIII, § 5, Theorem 2). Its values are sequences of numbers belong­
ing to the interval [0, 1], i.e. they are points of the space Jf. 
Every point x = (x1, x2, ..., x„, ...) of this space is a value of 
the function/, for, by virtue of Theorem 1, for every n there exists 
a point p^n) e <% such that xn = <p(p{n))', hence it suffices to define 
p by formula (3) in order to obtain x =f(p). 

THEOREM 3. Every compact metric space is the continuous image 
of some closed subset of^. 

In fact, by virtue of the Urysohn theorem (Chapter XIV, § 4) 
each compact metric space X can be regarded as a subset F of the 
Hubert cube 2tf. Here, F= F because the space X is compact 
(cf. Theorem 1, § 2). 

Let / be a function which maps # continuously onto the space 
JP. Let A ==f-1(F). 

Because of the continuity of the function / , the set A is closed. 
At the same time (cf. Chapter IV, § 4, (18)): f(A) ^ff^iF) = F. 

*R e m a r k. Theorem 3 can be sharpened as follows. 
THEOREM 4. Every non-empty compact metric space is a con­

tinuous image of <€. 
Because of Theorem 3 it suffices, for this purpose, to prove 

the following lemma: 
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LEMMA. Every non-empty closed subset F of the Cantor discon-
tinuum %> is a continuous image of%>. 

P r o o f . Since the sequence Ρχ, P2, .. · forms a base of the 
space # (see Theorem 4, § 8), the open set #—F is the union 
of a certain number of terms of this sequence. Hence, let 

(6) %-F=GivG2v ..., 

where the sets G„ belong to the sequence Pl9P29 ... Since we have 
either Pi n Pj = 0 or Pj c Pt for / < j9 we can assume that 
the sets Gn are disjoint (for we can omit terms in the series (6) 
which are contained in the earlier terms). 

We denote by pn the point of the set F which lies nearest the 
set Gn, i.e. the point in which the function ρ(χ, Gn) defined on 
the set F attains its greatest lower bound (cf. Chapter XII, § 4, 
Theorem 5 and Corollary 2 of § 5); if there is more than one 
such point, then we denote by pn any one of them. 

We define the function / as the retraction of the set <& to F, 
namely: 

{ x for xeF, 

Pn for xeGn. 

Hence we have f(%>) = F. We must prove that the function / 
is continuous. 

The sets Gn being open, the function/is obviously continuous 
on their union. It remains to prove that if 

(7) \\mxk = x, where xk e Cß—F and x e F, 
k-*oo 

then 

(8) lim/fr*) ==/(*), i.e. limf(xk) = x. 
&->oo A:->oo 

We denote by n(k) an index such that 

(9) xkeGn(k) . 
Since to a given Gn there can belong only a finite number of 

points of the sequence xl9x29 · · · (for x φ Gn) and since (cf. 
Theorem 4, § 8) we have 

limδ(Ρη) = 0, and hence limd(Gn) - 0, 
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we deduce that 

(10) limi(<?,(»)) = 0. 
n-*-oo 

Let qn denote the point of the (closed) set Gn lying nearest 
the point pn. Hence we have by virtue of the definition of the 
points pn and qn 

\Pn~qn\ = Q<J>n> G„) < ρ(χ, (/„), 

and therefore 

\Pn(k)—qn(k)\ < Q(X, GB(*)) < \x—Xk\ 

according to (9); whence 

\Pn{k)— Xk\ < \Pn(k)— qn{k)\ + \Qn{k)— *k\ < l * ~ * k \ + <KGw(fc)). 

And therefore by virtue of (7) and (10) we have 

(11) lim/7n(fc) = x. 
k-+oo 

At the same time, by virtue of the definition of the function 
/ and by the formula (9) we have 

(12) f(xk)=PHk), 

and hence (8). 

Exercises 

1. Prove the following theorem: 
If X is a completely regular space, A is a compact subset and U is a neigh­

bourhood of A, then there is a continuous function f: X-+*f such that / is 
1 on A and 0 on X— U. 

Hint: For each x in A consider a function g which is 1 at x and 0 on X— U. 
Put h(y) = min [2g(y), 1] and construct a finite family h0,..., hn of conti­
nuous functions on X to */ such that 4̂ c U? = o {Äf1 (1)} and each Ä,· is 0 
onX-U. 

2. Prove the following theorem (of Wallace): 
If Xand Fare topological spaces, A and i? are compact subsets of Xand Y 

respectively, and W is a neighbourhood of ^ x J? in the product space J x y, 
then there are neighbourhoods U of A and K of B such that UxV <=■ W. 

3. Let Z be the square J2 linearly ordered by the relation: 

[(a, b) -< (c, d)\ ΞΞ [(a < c) or (a = c and 6 < </)]. 



XVI. COMPACT SPACES 217 

Let the topology for X be generated by the subbase S which consists of sets 
of the form: 

{xeX: *-</>} or {x e X: p -< x} for some p in X. 

Prove that A" is a compact ^-space and that it satisfies the first counta-
bility axiom, but is not separable. 

4. Prove that a &Ί -space X is countably compact iff the derived set of 
each infinite subset of X is nonvoid. 

5. Prove that if f: X-*- Y is continuous and the sequence Av z> A2 3 ... 
is a decreasing sequence of countably compact subsets of the space X, then 

/(n~=^»)=n~=i/(^). 
6. Let / : X -*· Y be continuous and X compact and X and Y ^-spaces. 

Define the equivalence relation ρ as follows 

(XiQXi) s (/(*i) = / f e ) ) , 

and consider in the quotient-space ΧΙρ (cf. Exercise 9 of Chapter V) the topology 
defined by the condition: a set R <= X\ρ is open iff the union of its members 
is open (in X). Prove that Χ/ρ = Y. 

top 
7. Let / be a mapping defined on a «^-space X satisfying the first axiom 

of countability (comp. Chapter XIV, Exercise 13). Prove that if for every 
compact subset F c= X the partial function f\F is continuous, then / is conti­
nuous (on X). 

8. Let X, Y and T be metric spaces. Prove that 
Γ. YX^T = Yxx YT if X u T is compact and JT and Γ are two disjoint 

closed sets; 
2°. (XxY)T=XTxYT if Γ is compact; 

top 
3°. (Yxf = Γ * χ Γ if * and T are compact, 

top 
Hint: Proceed as in the proofs of formulas (11)—(13), Chapter VI, § 2. 

In particular, using formula (17), we have 

feYXxT = ge(Yxf. 
9. Prove that if the space under consideration in Exercise 7, of Chapter 

XII is compact, then the implication can be replaced by equivalence. 
10. Let / : X -> Y be continuous and Y a compact ^i-space. Prove that 

if the set {<*,>>>: y =f(x)} is closed (in XxY), then / i s continuous (the 
converse theorem is true without the assumption of compactness of Y, comp. 
Chapter XIII, § 4, Theorem 2). 

11. Deduce from Theorem 1 of § 3 (under the same assumption on Xand Y), 
that if <p(x, y) is a propositional function of two variables such that the set 
{<*,.V>: <p(x*y)} is closed, then so is the set {x: \Jy (p(x,y)}; if the set 
{<*,J>>: 9>(x,y)} is open, then so is the set {x\ /\y<p(x,y)}. 
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12. Let Γ, X and Y be compact ^-spaces and / : T->X and g: T-+Y 
continuous. Let X —f(T) and suppose that g is constant on the set /_ 1(*) 
for every xeX. Let h(x) = gf'^x) for xeX. 

Prove that the following diagram is commutative and that h is continuous 

X 
f/ I 

g \ 4, 
y 

Hint: Show that 

( , = h{x)) = V r ( ^ = *(0) (* = / (0) 
and use Exercises 10 and 11. 

13. Let 9?iW, φ2(χ), ··· be a sequence of propositional functions defined 
on a countably compact space X Show that if φη(χ) => φη-ι(χ) and if the sets 
{x: φη(χ)} are closed, then 

/\n\/x<Pn(x) = \ΖχΛηψη(.Χ)' 

Similarly: the preceding equivalence holds if <pn(x)=> φη+1(χ) and the sets 
{x: <pn(x)} are open. 

14. A metric space is compact iff it is complete and totally bounded (comp. 
Chapter XIT, Exercise 8). 

15. Prove the following generalized Cantor condition: if the subsets 
F\, F29... of a compact metric space are closed and non-empty, then (comp. 
Chapter X, Exercise 8) 

L s F „ ^ 0 . 
n-±oo 

16. Prove that for each metric non-compact space there is a real-valued 
bounded continuous function whose least upper bound is not attained. 

Hint: Use Tietze Extension Theorem. 
17. Prove that a compact metric space cannot be isometric to a proper 

subset of itself. 
18. Prove: A necessary and sufficient condition for the function / defined 

on a metric space X (compact or not) to be uniformly continuous, is that 
the condition 

lim \xn-x'n\ = 0 
«->oo 

implies the condition 
lim|/(xn)-/(jci)l=0 

for every pair of sequences * I , J C 2 , . . . and χ[,χ'2,... of points belonging 
to the space X. 

19. Theorem A' of § 5 gives rise to the concept of equicontinuity of a family 
of continuous mappings. We shall restrict ourselves to the case of X compact 
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and Y metric.t Then we call a set Φ <= Y equicontinuous if for each ε > 0 
there is an open cover Gi , . . . , G„ of X such that 

δ [f(Gi)] < ε for each i = 1, . . . , n and each fe Φ. 
Show that 
(i) If Φχ and Φ2 are equicontinuous, then so is Φι υ Φ2. In particular, 

each finite Φ is equicontinuous. 
(ii) If Φ is countable, Φ = (fi9f2, ···)» and lim/„(*) = / (*) for each x9 

then Φ is equicontinuous iff the convergence /„ -> / i s uniform. 
(iii) (Generalized Ascoli-Arzelä Theorem). If Φ is closed and Y compact, 

then Φ is equicontinuous iff Φ is compact. 
Hint: Suppose that Φ is equicontinuous and let fi9f29 ··. belong to Φ. 

Choose pi e G,· for each / < n and put 
P = <Pu '--,Pn>eXn and gk(p) = <fk(pi)9 ...,/*(/>„)> ε IX 

Since Y" is compact metric, there exist k± < k2 < ·.. such that gki(p), ^faGO, · · 
is convergent. It remains to show that the sequence fk19fk2, ··· is uniformly 
convergent. 

Conversely, suppose that Φ is compact. Let / i , . . . , fm be an ε-net in Φ 
(see § 5, Lemma 2) and let, according to (i), Gl9..., Gn be an open cover 
of X such that ö[fj(Gi)] < ε/3 for each i < n and j < m. 

20. Prove the following Banach Fixed Point Theorem (which holds in 
an arbitrary complete space): 

If / is a continuous mapping of the complete space X into itself, and if 
for every pair of points xL, x2 e X the inequality 

\f{xi)-ftx2)\ < k\Xl-x2\ 
holds, where & is a constant satisfying the condition 0 < k < 1, then there 
exists exactly one point x0eX such that f(x0) = x0. 

Hint: Construct inductively a sequence of points xl9x2, ...in the following 
way: let xx be an arbitrary point of the space X and let xn =/(xn_i). Show 
that a sequence constructed this way is a Cauchy sequence, and then, setting 
*o = limx,,, prove that /"(*0) = *o-

n~>oo 

21. Prove using Banach theorem the following theorem on the existence 
of a solution of a differential equation: 

Given the differential equation 
(0 dy\dx=f{x9y)9 

where the function / is continuous in some plane region G and satisfies in 
this region the Lipschitz condition with respect to y9 i.e. there exists a constant 
M such that the inequality 

(ii) \f(x, yi)~f(x,y2)\ < M\yi-y2\ 

t For a more general approach, see J. L. Kelley, General Topology, 
Chapter 7, p. 234; J. D. Weston, A Generalisation of Ascoli's Theorem, Mathe-
matika 6 (1959), pp. 19-24; and H. Poppe, Stetige Konvergenz und der Satz 
von Ascoli und Arzelä, Proceedings Japan Acad. 44 (1968), where further 
references are given. 



220 SET THEORY AND TOPOLOGY 

holds for every pair of points <*, yL>, <X, y2> e G. Furthermore, let <JC0, JO> 
e G be a given point. Then there exists a number ό > 0 such that in the interval 
x0—δ, χ0+δ there exists exactly one function g satisfying equation (i), i.e. 
(iii) dg(x)\dx = f(x, g(x)), 
and satisfying the initial condition 
(iv) ^ο=£(*ο). 

Hint: Instead of the differential equation (i) we consider the equivalent 
integral equation 

X 

(v) y =y0+ ff(x,y)dx. 
XO 

To each element g of the space of continuous functions $ , where 
J denotes the closed interval XQ — d, xo -f<5, we assign the function hQ of 
the variable x defined as follows: 

X 

(vi) V * ) s * + / / ( / , *<0)Λ. 
*o 

Making use of (ii) we prove that for sufficiently small δ > 0 the inequality 
\hgi—hg2\< k\g1—g2\f where 0<k<l, 

holds. 
Then applying Banach theorem (Exercise 20) to the space S^ we deduce 

that there exists exactly one function g such that hQ = g; it is a solution of 
equation (v), and consequently also of equation (i), and satisfies condition (iv). 

22. Theorem on implicit definitions. Let g be a continuous function of two 
variables x and y with a continuous partial derivative with respect to y in 
some square with centre <x0, >Ό>; let, also, 

£(*o, yo) = 0 and g'y(xQ, y0) φ 0. 
Then there exists one and only one function /, continuous in a neighbour­

hood of the point x0i such that 
g(x,f(x)) = 0 and f(x0) = y0; 

in other words, the curve {<ΛΓ, y}: g(x, y) = 0} is locally, at the point <*0, ô>> 
the graph of a function. 

Reduce the proof by means of the substitution 
h(x, y) = y-yo-g(x, y)lg'y(xo> yo) 

to the following theorem: 
Let h be a function of the variables x and y9 which is continuous and has 

a continuous partial derivative with respect to y in a square K with centre 
<*ο,>Ό> and with side 2d; let, also, 

h(x0,y0) = 0 = hy(x0, j>o). 
Then, there exists one and only one function / continuous in a neighbour­

hood of the point x0t such that 
(νϋ) f(x) = h(x,f(x)) +y0 and f(x0) = y0. 
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S k e t c h of t h e p r o o f . We can assume that the number d is so 
small that 

\hy(x,y)\<± for <x,y>eK. 
Let I1 denote a closed interval with centre x0 so small that 

\h{xy yo)\ < \d for x e It. 
Let I2 = {y: \y-y0\ <d}. 

Let us assign to each function feh1, satisfying the condition f(x0) = y0, 
the function Ff of the variable x defined as follows: 

Ff(x) = y0+Kx,f(x)) for x e h. 
We obtain 

\ift(x)-F/*(x)\ = K*,/ i (*))-*(*. /aM)l 
= 1/1W-/2WI · IA;C*. ZX)\ < ii/i(jc)-/2wi, 

where Mx) < zx <f2(x). 
We deduce from this that 

Ify-JfcKil/i-AI· 
At the same time Ff e Ii1, which we prove easily by using the inequality 

\h(x, y)\ < \h(x, y)-h(x, y0)\ + \h(x, y0)\. Finally, F/(x0) = y0. 
Hence we may apply Banach theorem. It follows that there exists a function 

/such that Ff —f9 i.e. satisfying conditions (vii). 
23. Let Xand Ybe metric spaces. In the set Yx of all continuous/: X-+ Y 

introduce the topology as follows: 
(*) for Φ c γχ let ( / e Φ) s [(/|F)e 0|Ffor every compact F c j ] , 
where Φ|.Ρ denotes the set of all mappings of the form f\F, fe Φ, and the 
topology in the space YF is defined as in § 6. 

Prove that: 
1°. If X is a compact space, then the topology introduced by the formula (*) 

coincides with the topology considered in § 6. 
2°. The topology introduced by (*) is compact-open. 
3°. If A'is an open subset of a compact space, then/ belongs to Φ iff there 

exists in Φ a sequence flf f2, ··. uniformly converging t o / o n every compact 
subset of X. 

4°. The space Yx
} with the topology defined by (*) is completely regular. 

5°. Let T denote the family of all compact subsets of X considered as 
a directed family with respect to the relation F0

 c Ft; let Ψ be the function 
oHhe variable Fe T defined by the condition Ψψ = YF; let Γ be the function 
of two variables F0 and Fi defined by the condition FFoFl(/) = / |F 0 for 
fe YFi and F0 <= ^ . 

Prove that {T, Ψ9 Γ} is an inverse system (comp. Chapter VII, § 5). 
6°. To every fe YX assign the element Ψφ e ITFeT y F d e f i n e d by t h e 

condition: 
^F(f) =*f\F; 

prove that Ψ: Yx ->Lim {T9 Ψ, Γ}, i.e. V'(f)e Lim {T, Ψ, Γ} and that 

Ψ is a homeomorphism. 
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7°. Prove that the function g defined by the condition g(f,x) = f(x) 
is continuous on YxxX. More generally: condition (*) implies the compact-
open topology of Yx. 

24. Let {T, F,g} be an inverse system, let Ft be compact «^-spaces and 
gt ott continuous. Prove that the limit of this system is a compact space. 

25. Let X be a compact metric space and let 2X denote the family of 
all closed subsets of X. Prove that if the distance in 2X is defined as in Exercise 
7 of Chapter XII, then 2X is compact (Hausdorff topology). 

26. Let X be a topological space and 2X be the family of all closed subsets 
of X. 

Let the sets of the form 2G n 2X and those of the form 2*—2*~G (where 
G is open) be taken as a subbase of the topology of 2X (called Vietoris topology). 

Prove that: 
(i) A base of the space 2X is composed of sets of the form: 

B(U0,Ui9...9Un) = {Ae2x: A <= U0 and A n Ui Φ 0 for I = 1 , . . . , H } , 
where U0,..., Un are open subsets of X. 

(ii) If Zis &Ί then so is 2X\ Xis regular iff 2X is a ^Vspace. 
(iii) If A" is a compact metric space, then Vietoris topology coincides 

with Hausdorff topology. 
27. Prove the following Dini theorem. Let X be compact, /„ e $X and 

fn <fn+i for n = 1, 2 , . . . If \imfn(x) = fix) for each x and / i s continuous 
then the convergence is uniform. 

Hint: Suppose that the convergence is not uniform. Then there is ε > 0 
such that for each n = 1, 2 , . . . there are k > n and *0 such that f(x0) —fk(x0) 
> ε. Consider the set Fn = {*: f(x)—fn(x) > e) and apply the Cantor con­
dition (§ 5, (ii)) to the sequence Fl9F2,... 

28. A space is called locally compact if for each point x there is an open 
G such that xe G and G is compact. 

Prove the Alexandrov One-point Compactification Theorem: Each locally 
compact ^1-space Xis homeomorphic to a subset X0 of a compact ^-space 
Xi such that Xx —X0 consists of a single point; i.e. by adjoining a single point 
to a locally compact space (like the point "at infinity" if X = S2) one 
obtains a compact space. 

Hint: Let p be a point not belonging to X. Put Xt = X \j {p} and define 
the topology in Xi by taking as members of its open base the open subsets of 
X and the sets of the form {p} KJ (X—C) where C ̂  X is compact. 



CHAPTER XVII 

CONNECTED SPACES 

§ 1. Definition. Separated sets 

A topological space X is said to be connected if it is not the 
union of two disjoint, closed and non-empty sets. 

In other words, if the conditions 

(1) X = A u B, A = A, B = B, ΑΦ 0φ B 
imply 
(2) A n B Φ 0 . 

EXAMPLE. The space $ of reals is connected. 
Suppose it is not connected. Then $ can be decomposed in 

two disjoint, closed and non-empty sets A and B. Let a e A and 
b e B. Since A n B = 0 , we may suppose that a < b. Let c be 
the last point of the interval a < x < & which belongs to A (such 
a point exists since A is closed). Hence for each x such that 
c < x < b we have x φ A and therefore x e B. Since B is closed, 
it follows that c e B. But then c e A n B, which contradicts 
our hypothesis. 

In a similar way one can show that each interval (closed or 
open) is connected. 

THEOREM 1. X is connected iffX contains no set A such that 
(3) 0 Φ A Φ X 
and 
(4) A n X^A = 0 , i.e. ¥r(A) = 0 . 

P r o o f . 1. Let the set A satisfy conditions (3) and (4). 
The sets A and B = X—A are then non-empty and closed, 

and satisfy condition (1), but do not satisfy condition (2). Hence 
X is not connected. 

2. A îs not connected. Let us assume that condition (1) is satisfied 
but condition (2) is not, i.e. 
(5) AnB=0. 

223 
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It follows from (1) and (5) that X—A = B, and hence condi­
tions (3) and (4) are fulfilled. 

R e m a r k 1. It follows from Theorem 1 that a space X is 
connected iff it contains only two closed-open subsets: X and 0 . 

R e m a r k 2. The condition given in Theorem 1 can be for­
mulated in the following manner: a space is connected if for each 
of its decompositions into two non-empty sets A and B at least 
one of these sets contains a point which belongs to the closure 
of the other set (i.e. in the case of metric spaces, if there exists 
a point p of the form p = limpn, where p eA and pn e B, or p e B 
and pn e A). 

This condition leads to the following formulation of the defi­
nition of a connected set. 

A set is said to be connected if this set treated as a space forms 
a connected space. Therefore, a set C is connected iff for each of 
its decompositions into two nonvoid sets A and B: 
(6) C = A u B, 
we have 
(7) (An B) u (A ηΒ)Φ 0 . 

In other words, if two sets A and B are said to be separated 
provided that 
(8) (A n B) u (A n B) = 0 , 

a set C is connected if it cannot be decomposed into two nonvoid 
separated sets. 

We shall prove several properties of separated sets which will 
be useful in the sequel. 

THEOREM 2. If the sets A and B are separated and Al a A 
and B± <r B, then the sets A± and B± are separated. 

This is true because 
(I± n Bx) u (Ax n BJ c (An 5 ) u ( i n 5 ) = 0 . 

THEOREM 3. If the sets A and B are separated and the sets A and 
C are separated, then the sets A and B u C are separated. 

This follows from the formula 
[An(Bv C)] u [A n B u C] 

= (In B) u (In C)KJ (A n B) u (A nC) = 0 . 
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THEOREM 4. If the sets A and B are both closed or both open, 
then the sets A—B andB—A are separated. 

P r o o f . We have 

Α^ΊΓη (B-A) = A n (X-B) n Bn (X-A) 
cÄ n X^Bn B n (X-Ä). 

If A = A, then 

A n X-Tßr\ B n (X-A) c A n (^-,4) = 0 . 
If the set B is open, i.e. if the set X—B is closed, then 

An X^B n B n (ΛΤ-Λ) c (ΛΓ-Ä) n 5 = 0 . 
In an analogous way we prove that under our assumptions 

(A-B)n B=A=*0, 
and hence the sets A—B and B—A are separated. 

§ 2. Properties of connected spaces 
THEOREM 1. The image under a continuous mapping of a connected 

space is a connected space; in other words, connectedness is an in­
variant of continuous mappings. 

P r o o f . Let / be a continuous mapping of the space X and 
let f(X) = Y. Let us assume that the space Y is not connected. 
We shall then prove that the space X is not connected. 

Hence, let A and B be nonvoid closed sets such that 
(9) A u B = Y 
and 
(10) AnB=0. 

Then by virtue of (9) (cf. Chapter IV, § 4, (16)): 
f-i(A)uf-\B)=f-*(Y) = X. 

The sets/"1 (4) and / ' 1 (B) are non-empty and, since/is conti­
nuous, they are also closed; making use of (10) (cf. Chapter IV» 
§ 4, (17)), we have 

f-l{A) nf'x(B) =f-KA n B) - 0 . 
Thus, the space X has been decomposed into two nonvoid 

disjoint closed sets. Hence, the space X is not connected. 
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R e m a r k 1. The only connected subsets of the space of real 
numbers (other than the entire space, the void set and single points) 
are closed or open rays, i.e. sets of the form 

{x: x < a}, {x: x < a}, {x: x > a}, {x: x > a}, 

closed or open intervals, and, finally, sets of the form 

{x: a < x < b}, {x: a^x < b}. 

For, if the set A is not of one of these forms, then there exists 
a number d φ A and numbers x1, x2 e A such that x± < d < x2. 
The set A is then the union of two non-empty sets M and N con­
tained in the separated sets 

{x: x < d} and {x: x > d}, 

respectively, and hence A is the union of two non-empty sepa­
rated sets, i.e. it is not a connected set. 

Now let / be a real Valued continuous function defined on the 
connected space X. The set/(JT) is then, by Theorem 1, a connected 
subset of the set of real numbers and hence it is one of the sets 
we indicated above. 

If follows that if yt ef(X), y2 ef(X) and y^ < y2, then the 
entire interval yx < y < y2 is contained in the setf(X), or in other 
words, if >Ί < y < y2, then y ef{X), This means that the function 
/ h a s the Darboux property, i.e. it assumes all intermediate values 
in passing from one value to another. We have thus proved the 
following property of connected spaces: 

THEOREM 2. Every real valued continuous function defined on 
a connected space has the Darboux property. 

We note further that this property is characteristic of a connected 
space. For if a space X is not connected and A and B are non­
empty disjoint closed sets such that A u B = X, then the charac­
teristic function of the set A, i.e. the function defined by the con­
ditions 

r , λ (1 for x e A, 
\ θ for xeB, 

is a real valued continuous function defined on the space X and 
not having the Darboux property. 
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THEOREM 3. If C is connected and C n ΑΦ 0Φ C—A, then 

C n Fr(A) Φ 0 . 

In other words, if a connected set C has points in common with 
the set A and also with its complement, then it also has points in 
common with the boundary of the set A, 

P r o o f . By virtue of the connectedness of the set C and the 
identity C = (C n A) u (C—A), the sets C n A and C—A are 
not separated, i.e. 

(11) [C n A n (C-A)] u [C-A n C n Α\Φ 0 , 

hence 

C n [(C~nA n (X-A)) u (C-A nA)] Φ 0 . 

We also have 

C n A c ^ , X-A a X-A, C-A a X-A, A c Z 

Therefore, by (11), we have 

0Φ C nÄ n X = Z = C n Fr(^) . 

THEOREM 4. If the set C is connected, and C cz M u N and the 
sets M and N are separated, then C cz M or Ccz N. 

P r o o f . The sets C n M and C n N are separated (see Theo­
rem 2, § 1) and (C n Λί) u (C n iV) = C Hence, because of the 
connectedness of the set C, one of these two sets is void. If C n N 
= 0 , then a= C n M, i.e. C cz M. Similarly, if C n M = 0 , 
then C czN. 

THEOREM 5. If the sets C and D are connected and are not sepa­
rated, then their union is connected. 

P r o o f . Let C u D = M u N, where the sets M and N are 
separated. We have to prove that one of them is void. By Theorem 
4 we can assume that C cz M. Similarly, D cz M or D cz N. The 
inclusion D cz N does not hold, because the sets C and D would 
then be separated (by Theorem 2 of § 1), contrary to assumption. 
Therefore D cz M, whence C u D cz M and hence N = 0 . 

Theorem 5 can be generalized as follows. 
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THEOREM 6. If {Ct} is a family of connected sets and if one of 
them, CtQ, is not separated from any of the remaining sets, then the 
union S = \JtCt is a connected set. 

P r o o f . Let S = M u N, where the sets M and N are sepa­
rated. We shall show that M = 0 or N = 0 . 

By virtue of Theorem 4, we can assume that C,0 c M. Since 
the sets Cto and Ct are not separated for any /, we deduce from 
Theorem 5 that the sets CtQ u Ct are connected, and hence C,0 u 
u Ct cz M for all t, whence S cz M and therefore N — 0 . 

R e m a r k 2. It follows immediately from Theorem 6 that if 
{C,} is a family of connected sets and C\tCt Φ 0 , then the set 
UfCf is connected. 

Theorem 6 can also be derived from the following: 
* THEOREM 6'. Let {Ct} be a directed family of connected sets, 

i.e. for each pair ti912 there is t3 such that Ctl c Q3 and Q2 

c: Ci3. Then the union S = VJtCt is also connected. 
P r o o f . Let as before S = M u N where M and N are sepa­

rated sets. By Theorem 4, we have for each t either Ct cz M or 
Ct cz N. Consider a CtQ Φ 0. We may assume that CtQ cz M. We 
shall show that N = 0 , which will complete the proof. 

Let t be arbitrary and V such that Cto cz C,/ and Ct cz Cti. The 
first inclusion implies that Ct> Φ N (since Q0 φ Ν) and hence 
Ctf cz M and consequently Ct cz M (since Ct cz Ct>). It follows 
that S c M and thus N = 0 . 

THEOREM l.If C cz A cz C and C is connected, then so is A. 
In particular, /Ae closure of a connected set is connected. 
P r o o f . Let A = M u N where M and JV are separated. We 

may assume, according to Theorem 4, that C cz M. Hence C cz M 
and consequently C n N= 0, whence A n iV = 0 (since 4̂ 
c= C). Finally # = 0 . 

* THEOREM 8. If C is a connected subset of the connected space 
X and 

(12) X—C = M u N, 

where the sets M and N are separated, then the sets C u M and 
C u N are connected. 
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Furthermore, if the set C is closed, the sets C u M and C u N 
are also closed. 

P r o o f . Let us assume that 

(13) C u M = A v B, 

where the sets A and B are separated. We have to show that 
A = 0 or B=0. 

Since C c A u B (by virtue of (13)), we can therefore assume, 
by Theorem 4, that C c B. If follows (see Theorem 2 of § 1), that 
the sets A and C are separated and in particular A n C = 0 . But 
since A c C u M, hence A c M, and since the sets Af and iV 
are separated, it follows that the sets A and N are separated. The 
set A is therefore separated from* B as well as from N; it is there­
fore separated from B u N (see Theorem 3 of § 1). 

On the other hand, by (12) and (13) we have 

(14) X = Cu M u N=A u B u #=.4 u (£ u N). 

The space ^ is therefore the union of two separated sets A and 
B u N. Since the space is connected, one of these two sets must 
be void. Hence, either A = 0 or else B u JV = 0 , whence 2? = 0 . 

If, moreover, C = C, then by (14): 

C~U~M = C u M = C u [M n (C u M u iV)] 

= C u l u (MniV) = C u i l i , 

since M n N = 0 (M and iV̂  being separated). 
Hence the set C u Af is closed. 
The same argument proves that the set C u N is connected 

and closed. 
* THEOREM 9. Lei C be a countably infinite open cover of a con­

nected space X. Then C can be represented as an infinite sequence 
Gl9G2, ... so that ((?! u ... u G„) n Gn+1 Φ 0 for each n (pro­
vided the members of C are nonvoid). 

The easy proof is left to the reader. 

§ 3. Components 

The component of the point p is the union of all connected sets 
which contain this point. 
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THEOREM 1. Each component is a connected set. 
Moreover, a component S is a maximal connected set, i.e. if 

C is a connected set then 

(15) (S c C)=>(C=S). 

P r o o f . Let S be the component of the point p. Therefore, 

S is of the form 

where Ct is a connected set containing the point p. By virtue of 
Remark 2 following Theorem 6 of § 2, S is a connected set. 

Moreover, if S cz C, then p e C, and hence C is of the form 
C= Ct, whence C c S. Thus C = S. 

THEOREM 2. Each component S is a closed set. 
P r o o f . By Theorem 7, § 2, the set S is connected. But since 

S c S, we have, making use of (15), S = S. 
THEOREM 3. Two distinct components are always separated. 

P r o o f . If the components Sx and S2 are not separated, then 
the set Si u S2 is connected (see Theorem 5 of § 2), and hence 
Si u S2 c Si and St u S2 a S29 that is 5 t = S2. 

EXAMPLE. Let I„ denote the segment (situated in the plane) 
consisting of points (x,y} such that x=\/n, 0 < j < 1 for 
n = 1,2, . . . Let I0 denote the segment x = 0, 0 < y < 1. Let 
A = I0 v It v I2 v ... The components of the space A are seg­
ments Im (m > 0). Let us note that the component I0 is not an 
open set in the space under consideration. 

THEOREM 4. If A is a connected subset of a connected space 
X and C is a component of the set X—A, then the set X—C is con­
nected. 

P r o o f . Let X—C = M u N, where the sets M and N are 
separated. We shall show that M = 0 or N = 0 . 

By assumption, we have C cz X—A and hence 

(16) A aX-C= M u N. 
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We can assume (see Theorem 4 of § 2) that A c M, whence 
A n N= 0 . Since 

A n (C u N) = (A n C) v (A n N) = 0, 

then C u TV c Z—Λ, whence 

(17) C c C u N czX-A. 

Since C is a component of the set X—A, and the set C u TV is 
connected (by Theorem 8 of § 2), formula (17) yields C= C v N 
(cf. (15)). It follows that N c C. Since, by (16), we have TV c JT-C, 
hence N = 0. 

§ 4. Cartesian products of connected spaces 

THEOREM 1. The product Xx Y of two connected spaces is con­
nected. 

P r o o f . It is sufficient to show that each pair <*!, yxy, (x2, J>2> 
of points of XX Y belongs to a connected set c Χχ Υ. Such 
is in fact the set 

0) (Wx7)u(lx{j;2})5 

because it is the union of two connected sets which have the point 
<^i5j2> in common. 

Theorem 1 can be easily extended to a finite number of connec­
ted spaces. We are going to show that it can also be extended to 
an arbitrary family of connected sets. 

THEOREM Γ. If Xt is connected for each t eT, then so is Y\tXf 
P r o o f . We may, of course, assume that Xt Φ 0 for each 

/ e T. Let/o be a fixed element of Y[tXt (call it "the origin of the 
axes"; so we could choose, for example, the point 0, 0, ... in the 
case of the Hubert cube). Let us assign to each finite system 
a = (*!,..., /„) of elements of T the product Ca of the spaces 
Xt for t e a and of the one-element sets {/0(f)} f ° r t $ α · 

Ca is connected because it can be obtained from the set Xt t X 
X ... xXtn (which is connected by Theorem 1) by means of the 
continuous mapping h defined as follows: 

i ti for t = ti9 

f0(t) for t$a. 
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One shows easily that (a cz ß) => (Ca c Cß), and it follows 
that the family {Ca} is directed, i.e. for each pair OL1 and a2 there 
is a3 such that Cai u Ca2 cz C«3 (e.g. a3 = ax u a2). 

It follows by Theorem 6' of § 2 that the set S = U a Q is con­
nected, and so is S. It remains to be shown that S = Y]tXt\ in 
other words, that if ß <= J7* ̂  is open (^ 0), then S n β ^ 0. 

We can, of course, assume that β belongs to a base of YltXt. 
Thus we may suppose that there are a system a = (^,. . . , t„) 
and a system of sets Gti open in X,. such that β is the product of 
these sets and of the axes Xt for t φ a, i.e. 

Q = Γ7*G> where G, = A; for ί £ a. 
Let / be a point of β such that f(tt) e G,· for i = 1, ..., n, and 

/(/) =f0(t) for * ^ a. Therefore fe Ca and hence fe S n Q. 

§ 5. Continua 
A continuum is a compact connected space. 
For example, a closed interval is a continuum. Other examples 

of continua are a circular disk together with its boundary and 
the closed «-dimensional cube. 

FIG. 9 

The set S of points in the plane defined by the following equa­
tions: 

p = sin(l/x) for 0 < | x | < l , 
( 1 ) 1 - 1 < J ; < 1 for x = 0 
is a continuum (see Fig. 9). 
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The set consisting of a single point and the void set are obviously 
continua; closed intervals are the only other sets which are con-
tinua on the real line. 

§ 6. Properties of continua 

The following five theorems are immediate consequences of 
the corresponding theorems in Chapters XVI and § 2 of this chap­
ter (these are specified precisely in parentheses). 

THEOREM 1. The union of two continua which have a common 
point is a continuum (cf. § 2, Theorem 5). 

THEOREM 2. If the space X is a continuum, C is a continuum 
contained in X, and X—C is the union of two disjoint open sets M 
and N, then the sets C u M and C v N are continua (cf. § 2, The­
orem 8). 

THEOREM 3. A continuous image of a continuum is a continuum 
(Chapter XVI, § 2, Theorem 3 and Chapter XVII, § 2, Theorem 1). 

In particular, ifCis a non-empty continuum and f is a continuous 
real valued function defined on C, then / (C) is either a single point 
or a closed interval. 

This is a generalization of the known theorem from analysis, 
stating that a continuous function defined on a closed interval 
attains its bounds and passes through all intermediate points. 

THEOREM 4. The cartesian product Y]tXt of continua Xt is a con­
tinuum (cf. Chapter XVII, § 4, Theorem 1 and Chapter XVI, § 3, 
Tychonov Theorem). 

In particular, the cube Jn and the Hubert cube 2tf are continua. 
THEOREM 5. Every component of a compact space is a continuum 

(cf. § 3, Theorems 1 and 2). 
* THEOREM 6. If A and Bare two distinct components of a compact 

3T2-space X, then X can be decomposed into two disjoint closed 
sets F and K which contain the sets A and B, respectively: 

(1) x = F u K, F n K=0, A c F and B c K. 

In other words, there exists a closed-open set F which satisfies 
the conditions A <z F and F n B = 0 (we can, of course, take 
K = X-F). 
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LEMMA. The intersection C of all closed-open subsets of a compact 
&2-space, which contain a given point p, is connected. 

In other words, the quasi-components (comp. Exercise 7) of 
a compact ΖΓ2-space are identical with its components. 

P r o o f . Let us assume the contrary. Then let P and Q be two 
closed sets such that 

(2) C = PuQ, 

(3) P n Q = 0 , 
(4) P^0^Q, 

(5) p e P. 

By virtue of (3) and of the normality of the space (cf. Chapter 
XVI, § 2, Theorem 4), there exist two open sets G and H such 
that 

(6) P c G, Q a H and G n H=0. 

Therefore, setting Gc = X—G and Hc = X—H, we have 

(7) P n Gc = 0, 

(8) QnHc=0, 

(9) X = Gc u Hc, 

and the sets Gc and Hc are closed. 
Let 

(10) {A}, where ί e Γ, 

be the family of all closed-open sets which contain the point p. 
By the definition of C we have 

01) C=ntDt. 
Let 

(12) Ft = Dt nGc n 7/c. 

By (11) we have 

(13) f^tFt = C n Gc n Hc = 0, 

because by (2) and (6), C = (P u 0 c= G u / / . 
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Since the space is compact and the sets Ft are closed, it follows 
by (13) (comp. the Riesz condition, Chapter XVI, § 1) that there 
exists a finite system ti9 ...,*„ such that 

(14) Ftln...nFtH= 0 , i.e. Dnn ... r\DtnnGc n Hc = 0 . 

Since the set Dtl n ... n Dtn is closed-open and contains /?, 
there is t0 e Γ such that 

(15) A 0 = A , n . . . n A , 
It follows that 

(16) A 0 n Gc nHc = 0 , i.e. A 0 nGc cz H. 

The set A 0 n G is closed-open. It is obviously open since it 
is the intersection of two open sets. It is also closed because, by 
(9) and (16), we have 

(17) A 0 n C = A 0 n C n (Gc u Hc) = DtQ n / / c , 

and the set A 0 n ^ c is the intersection of two closed sets. 
As the closed-open set Dto n G contains the point p (cf. (5) 

and (6)), it is therefore one of the terms of the family (10): Dto n 
n G = A " Hence, by (11) and (17), we have 

C cz Dt, = DtQ n G = DtQ n Hc a Hc, 

whence by (2): 

Q aC aHc, i.e. Q = Q n Hc = 0 

by (8). But this contradicts the inequality (4). 
P r o o f o f T h e o r e m 6. Let p e A and let C (as in the 

lemma) be the intersection of all closed-open sets which contain 
the point p. Each of these closed-open sets obviously contains 
the set A, since A is connected (cf. § 2, Theorem 4); and therefore 

(18) A cz C. 

Since C is connected and A is a component of the space, inclu­
sion (18) yields 

(19) C = A 
(cf. § 3, (15)). 

If every closed-open set containing A also contained B (contrary 
to the hypothesis of Theorem 6), then we should have B cz C, 
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whence B c A (cf. (19)). But this is impossible, because the com­
ponents are disjoint (see § 3, Theorem 3). Therefore, there exists 
a closed set F such that A c F and Β—Ρφ 0. Since the set B 
is connected, the last inequality yields FnB = 0. 

COROLLARY. For every compact metric space there exists a con­
tinuous mapping of this space into the Cantor discontinuum <£ 
which maps distinct components into distinct points. 

P r o o f . Let D1,D2,... be the sequence of all closed-open 
subsets of the given space (comp. Chapter XVI, § 5, Theorem 6). 
We shall define the funct ion/as follows: 

/(*) = Ί / 3 + ί 2 / 9 + ...+tn/3»+ ..., 

where tn = 2 if x e D„, and tn = 0 if x φ D„. (This is the charac­
teristic function of the sequence Di9 D2, ...) 

Hence the values of / a r e points of <#. 
Since the set Dn is closed-open a function assuming the value 

2 on it and the value 0 on its complement is continuous. It easily 
follows that / is continuous. 

Finally, if A and B are two distinct components, then by virtue 
of Theorem 6 there exists an n such that A c Dn and B n Dn 

= 0 ; and hence we have tn = 2 for x e A and /„ = 0 for x e B. 
Therefore the values of the function / on the sets A and B are 
distinct. 

Let us add that every component is mapped under this mapping 
into some point (and distinct components map onto distinct 
points); this follows from the fact that the continuous image of 
a connected set is connected, and the Cantor discontinuum does 
not contain nonvoid connected sets other than sets consisting of 
single points. 

*THEOREM 7. The intersection of a decreasing sequence of ^ V 
continua is a continuum. 

P r o o f . Let Cn (n = 1, 2, ...) be ^Vcontinua and let 

(20) C p C 2 D ... ZD C„ZD ... 

and 
(21) C=Cl?-iCH. 

Let us assume that C is not a continuum. Then there exist two 
closed sets P and Q which satisfy conditions (2)-(4). Let G and 
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H be two open sets which satisfy conditions (6) and hence also 
conditions (7)-(9) (with X = CO. Let us set 

(22) Fn = CnnGc r\Hc. 

Then, by (22) and (21), we have 

ntiFn = (ntiCn)nGcnHc = CnGcnHc = 0 

because formulas (2) and (6) yield C = (P u Q) c (G u H). 
Since the sets Fn are closed and form a decreasing sequence 

(because of (20)), it follows (by the Cantor condition) that not 
all these sets are non-empty; thus Fn = 0 for some n, i.e. 

(23) CnnGcnHc = 0. 

At the same time, by (9), we have 
(24) Cn c Gc u i/c, i.e. C„ = (C„ n Gc) u (C„ n # c ) . 

It follows from formulas (23) and (24) that Cn is the union of 
two disjoint closed sets Cn n Gc and Cn n # c . Since Cn is a con­
tinuum, one of these two sets is void. Let, for instance, C„ n Gc 

= 0, i.e. Cn cz G, and therefore, because of (2) and (21), Q 
c C c Cn <= G, i.e. ß c G, hence by (6), Q a Gn H=0. 
Thus 0 = 0» contradicting formula (4). 

Exercises 

1. Prove that every connected completely regular space which contains 
more than one point has at least the power of the continuum. 

2. Show that the Euclidean space Sn (n > 1) remains connected after 
the removal of a countable number of points. 

Hint: Let N be a countable subset of Sn and let p, qe $n—N. Further, 
let L be a straight line which does not pass through the points p and q. Notice 
that on the line L there exists a point x such that the segments px and xq 
are disjoint from the set N. 

3. Let the sets A and B be either both closed or both open. Show that if 
the sets A u B and A n B are connected, then so are the sets A and B. 

Hint: Make use of Theorem 8 of § 2, setting X= A v B, C = A n B, 
M = A-B9 N = B-A, and of Theorem 4 of § 1. 

4. Let 

be a given open cover of the connected space X. 
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Prove that every pair of points a, b of the space Zcan be joined by a chain 
consisting of sets Gti i.e. that there exists a finite system of indices tl9 ...,t„ 
such that 

aeGti9 GhnGt2^0, ..., Gtn_x n Gtn Φ 0 , 6eGr„. 

//mi: Let Z be the set of all points which can be joined by a chain with 
the point a. Prove that the set Z is closed-open. 

4a. Prove the following corollary to the theorem of Exercise 4. 
If the family {Gt} is countable and Gt φ 0 , it can be represented as an 

infinite sequence Gi9 G2, ··· (possibly with repetitions) so thatG„ n <7„f i # 0 
for each «. 

5. We say that the space X is connected between the sets A and B9 if the 
space cannot be decomposed into two disjoint closed sets one of which contains 
A and the other contains B. Prove that if there is a system of sets A0,..., An 
such that the space is connected between no pair Ai,Aj (for i Φ / ) , then there 
exists a system of disjoint closed sets F0,..., Fn satisfying the conditions 

I = F 0 u . . . u F „ , Ai^Fi for / = 0 , . . . ,« . 

6. Show that the relation 
PQQ = (^e .s/rarce X IJ connected between the points p and q) 

is an equivalence relation (cf. Chapter V, Exercise 9). 
7. The equivalence sets determined by the above considered relation are 

called quasi-components of the space. 
Show that 
(1) every quasi-component is the intersection of all closed-open sets con­

taining a given point; 
(2) every component of the space is contained in a quasi-component 

but the converse is not true; 
(3) if X is connected between Xi and x2, and Y is connected between yi and 

y2i then XxY is connected between <^!,7i> and <*2>^2>; 
(4) generalize the last statement to the case of a cartesian product of n factors, 
8. Let A be a subset of a metric space. Establish the equivalence: 

(A is connected between p and a) 
= (each open G containing A is connected between p and q) 

Hint: Use the theorem stated in Chapter XII, Exercise 11. 
9. Prove that the relation ρ defined in Exercise 6 is closed, i.e. the set of 

points <JC, y} of Xx X such that xgy is closed. 
Show that the above theorem is not true for the relation "x and y belong 

to a connected subset of the space" (construct the space having the required 
property in the plane). 

10. Show that a connected, metric and locally separable space is separable 
(cf. Chapter XIV, Exercise 14). 

11. Show that the Corollary to Theorem 6 of § 6 remains true for separable 
spaces without the compactness hypothesis when components are replaced 
by quasi-components. 
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12. Prove that for every two points a and b of the metric continuum 
C and for every ε > 0, there exists in C a finite sequence of points 

such that \pi-i—pi I < ε for i = 1, 2 , . . . , w. Show that this property is a char­
acterization of continua among compact spaces (Cantor's definition). 

13. Show by means of an example that in Theorem 7 of § 6 the compactness 
assumption is essential: the intersection of a decreasing sequence of closed 
connected sets does not need to be connected. 



CHAPTER XVIII 

LOCALLY CONNECTED SPACES 
§ 1. Definitions and examples 

A topological space X is said to be locally connected at the point 
p if for each open set G containing p, p is an interior point of its 
component in G. 

X is said to be locally connected if it is connected at each of its 
points. 

EXAMPLES. 1. The set of all real numbers, the Euclidean «-space, 
and the «-dimensional cube are locally connected spaces. 

2. The set S defined in Chapter XVII, § 5, (1), is not locally 
connected at the points of this set which are situated on the jy-axis. 

k 
FIG. 10 

3. The so-called "whisk-broom" set, shown in Fig. 10, is not 
locally connected. 

We obtain this set by joining the point <0, 1> with segments 
to the point <0,0> and to the points <l/«,0> for n = 1,2, ... 

This set is not locally connected at the points on the segment 
on the j-axis, except at the point <0, 1>. 
§ 2. Properties of locally connected spaces 

THEOREM I. In a locally connected space every component C 
is an open set. 

For, we have, by definition, p e Int(C) for every p e C. 
240 



XVIII. LOCALLY CONNECTED SPACES 241 

The definition implies also the following: 
THEOREM 2. A space is locally connected iff each component of 

an open set is open. 
THEOREM 3.I/X is locally connected at p, then so is every open 

G which contains p. 
P r o o f . Let p e H where H is open relative G; this means 

that H is open and H c G. Let C be the component of p in H. 
Since Xis locally connected at p, we have p e Int(C), i.e. p $ X—C 
and hence p e G—G—C, which means that p is an interior point 
of C relative G. Thus, G is locally connected at p. 

THEOREM 4. X is locally connected iff it has a base composed 
of connected open sets. 

Proo f . 1. X is locally connected. Let {Gt} be its base. Let 
{Stv} be the family of components of Gt. By Theorem 2 the sets 
SttV are open and hence they form the required base. 

2. X has an open base composed of connected sets. Then X is 
locally connected by definition. 

R e m a r k s . A similar argument shows that, if a locally con­
nected space X haS a countable base, then it has a countable base 
composed of connected sets. It follows that, in this case, every 
open subset of X has a countable number of components. 

COROLLARY 4'. Every open cover C of a locally connected space 
X contains a refinement composed of open connected sets. 

If moreover, the space X is regular, then there is a cover of X 
composed of open connected sets whose closures form a refinement 
ofC. 

This follows from Theorem 4 by virtue of the Theorem of Chap­
ter X, § 11 and the Remark 2 of Chapter XI, § 4. 

THEOREM 5. If S is a component of an open set G in a locally 
connected space, then 

Fr(S) nG = 0 . 
P roo f . Fr(5) = S—S because S is open. But since G—S is 

the union of open sets, hence G—S is open and therefore S n 
n (G—S) = S n (G—S) = 0, which completes the proof. 

In locally connected spaces the condition of normality can be 
strengthened as follows. 
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THEOREM 6. In a locally connected normal space X, let A and 
B be two closed disjoint sets. If A is connected, then there is a con­
nected open set R such that A c R and Rn B = 0. 

If both A and B are connected, then there are two open con­
nected sets R and S such that A c 7?, B c S and R r\S = 0 . 

P r o o f . Since X is normal, there is an open G such that A a G 
and G n B = 0. The component of G which contains A is the 
required open connected set R (comp. Theorem 2). 

If B is connected, we denote by S its component in X—G. 
THEOREM 7 (of Wilder). Let X be a metric separable and 

locally connected space. Let G be an open connected subset of X. 
Then there exist open connected sets R1,R2, ... such that 

(1) G = R1u R2v ... and Rn c Rn+i.* 

P r o o f . By Theorem 4 (comp. Remark), X contains a count­
able base composed of open connected sets. Thus G is the union 
of a countable family C of open connected sets whose closures 
are contained in G (according to Remark 2 of Chapter XI, § 4). 
Since G is connected, C can be represented (by Theorem 9 of 
Chapter XVII, § 2) in the form 

(2) G = Q, u Q2 u ..., (Ö! u ... u Qn) n Qn+1 Φ 0 , 

QnczG, QneC. 

We define Rn by induction. Since the sets Q1 and X—G are 
closed and disjoint, there exists by Theorem 6 an open connected 
set Rx such that 

(30 ß i c Ri and Rt c G. 

Now, let for a given n > 1, Rn be open connected and 

(3„) ß j u ... u β„ c /?„ and ]?„ c G. 

Since the set 7?„ u Qn+i is connected (according to the inequality 
(2)) and disjoint from X—G, therefore there is by Theorem 6 an 
open connected Rn+1 such that Rn u Qn+1 c jRn+1 and Rn+l cz G. 

Thus condition (3M+1) is fulfilled and condition (1) follows. 

1* As shown by T. Przymusinski, "metric separable" can be replaced by 
"perfectly normal" (to appeal in Colloquium Math.). 
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§ 3. Locally connected continua 

THEOREM 1. A continuum X is locally connected iff for each 
open cover C there is a finite refinement composed of continua: 

(1) J f= d u . . . u d -
P r o o f . 1. Necessity. By Corollary 4' of § 2, there is a cover 

R of X composed of open connected sets whose closures form 
a refinement of C Since X is compact we may assume that R is 
finite: R = (Q1, ..., Qn\ We put Q = Qt. 

2. Sufficiency. Suppose that our condition is fulfilled. Let p e G 
where G is open. We have to show that there exists a connected 
neighbourhood E c G of p. 

Consider the (open) cover C composed of two sets: G and 
H = X— {p}. By assumption, (1) is fulfilled and C,· is a continuum 
contained either in G or in H. 

Let us denote by Ckl, Ckl, ···> d r continua which contain the 
point p and all the remaining ones by CWl, CW2, ..., Cms. 

Let 
(2) £ = C Ä 1 u C k a u . . . u C v 

We therefore have 

(3) ; r - £ c cmiu cm2u ...u cWs, 
whence 

(4) « c CWlu d , 2 u ... u QMs. 

Thus p e X—X—E9 i.e. / ? e ln t ( ^ ) . The set E is therefore 
a neighbourhood of the point p. It is a connected set, since it is 
the union of connected sets which contain p. Finally E <= G 
because for / = 1, ..., r, p e Ck. and hence Ck. φ Η, i.e. Ck. a G. 

COROLLARY (Sierpinski Theorem). A metric continuum X is 
locally connected iff, for each ε > 0, X can be represented as the 
union of a finite number of continua each of diameter less than ε. 

P r o o f . 1. Let X be a metric locally connected continuum. 
Let C be a cover of X composed of open sets (for instance, of 
balls) of diameters less than ε. By Theorem 1, Zcan be represented 
in the form (1), where Cl 5 ..., Cn are continua,, each contained 
in a member of C. Hence (5(d) < £ for / = 1, ..., Λ. 
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2. Now suppose that our condition is fulfilled. Let C be an 
open cover of X. According to Theorem 1, we have to show 
that there is a finite refinement of C into continua whose union 
is X. Since X is compact, it is legitimate to assume that C is finite, 
and it only remains to denote by ε its coefficient (comp. Chapter 
XVI, § 5, Theorem 7), because formula (1) represents by virtue 
of the inequality <5(Cf) < ε a refinement of C 

THEOREM 2. Let X and Y be two 3~2-spaces and f a continuous 
mapping of X onto Y. If X is a locally connected continuum, then 
so is Y. 

Proo f . Let {//,} be an open cover of Y. According to Theorem 
1, we have to define a finite cover of Y which is a refinement of 
{Ht} and is composed of continua. 

Now, Y=[JtHt implies X = U r / " 1 ^ ) · Since {/^(Äi)} is 
an open cover of X, there is (by Theorem 1) a finite refinement of 
this cover into continua: 

(5) X = d u ... u Cn, where Ct c f~x (Hu). 
It follows that 
(6) 7 - / ( C O u ... u/(C„) and f(Q) czf[f~\Hti)] cz Htr 

This completes the proof. 
R e m a r k 1. A continuous image of a locally connected 

space which is not compact is not necessarily a locally connected 
space. 

Let us consider the example of the space S in Chapter XVII, 
§ 5, (1) defined for x > 0, and let us join the point <l,sinl> 
with the point <0, 1> by means of an arc in such a manner that 
the arc does not cut the set S at any point. The set thus obtained is, 
as can easily be seen, a continuous image of the half-ray 0 < x 
< + oo, but is not locally connected. 

R e m a r k 2. From Theorem 2 it follows in particular that 
a continuous image of a closed segment or of a rectangle (together 
with boundary) is a locally connected continuum. Therefore the 
curves possessing continuous parametric representations on an 
interval of the form 

(7) x = x(t), y = y(t)9 z = z(t)9 where a^t^b, 
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are locally connected continua, as well as surfaces of the form 

(8) x = x(u9v)9 y = y(u9v)9 z = z(u9v)9 

where a < w < ft, c ^v <c/. 
Thus, the geometric figures which appear most frequently 

in analysis are locally connected. 

§ 4. Arcs. Arcwise connectedness 
D e f i n i t i o n 1. An arc is a set which is homeomorphic 

to the closed interval 0 < t < 1. 
Every arc is a locally connected continuum. 
An arc with endpoints x and y is usually denoted by the symbol 

xy (or yx). 
THEOREM 1. if ab nbc = {b}9 then the union abvbc is an 

arc ac. 
For, we can define a continuous one-to-one mapping of the 

closed interval [0, ■£] onto the arc ab and a continuous one-to-one 
mapping of the closed interval [|, 1] onto the arc be in such 
a way that both of these mappings map the point \ onto the 
point b. In this manner we obtain a homeomorphic mapping 
of the closed interval [0,1] onto the set ab u be. 

THEOREM 2. If ab n be Φ 0 , then the union ab u be contains 
an arc which connects a with c. 

For, let d be the first point on the arc ab (ordered from a to b) 
which lies on the arc be. Let ad denote the arc contained in ab9 
and let dc be the arc contained in be. We therefore have ad n dc 
= {d}. By Theorem 1 the set ad u dc is an arc ac. 

D e f i n i t i o n 2. A space is (integrally) arcwise connected 
if every pair of its points belong to an arc. The space is said to 
be locally arcwise connected, if for every point p and every open 
G containing p there is an open H containing p such that every 
point of H can be joined to p by an arc contained in G. 

If the space is metric, this means that for every p and every 
ε > 0, there exists an η > 0 such that if \x—p\ < η> then x can 
be connected to p by an arc of diameter < e. 

THEOREM 3. A space which is locally arcwise connected at the 
point p is locally connected at p. 
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For, if £ denotes the union of all arcs containing p and contained 
in G, E is a connected neighbourhood of p. 

THEOREM 4. A connected space which is locally arcwise connected 
is (integrally) arcwise connected. 

P r o o f . Let p be a given point of the space X. Let us denote 
by F the set of all points x which can be connected to p by an 
arc. We have to prove that F=X or, equivalently (since the space 
is connected), that the set F is closed and open. 

Let q e l There exists by assumption an open G containing 
q such that for each x e G there is an arc xq cz X. 

Now, if q e F, there is x e F n G and hence an arc px and 
(by Theorem 2) an arc pq cz px u xq. Therefore q e F. Thus 
F is closed. 

On the other hand, if q e F, then each x eG can be joined 
to p by an arc contained in xq u qp. Thus q eG cz Fand hence 
q e Int (F). Therefore F is open. 

THEOREM 5. If a compact metric space is locally arcwise connected, 
then for each ε > 0 there exists an η > 0 such that if \x—x'\ < η 
then the points x and x' can be connected by means of an arc xx' 
of diameter <; e. 

Thus uniformity holds for the choice of η corresponding to 
ε (independently of/?). The proof is entirely analogous to the proof 
of Theorem 4 in Chapter XVI, § 5. 

§ 5. Continuous images of intervals 
LEMMA 1 (of A. Lelek). Consider a partition of the interval 

J into closed intervals and single points. Let R denote the family 
of members of this partition. Then there is a continuous function 
g: J -* J such that the family of all inverse images g~1(0> t eJ9 

coincides with R. 
Moreover, if0eFoeR, 1 e Ft e R and F0 Φ Fl9 then g-1(0) 

= F0 andg-W^F,. 
P r o o f . Consider a countable subfamily of R: F0, Ft, ... 

such that the set F = F0 u Fx u ... is dense in J. Obviously, 
if an interval belongs to R, it is a term of the sequence {Fn}. 

First we define g(x) for xeF. The definition is by induction. 
Let g(x) = 0 for x e F0 and g(x) = 1 for x e Fx. Assume that, 
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for a given n > 1, g(Fi) is a single point for each i < n. Since 
the sets F0, ..., Fn are disjoint and connected, they are ordered 
in the interval / i n a natural way; so denote by Fj and Fk the 
sets just preceding and just following F„ (among the sets F0, ... 
. . . , i V i ) . Put 

(1) g(x) = g ^ + g ^ * ) for each x e Fn. 

Thus g is defined (by induction) for each point of F. In order 
to extend its definition to the whole interval </, it is sufficient 
to show that g is uniformly continuous on F. 

Let ε > 0 be given. Let l/2m"1 < ε. Since F = J, then for 
each pair Fj9 Fk there is an Ft lying between Fj and Ffc. Hence, 
for sufficiently large n, the set g(F0 u ... u iv) contains all points 
&/2m, k = 0, ..., 2W. Denote by ?y the length of the smallest in­
terval contained in J—(F0 u ... u F„). We have 

(2) |*i—*21 < *? => lg(*i) — gfe)! < ε for each pair xl9 x2 eF. 
Because the condition |JCX —JC2| < η implies that no pair Fi9 Fj9 

where / < n and j < n (i Φ j), lies between *! and x2, and con­
sequently no pair of points of the form k\2m can lie between 
g(*i) and g(x2)l this means that \g(xi)—g(x2)\ < 2/2m < e. 

This completes the proof of the uniform continuity of g on F. 
Hence g can be considered as being defined on the whole interval,/. 
Obviously g(J) = J. 

It remains to show that the family {g~l(t)} where / eJ coincides 
with R. 

Obviously g\F is monotonic (not decreasing), and so is g. 
Moreover, if xx < x2 are two points in F, then g(xi) = g f e ) 
if and only if they belong to the same set Fn. This holds in general 
(without assuming that xl9x2 e F ) . For, suppose that xt e J—F 
(the case x2 e S—Fis analogous). Then there are two sets Ft Φ Fi 

between x1 and x2, and hence 
(3) g(xx) < g(Fd < g(Fj) < g(x2). 

Thus, the single-element set {xx}9 which is a member of R, 
is an inverse image of an element of J (namely of g(xi)); since 
the same is true for all the sets F0, Ft, ..., this completes the proof 
of the Lemma. 
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THEOREM 1 (of G. T. Whyburn). Let f: J -+ Y be continuous, 
let /(0) = a, f(l) = b and αφ b. Suppose that the inverse image 

f~x(y) is9 for each y e Y> either a closed interval or a single point 
of J. Then Y (which is supposed to be ̂ 2) is an arc ab. 

P r o o f . Denote by R the family of all inverse images/-*1^) 
where y eY and consider the function g satisfying the preceding 
Lemma (we denote: F0 =/_ 1(α) and Fx =/~1(ό)). Since for each 
t eS9 g_1(0 e R, then/Ig'1 (01 is a single point of Y. Put 

(4) Kt)=f\g-Kt)] for tsJ. 

h is the required homeomorphism of J onto Y. 
First, h is continuous. For let F c Y be closed. Then h~*(F) 

= stf^CF)]a n d since Z"1^) is closed, so also is g I/"1 CO] (because 
g is a continuous mapping of a compact space). 

Next, h is one-to-one. For let ί±Φ t2. Then g~x{t^) Φ g~1(t2) 
and hence there are yL Φ y2 such that g"1^) =/~10;i) and 
g'Kti) =/"1(^2). Therefore hit,) =γ,φγ2 = h(t2). 

Finally A(0) = a and A(l) = b. For 

A(0) - /b" 1 ©)] =f(F0) =/ΙΓχ(α)] = a. 

Similarly A(l) = b. 
LEMMA 2. Let A <=.J be a closed subset containing the points 

0 and 1, awrffei/: A -» Γ (which is 1T2) be continuous and onto, 
/(0) = a, /(l) = b and a Φ b. Suppose that A has irreducibly the 
following property: 

{ the points 0 and 1 belong to A, 
if uv is a component of \f—A, then f(u) =f(v) 

(the irreducibility means that no proper closed subset of A contain­
ing 0 and 1 has property (5)). 

Then Y is an arc ab. 
P r o o f . t Let us extend / to a mapping g: J -> Y so that, 

for each component uv ofJ—A, g{t) =f(u) for u < t < v. Then 
g is obviously continuous and g(J) = Y. Moreover each inverse 

t See an argument of J. L. Kelley mentioned by G. T. Whyburn, be. cit. 
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image g^iy) for y e Y is either a closed interval or a single point. 
For, suppose that g~x(y) is not a single point, and let tl and t2 be 
its first and last elements. Obviously tx and t2 belong to A and the 
open interval ttt2 is disjoint from A. Because, otherwise, the set 
A—tj2 would have property (5). 

Thus g~x(y) = ttt2 and it follows by Theorem 1 that Y is an 
arc ab. 

THEOREM 2. A continuous image of an interval is arcwise con­
nected. 

More precisely, iff: S -* Y is continuous, Y is 3~2 andf(0) = a, 
/(l) = b and αφ b, then there is a closed subset A ofJ, containing 
the points 0 and 1 and having irreducibly the property (5). 

P roo f . According to the Brouwef reduction theorem (Chapter 
XIV, § 1, Theorem 4) we have to show that the property (5) is 
inducible; i.e. that if A = A0 n At n ... where each An has 
property (5) and A0 => Ax ZD ..., then A also has property (5). 
Let uv be a component of f—A. Since J—A = Un(<f—An)9 
so uv is the union of components unvn ofJ—An9 and since ^4„has 
property (5), so f(un) =f(vn) and consequently /(«) =/(*>). 

COROLLARY. A metric continuous image of an interval is locally 
arcwise connected. 

For let/: / - > F b e continuous and onto. Since/is uniformly 
connected, there are intervalsIl9 ...,In such thatS = It u ... u I„ 
and f(Ik) < ε for k = 1,. . . , n. This clearly implies the required 
conclusion. 

THEOREM 3. Every locally arcwise connected metric continuum 
C (# 0) is a continuous image of an interval. 

P r o o f . By Theorem 3 of Chapter XVI, § 8, there exists 
a continuous mapping / defined on some closed subset H of the 
Cantor set and such that/(if) = C Let a and β denote the initial 
and terminal points of the set H. We shall extend / to the entire 
segment cnß. The set aß—H, being open in <xß9 is the union of 
a sequence of open intervals (αφχ)9 (a2b2), ... 

Obviously, 

lim(bn-an) = 0, 
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whence 

(6) lim\f(ba)-f(an)\ = 0, 
«->oo 

because of the uniform continuity of / . 
According to Theorem 5 of § 4, there exists a sequence of 

numbers r\k, such that each two points p and q of the continuum 
C satisfying the inequality \p— q\ < ηΗ can be joined by an arc 
with diameter < \jk. Therefore by virtue of (6) there exists 
a sequence of arcs Ln with endpoints f(a„) and f(bn) such that 

(7) lim<5(L„) = 0. 
/ l -»00 

Let /„ denote a homeomorphism of the (closed) segment a„b„ 
onto the arc Ln, such that/„(<*„) =f(an) and/„(£„) = f(bn). Finally, 
let 

j / (0 for teH, 
g ( 0 " U ( 0 for an < t < bn9 n = 1, 2, ... 

Hence g maps the segment aß onto the continuum C. It is 
a continuous function, as seen from formula (7). 

R e m a r k 1. The conditions of being: 
(i) a locally connected continuum, 

(ii) a locally arcwise connected continuum, 
(iii) a continuous image of an interval, 

are equivalent (for metric spaces). 
Because every locally connected metric continuum is also 

locally arcwise connected (this is the Mazurkiewicz-Moore theorem 
which we state here without proof). 

R e m a r k 2. It follows from Theorem 3 in particular that <f2 

is a continuous image of a segment; the same is true of the «-dimen­
sional cube Jn, and even of the Hubert cube 3tf. 

This discovery made by Peano (in 1890) was considered to 
be very paradoxical. For it means that the square J2 has a conti­
nuous parametric representation over a closed interval, contrary 
to the opinion that this property applies only to curves. It follows 
from this that the hypothesis of d i f f e r e n t i a b i l i t y usually 
made in analysis for parametric representations is essential from 
this point of view. 
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The following is a direct proof of the Peano theorem (given 
by Sierpinski). 

We divide the square into 9 equal squares and draw in each 
of them the diagonal as shown in Fig. 11. We divide the segment 

FIG. 11 

[0,1] into 9 equal segments and we transform (linearly) each 
of them into the corresponding diagonal in the order given in 
Fig. 11. We denote by fx the function thus defined, mapping 
the segment [0,1] continuously into the polygonal line consisting 

FIG. 12 

of 9 diagonals. We call the squares considered squares of first 
approximation. 

Next, we divide each of the 9 squares into 9 equal squares; 
they are the second approximation squares. We draw a diagonal 
D in each of them; here in second approximation squares lying 
on a diagonal of a first approximation square we draw the diagonal 
lying on the diagonal D. Thus the first square of the first approx-
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imation appears as in Fig. 11 after the corresponding reduction; 
the second square of the first approximation is given in Fig. 12. 

We divide each of the intervals (n—1)/9, n/9, where n = 1,2, 
..., 9? onto 9 equal parts and we map each of these parts into 
the diagonal of the corresponding square of the second subdivision. 
This defines the function f2 which maps the interval [0, 1] con­
tinuously onto the polygonal arc made up of 92 intervals. 

Continuing thus, we define an infinite sequence of continuous 
functions/l5/2, . . . , /„ , . . . It is easy to prove that this sequence 
is uniformly convergent; and therefore its limit function / is 
continuous (see Chapter XII, § 3, Theorem 3). Furthermore, 
every point of the square is a value of the function / ; in fact, 
in each square of the nth approximation there are values of the 
function /„ and consequently 

Unfn(S) = S2 whence /(</) = J2. 
R e m a r k 3. Let us notice that the proof of Theorem 3 in 

the case where C = fn can be somewhat simplified. Namely, 
in this case we can take the interval with endpoints/(tfrt) and/(6n) 
for the arc Ln; hence, we can define the function fn as the linear 
transformation of the interval anbn into the interval f(a„)f(bn). 

This theorem can also be deduced directly from Theorem 3, 
Chapter XVI, § 8, and Tietze theorem (Chapter XII, § 5, Corol­
lary 1). 

Exercises 

1. Let E be an open subset of the interval a < x < b. Prove that the 
components of the set E are open intervals. Moreover, if there are an infinite 
number of these components then their diameters tend to zero. 

2. Let p e A n J5. If the sets A and B are locally connected at the point p, 
then the set A v B is also locally connected at this point. 

3. If the spaces A'and Fare locally connected at the points a and b respec­
tively, then the cartesian product Xx Y is locally connected at the point <Λ, &>. 

4. Let E be an arbitrary subset of a locally connected space. If C is a con­
nected subset of E and is open in E, then there exists an open connected set 
H such that C = E n H. 

Hint: Use Theorem 2, § 2. 
5. If a locally connected space can be represented as the union of two 

closed sets A and B with locally connected intersection, then the sets A and B 
are locally connected. 

Hint: Use Exercises 2 and 4, above, and Exercise 3 of Chapter XVII. 
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6. Let X be a locally connected space. If F is a closed locally connected 
set and C is a component of the set X—F, then the sets X—C and C u F 
are locally connected. 

Hint: Use Exercise 5. 
7. Let E be an arbitrary subset of a locally connected space and let E 

= 5i VJ S2 u ... be the decomposition of JE into components. Then 

Int(E) = UwInt(5w). 

8. Let £, be an arbitrary subset of a locally connected space. Prove that 

Fr(U^f) c UrRrCßf). 
/flw/: Use Theorem 3 of Chapter XVII, § 2. 
9. Let E be an arbitrary subset of a locally connected space and let S be 

a component of E. Prove that Fr(5) c Fr(£). 
10. Let E be an arbitrary subset of a locally connected space. If the set 

Fr(E) is locally connected, then E is locally connected. 
Hint: Use Exercise 5. 
11. Let G be an open connected subset of a locally connected regular 

space. Then every pair of points of G can be joined by an open connected 
set R such that ~R c G. 

12. Let X be a locally connected metric continuum. Prove that each of 
its subcontinua C is the intersection of a decreasing sequence of locally con­
nected continua: 

c=n?=ic„ f Q D ^ D . . . 



CHAPTER XIX 

THE CONCEPT OF DIMENSION 

The space under consideration in this chapter is metric separable 
(however, many definitions and theorems can be applied to more 
general spaces*). 

§ 1. O-dimensional spaces 

D e f i n i t i o n . A nonvoid space A" is said to be O-dimensional, 
i.e. dimZ = 0, iff for every finite open cover 

(1) X=G0u ...uGm 

there is a refinement in closed disjoint sets: 

(2) X = F 0 u . . . u F m , 

(3) Fi c d for i = 0, . . . ,m, 

(40) FinFj = 0 for i*j 

(thus the sets Ft are closed-open). 
Furthermore, we agree that d i m 0 = —1. 
EXAMPLES. The space of integers, the space of irrational numbers, 

the Cantor discontinuum are 0-dimensional. 
An interval, as well as any connected space (which does not 

reduce to a single point), is not 0-dimensional; for it does not 
contain non-empty closed-open sets which are distinct from the 
entire space. 

§ 2. Properties of 0-dimensional metric separable spaces 
We state here without proof the most important properties of 

0-dimensional metric separable spaces. We could already have 
observed some of these properties in the Cantor set # . 

THEOREM 1. Every O-dimensional space has a countable base 
consisting of open-closed sets. 

f See J. Nagata, Modern Dimension Theory, Noordhoff, 1965. 
254 
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THEOREM 2. Every O-dimensional space is topologically contained 
in Ή (i.e. it is homeomorphic to some subset of%>). 

THEOREM 3. Every 0-dimensional compact space can be decom­
posed into disjoint closed sets of diameter < ε for each ε > 0. 

THEOREM 4 (Sharpened normality property). For every pair of 
disjoint closed sets A and B, there exists an closed-open set G such 
that A c G and G n B = 0 . 

THEOREM 5. In a metric separable space the union of a finite 
or infinite sequence of 0-dimensional closed sets is a 0-dimensional 
set. 

§ 3. ft-dimensional spaces 

D e f i n i t i o n . d i m Z < n iff for every finite open cover (see (1)) 
there is a refinement in closed sets satisfying (besides (2) and (3)) 
the following condition 

(4rt) FionFhn...nFin = 0 for i0 < ix < ... < zn+1, 

which means that no point of X belongs to n+2 sets Ff. 
The definition of 0-dimensional spaces given in § 1 is obviously 

a particular case of the above definition. 
THEOREM. Let X be a compact metric space. X is of dimension 

^n iff there is for each ε > 0 a closed cover satisfying condi­
tions (2), (4„) and 

(5) δ ( : ί ί ) < ε for I = 0 , 1 , . . . , W I . 

P r o o f . 1. Necessity. Let d i m X < « and ε > 0. Let G0, 
..., Gm be an open cover of X such that o(Gf) < ε. By definition 
there is a closed refinement satisfying conditions (2), (3) and 
(4„). Condition (5) follows from (3). 

2. Sufficiency. Let G0, ..., Gm be an open cover of X. Let ε 
be its coefficient (see Chapter XVI, § 5, Corollary to Theorem 7), 
and let Ff, ..., F* be a closed cover of X satisfying conditions 
(2), (4„) and (5) (where F{ has to be replaced by FJ). Since the 
cover Ff,...,F* is a refinement of the cover G0, ..., Gm9 the 
sets Ff (j= 1, ..., r) can be distributed in ra+1 disjoint families 
C0, · · · , Cm in the following manner: to C0 belong all Ff con­
tained in G0, to Ct belong all Ff which do not belong to C0 and 
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are contained in (?i and so on; finally Cm is composed of those 
Ff which are contained in Gm and do not belong to any Q with 
i < m. Denote by F% the union of members of Q. It follows that 
conditions (2), (3) and (4W) are fulfilled, and hence d imZ<« . 

Theorem 3 of § 2 is obviously a particular case of the preceding 
one. 

COROLLARY, dim f* < n. 

In particular, «/ can be decomposed into arbitrarily small 
segments with the aid of a finite system of points; thus no point 
belongs to any three of these segments. 

FIG. 13 

A rectangle can be decomposed into small rectangles by a system 
of "bricks" as shown in Fig. 13 (no point belongs to 4 "bricks"). 
Similarly, the cube J>n can be decomposed into "bricks" satisfying 
formulas (4„) and (5), and hence dim */" < n. 

The proof of the formula dim <fn^n is less elementary (see 
Chapter XX). 

R e m a r k . The dimension can also be defined inductively 
in the following manner (which is equivalent for metric separable 
spaces): 

1) the dimension of the void set is — 1; 
2) the dimension of a set X at the point p is < n, i.e. 

(6) dimpX^n, 

if there exists in every neighbourhood of p open sets containing 
p and having boundaries which are at most (n—l)-dimensional; 

3) a set X which has dimension < n at every point is at most 
of dimension n. 
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Furthermore, we assume that dimp X — oo if formula (6) does 
not hold for any natural n, and that the dimension of X is oo if 
it is not finite. 

It follows, in particular that dimp X = 0 iff every neighbourhood 
of p contains closed-open subsets containing p. For example 
the set consisting of the intervals 

(1/3,1/2), (1/5,1/4), ..., (1/(2,2+1), 1/2«), ... 

and of the point 0, is 0-dimensional at the point 0 and only at 
that point. 

§ 4. Properties of «-dimensional metric separable spaces 
The following theorems on the dimension of metric separable 

spaces will be stated without proof. 
THEOREM 1. Every n-dimensional space has a base consisting 

of open sets with boundary of dimension at most n—1. 
THEOREM 2. Every n-dimensional space is topologically contained 

in the cube J2n+i. 
In particular, every 1-dimensional set (and hence every curve) 

is contained topologically in the cube Jz and every 2-dimensional 

FIG. 14 FIG. 15 

set (in particular the surfaces considered in analysis) are contained 
in the cube J5. 

These exponents cannot be made smaller, i.e. for every n there 
exists an «-dimensional set which is not contained topologically 
in the cube J2n. For example, a polygonal line consisting of the 
edges of a tetrahedron and the segment connecting two disjoint 
edges (see Fig. 14) is not contained topologically in the plane 
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(this follows easily from the Jordan theorem given in Chapter 
XXI, § 8). 

The polygonal line shown in Fig. 15 has the same property. 
It consists of 6 edges of a tetrahedron and of 4 segments connecting 
the centre of gravity of the tetrahedron with the vertices. 

R e m a r k 1. Every polygonal line which cannot be embedded 
topologically in the plane contains topologically one of the two 
polygonal lines shown in Figs. 14 and 15. 

R e m a r k 2. If dimJSf < n, then the set of homeomorphisms 
is dense in the function space (J2n+1)x. 

THEOREM 3 (Sharpened normality property). For every pair of 
disjoint closed sets A and B, there exists an open set G such that 

Ac:G9 GnB=09 dimFr(G)</i—1. 
THEOREM 4. The union of a (finite or infinite) sequence ofn-dimen-

sional closed sets is an n-dimensional set. 
THEOREM 5. For every compact n-dimensional space X, there 

exists a closed subset T of the Cantor discontinuum <£ and a con­
tinuous mapping of T onto X which does not assume any value 
more than n+\ times. 

For example, a closed interval can be obtained from ^ with 
the aid of a continuous function which does not assume any 
value more than twice (such a function is the step function 
defined in Chapter XVI, § 9, Fig. 8). 

R e m a r k . The existence of a set T and of a mapping having 
the properties stated in Theorem 5 forms a condition which is 
not only necessary but also sufficient in order that axmX < n. 

Exercises 
1. Prove that every set of real numbers which contains no interval is 

O-dimensional. 
2. Prove that the set of points in the plane, one coordinate of which is 

rational and the other irrational, is O-dimensional. 
3. Prove that the set of points in Euclidean space Sn all of whose coordinates 

are irrational is O-dimensional. 
4. Hint to the proof of Theorem 1 of § 2. Consider, for given n, all the 

closed-open sets with diameter < ljn and apply the Lindelöf property (Chapter 
XIV, § 1, Theorem 2). 

5. Hint to the proof of Theorem 2 of § 2. Consider the characteristic func­
tion of a base consisting of closed-open sets. 



CHAPTER XX 

SIMPLEXES AND THEIR PROPERTIES 

§ 1. Simplexes 

D e f i n i t i o n . Let />0, .··,/?„ be a given system of n+\ 
points in Euclidean space. By the simplex p09 ...pn we mean the 
set of all points p of the form 

(1) p= λοΡο+ ··· +KPn, 
where 

(2) λ0+ ... +λη= 1, 

(3) Λ<>0, 

and where the multiplication of the point by a scalar and the 
addition of points is to be understood as in the algebra of points 
(or vectors), i.e. 

A ' (xt , . . . , Xn) = (AXJ , . . . , AXn), 

(*!, ...,xn)+(yi, -",yn) = O I + J > I , ...,x„+jv>.t 

In this connection we shall always assume that the points 
p09 ...,pn are linearly independent, i.e. that the conditions λ0ρ0 

+ ... +ληρη = 0 ( = the origin of the axes) and λ0+ ... +λη = 0 
imply that λ0 = ... = λη = 0 (whatever are A0, ..., A„); in other 
words, the points p0, ...,pndo not lie in the same in — ̂ -dimen­
sional hyperplane. This means, in the case n = 2, that the points 
Ρο·>Ρι>Ρι do not lie on a line, or thsLtp0pip2 is a triangle (without 
boundary); similarly, when n = 3, P0P1P2P3 is the interior of 
a nondegenerate tetrahedron (i.e. the points Po>Pi>P2 and p3 

do not lie in one plane). 

t Of course, if p = (xl9..., xn) and # = ( ^ , ...,>>„), then the distance 
of/? from q equals the worm \p—q\ of the vector p—q; let us recall that \p\ 
= ] /^ i+ ··· + x%\ this fact motivates the use of the symbol \u—v\ for denoting 
the distance between two arbitrary points u and v. 

259 
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Each of the points p0, ..., pn is said to be a vertex of the simplex 
p0 ...pn; each of the simplexes pio... pik, where i0 < ··· < h < '?> 
is said to be a, face (or edge) of the simplex. 

We include the vertices as well as the entire simplex S in the 
faces of the simplex S = p0 ... pn (for k assumes the values from 
0 to n). St < S2 means that Sx is a face of S2. 

Let us note that 

(4) S^Upio-Pi» 

for all possible systems of numbers i09 ..., /Λ, where fc assumes 
all integral values from 0 to n. 

Finally, let us note that: 
1. the simplexes pio ...p\k in (4) are disjoint, 

2. the point p belongs to S when and only when it fulfils con-
ditions (1), (2) and 

(5) A , > 0 . 

The coefficients λ0, ..., λη are the barycentric coordinates of 
the point p e S; they can be interpreted as masses which must 
be distributed at the points p09...,p„, respectively (retaining 
conditions (2) and (3)), in order that the point p be the centre 
of mass. 

THEOREM 1. Each barycentric coordinate is a continuous function 
of the point p. 

P r o o f . Let T denote the set of points λ = (λ0, ..., λη) of 
<fn+1 which satisfy conditions (2) and (5). The mapping f:T-+S 
defined by the condition f(X) = p, where p satisfies (1), is con­
tinuous, one-to-one and onto. Since T is compact (because it is 
closed and bounded), the mapping / is a homeomorphism 
(by Corollary 2 of Chapter XVI, § 2), and thus the mapping 

f~x: S -> T is continuous. Since a barycentric coordinate is the 
composition of / - 1 and a projection of $n+1 on an axis, it is also 
continuous. 

According to the above argument the following is true. 

THEOREM 2. The closure of a simplex is compact. 
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§ 2. Simplicial subdivision 
Let 

S = Po - - / V 

By a simplicial subdivision of S is understood its subdivision 
into Simplexes such that the intersection of the closures of each 
pair of Simplexes is the closure of their common face or is empty. 
Figures 16 and 16a show simplicial subdivisions of a triangle. 

0 0 1 1 1 
FIG. 16 FIG. 16a 

If in Figure 16 the edges of the shaded triangle were omitted, 
then the figure would no longer represent a simplicial subdivision. 

The centre of gravity of S is the point 

(6) ^ ) = ^ o + . . . + ^ · 

Obviously b(S) belongs to S but belongs to no face of S of dimen­
sion < n. 

THEOREM 1. The family B of all Simplexes of the form b(S0)... 
... b(Sk) where S > S0 > ... > Sk yields a simplicial subdivision 
of S. 

P r o o f . Each of the above considered sequences of faces 
can be extended to a sequence S = S0 > St > ... > Sn, where 

(7) S0=pio...pin, St =ph ...pin, ..., Sn=Pin 

and where i0, ..., in is a permutation of the set 0, . . . , « . 
First, we shall show that the points b(S0), . · , b(Sn) are linearly 

independent. Let us consider the linear combination 
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Put 
j 

(8) λ^ = Σ (n+V)-k-
It follows by (6) that 

(9) μob(S0)+ ... +μηΒ(Ξη) = λίοΡίο+ ... +λίηΡίη. 

Furthermore 

7·=0 y=0 k=0 ' 

n n n 

/=0 j=i J i=0 

If μφ(β<ύ+ ... +μπ6(5„) = 0 and μ0+ ... +μ„ = 0, then it 
follows by (9) and (10) and by virtue of the linear independence 
ofρίο, ...,Pin that λι. = 0 fory = 0, ..., n. Consequently (by (8)) 
μι = 0 for ϊ = 0, ...,/f. Thus the points b(S0), ...,b(Sn) are 
linearly independent. 

If follows from (10) that the closure of the simplex b(S0) ... b(Sn) 
is contained in S. We shall show that it is identical to the set 

(11) {xeS: λίο(χ) < ... < λίη(χ)}. 

According to (8) it is sufficient to show that if λίο(χ) < ... 
< λ1η(χ), then there are μ0, ...,μ„ satisfying conditions 

x = μob(S0)+ ... +μnb(Sn)9 μ0+ ... +μη = 1 and μ] > 0. 

In fact we may take 

(12) μ0 = (η+\)λίο(χ) and //,· = (n+l-ß^^-^Jx)) 
for j= 1, . . . ,« . 

It follows from (12) that the closures of faces of the simplex 
b(S0) ...b(Sn) are obtained by adding to the condition λίο(χ) 
< ... < λίη(χ) a number of conditions of the form λ^(χ) = λ^_χ(χ) 
and perhaps of the form Af(x) = 0. Since the intersection of a set 
of that kind with a similar set in the simplex έ(5ό) ... b(Sn), i.e. 
in a simplex corresponding to another permutation j09...9jn 
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of the system 0,. . .»n, is also of the same form (it may be void), 
so the intersection of the closures of any two Simplexes belonging 
to B is the closure of their common face or is empty. Finally, 
since each point of S belongs to some set of the form (11), it 
follows that B represents a simplicial subdivision of S. 

The above simplicial subdivision is called the (first) barycentric 
subdivision of S (such is the barycentric subdivision of the triangle 
represented in Fig. 16a). The further barycentric subdivisions 
are defined inductively. If {Sl9 ..., Sm} is the (k—l)th subdi­
vision, the &th subdivision is obtained by means of barycentric 
subdivision of each of the sets 5Ί, ..., STO. Since the barycentric 
subdivision of St yields a barycentric subdivision of the closure 
of each of the faces of the simplex Si9 the final effect is a simplicial 
subdivision of S. 

LEMMA 1. The diameter of the simplex p0 ...pn equals the dia­
meter of the set of its vertices, i.e. 

(13) δ(ρ0 -"Pn) = HPO, ~'>Pn}. 

P r o o f . Let p and p' be two points of S. We shall first show 
that 

(14) \P-P'\< max\Pi-p'\· 
i 

Let us represent p in the form (1), where (2) and (3) are fulfilled. 
We get 

n n n 

\p-p'\ = IΣ ***- Σ w\ = IΣ λ^-ρ')\ 
i=0 i=0 i=0 
n 

< Σλι\Ρι-ρ'\ <max\pt-p'\. 
/=o ' 

It follows from (14) that \p'—pi\ < max|ft—pt\9 and hence 
j 

\p-p'\< max\pi-pj\. 
u 

LEMMA 2. The diameters of the Simplexes of the barycentric sub­

division of S are less than or equal to ——d(S). 
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P r o o f . It is sufficient to prove that for an arbitrary permu­
tation i0, ..., in of the system 0, ..., n and for j < k < n we have 

(15) | ^ ) - K S * ) | < ^ < K S ) , 

where b(Sj) = ρρ[(ΡΌ+ - +Ρι) and b(Sk) = -^(/>,·„+ ... 

- +PtO-
By (14) we have \b(Sj)-b(Sk)\ < \Pi,-b(Sk)[ for some / < ; <k, 

and hence 

|6(5,)-K^)K IA,-*(S*)I = L~ ^Tfe„+ - +/OJ 

= *irl Σ<*' -*->| <ΊττΣ1ρ>-ρ> 
m=0 m=0 

^ Χ Ί Γ Ρ Γ ^ ) · 

This implies at once the following theorem. 
THEOREM 2. For each ε > 0 rtere is a simplicial subdivision of 

S into simplexes with diameter less than ε, namely the nth bary-
centric subdivision. 

THEOREM 3 (of Sperner). Let S be subdivided simplicially and 
let the function m(s) assign to each vertex of the simplexes of this 
subdivision an integer m(s) which satisfies the following condition: 

(16) ifs epi() ...pik, then m(s) is one of the integers i0, ..., ik. 

Then there exists among the simplexes of the subdivision under 
consideration at least one simplex on whose vertices the function m (s) 
assumes all the values from 0 to n. 

(The shaded simplex in Fig. 16 is such a simplex.) 
We shall carry out the proof by induction. We shall prove 

a stronger assertion, namely that the number r of simplexes on 
whose vertices the function m(s) assumes all the values from 0 to 
n, is odd. 

For n = 0 this is obvious; for then S = {p0} and r = 1. 
Let us assume that the theorem (in the stronger formulation) 

is valid for /? — !. We shall prove that it is valid for n. 
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We take into consideration the family of all simplexes of (n — 1)-
dimension which appear in the given simplicial subdivision (for 
the subdivision represented in the figure this is the family of all 
sides of triangles). Among them we distinguish those simplexes 
on whose vertices the function m{s) assumes all the values from 0 
to /i—l. We denote by R the family of these distinguished simplexes. 
Finally, in the family R we consider those simplexes which lie 
on the face p0 ... /V-i (in the figure this is the segment [0,1] lying 
at the base of the triangle); we denote by u the number of these 
simplexes. By our assumption, u is an odd number. 

Let us write down the sequence 

A\ 5 ^ 2 5 ' · · ? Af , At+l , . . . , Ay, 

of all the simplexes appearing in the simplicial subdivision under 
consideration; let the simplexes Ai9...,At have the dimension 
n and let the remaining have dimension < n. 

We denote by Vj for j < t the number of faces of the simplex 
Aj belonging to R. Denoting by Wj the set of values which the 
function m(s) assumes on the vertices of the simplex Aj9 we easily 
prove that 

1. if Wj = (0, 1, . . . ,«) , then v} = 1, 
2. if (0, 1, . . . , « - l ) c Wj^ (0, 1, . . . ,«) , then Vj = 2, 
3. if ( 0 , 1 , . . . , H - 1 ) φ Wj9 then Vj = 0. 
Therefore' 

r = (vi+v2+ ... +vt) mod 2. 

On the other hand, if to each j < t we assign the faces of the 
simplex Aj belonging to R (provided that such faces exist), then 
every simplex belonging to R will be assigned to one or two indices 
j depending on whether or not it lies on the face p0 ... ρη-γ. Hence, 
we have 

<v1
J
rv2+ ... +vt = «mod 2, whence r = wmod2, 

and therefore r is an odd number (because u is odd). 

§ 3. Dimension of a simplex 
THEOREM 1. If the system of compact sets F0, ..., Fn satisfies 

the condition 

07) Pio-Pi* c F i o u --^Fiu 
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for each face of the simplex S = p0 .../?„, then 

(18) F0n ... n F ^ 0 . 

P r o o f . Let us assume the contrary, i.e. that F0 n ... n Fn 

= 0 , and denote by ε the Lebesgue coefficient of the cover G0,..., 
Gn where Gt = S—Fi (comp. Corollary to Theorem 7 of Chapter 
XVI, §5) . 

Let there be given a simplicial subdivision of S into Simplexes 
of diameter < e. Let s be a vertex of some simplex of this sub­
division. By virtue of formula (4) and because of the fact that 
the faces of the simplex S are disjoint (see § 1,1), there exists 
only one face pio ...Pik which contains s; and therefore, by (17), 
there exists an index ij such that s e Fiy 

Let us set 
m(s) = ij, i.e. seFm(s). 

The function m(s) thus defined satisfies condition (16). Hence 
there exists, by virtue of Sperner theorem, a simplex s0 ... sn such 
that for i = 0 , . . . , n9 

m(si) = i, and hence st eFi9 i.e. s0 ... snr\Fi*£ 0 , 

contrary to the formula d(s0 ... sn) < ε. 
THEOREM 2. Let Pt be the union of all the faces of the simplex 

S having pi for a vertex (in other words, Pt is the set of all the 
points of S for which Af > 0). Let the system of closed sets F0, ..., Fn 

satisfy the conditions: 

(19) S = F0v...vFn, 
(20) FiezPi. 

Then condition (17) is satisfied and hence (by virtue of Theorem 
1) condition (18) also. 

P r o o f . Let p epio... pik. Therefore, for every j distinct from 
each of the numbers i09 ..., ik we have Xj = 0, i.e. p φ Pj9 whence 
p φ Fj by virtue of (20). By (12) 

pe(F0v...vFJ-Fj. 
Since this formula holds for each j such that j φ i0, ..., j φ ik9 

it follows that p eFio u ... u Fijc. 
Thus, inclusion (17) is proved. 
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THEOREM 3. dim S = n. 
Proo f . By the Corollary of § 3 of Chapter XIX we have 

dim «/" < 7i. Since S is homeomorphic to Jn, it follows that 
dimS< n. 

We must prove that dim S >n—\. 
Let us note that the family of sets Pf considered in Theorem 2 

is an open cover of S, i.e. S — PQv ...\J Pn. 
Now suppose contrary to our assumption that dim*S'<«—1. 

Then there exists (according to the definition of dimension, see 
Chapter XIX, § 3) a system of closed sets F0, ...9Fn satisfying 
conditions (19), (20) and (4^±) of Chapter XIX, § 3. But then 
condition (9) is not fulfilled, contradicting Theorem 2. 

§ 4. The fixed point theorem 
Let S be, as before, the simplex p0 ... pn. 
BROUWER THEOREM. For every continuous mapping f:S-+S 

there exists a fixed point, i.e. a point p such that 

(21) Λρ)=Ρ· 
P r o o f . We shall use the following notation: for an arbitrary 

p E S we write 
(22) Λρ) = λ$ρ0+...+λ*Ρη, 
where (analogously to (2) and (5)): 
(23) A*+...+A* = l, 
(24) Af*>0. 

We have to prove that there exists a point p such that 
(25) Λ·* = Xi for every /. 

Let us denote by Fi the set of all points p for which 
(26) kf < Λ,. 

By virtue of the continuity of the barycentric coordinates and 
of the function / , the sets Ft are closed. We shall prove that con­
dition (17) is satisfied. 

Let/? epi0... pik. This means that 
(27) λ ί ο+. . . +λ,, = 1. 
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But since by (23): 
(28) A * + . . . + t f k < l , 
hence from (27) and (28) it follows that 

AJ+ ... +Affc < A^+ ... + 
and therefore (cf. (24)) for somey < k we have λ? < Xir By (26) 
this means that p e Fir And therefore inclusion (17) is proved. 

Owing to Theorem 1, § 3, inequality (18) is satisfied. Hence let 
p eF0 n ... n F„. This means that 

(29) 

Adding these inequalities we obtain 

which yields, by (23) and (2), 
- A*+ ... +λ* = A0+ ... + A„. 

Therefore in the system of inequalities (29) there cannot appear 
any strict inequality of the form Xf < λ;. In other words, formula 
(25) holds. 

R e m a r k s . 1. The Brouwer theorem for n = 1 states that 
for every continuous mapping / of a closed interval into any one 
of its subsets there exists a fixed point. This is an immediate con­
sequence of the Darboux property of the function f(x)—x. 

2. The Brouwer theorem is obviously also applicable to the 
«-dimensional cube as well as to any set homeomorphic to S. It 
is interesting to note that this theorem can be generalized also to 
the Hubert cube Jf and to some function spaces. 

This generalization has numerous applications in the theory 
of differential equations in proving the existence theorems.* For, 
a theorem on the existence of a solution of a differential equation 
can be formulated as a theorem on the existence of a fixed point 
of some mapping of the space of continuous functions into itself 
(under suitable hypotheses which we shall not give here). 

t J. Schauder, Der Fixpuriktsatz in Funktionalräumen, Studia Mathe-
matica 2 (1930). 
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Let us illustrate this by an example (cf. Chapter XVI, Exercise 
21). 

To solve the differential equation 

(30) dy/dx=f(x,y) 

with initial values x0, y0, means to find a function g of the variable 
JC such that 

dg(x)jdx = f(x, g(x)) and g(x0) = y0. 

In other words, we must find a function g such that 
X 

(31) g(x) = y0+ff(t,g(t))dt. 
X0 

Let us denote by h the mapping which assigns to each function 
φ the function 1\φ of the variable x defined by the condition 

X 

K(x) = yo+Jf(j,(p(tj)dt. 
xo 

The fixed point of this mapping is a function g such that 

hg = g, i.e. hg{x) = g(x) for every x, 

which means that the function g satisfies equality (31). 
Thus the proof of the existence of a solution of equation (30) 

reduces to the proof of the existence of a fixed point for the map­
ping h (which maps a certain function space into itself). 

COROLLARY. The surface Sfn of the set j f n + 1 = {z: \z\ < 1} 
is not a retract of it; i.e. there does not exist a continuous function 
f: 3f»+i -► Sf„ such that 

(32) f(x) = x for xe#>n. 
P r o o f . If such a function / existed, then the function 

(33) gix) = - / ( * ) 

would map JT„+i onto g(«#~n+1) c Jf „+1 without a fixed point, 
contrary to Brouwer's theorem (see Remark 2). 

In fact, if x e ^Γπ+1— Sfn then g(x) Φ x, since g{x)e9>
n. But 

if Λ: G Sfn then g(x) = —Λ: by virtue of (33) and (32), and hence 
we also have g(x) Φ x. 

This completes the proof of the corollary. 
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We shall now give another formulation of this corollary, using 
the concept of homotopy. 

D e f i n i t i o n . Let there be given two continuous mappings 
of the space X into the space Y, i.e. f,ge Yx. We say that these 
two functions are homotopic if there exists a continuous function 
A of two variables x and t, where 0 < t < 1 such that 

(34) h(x,t)eY, h(x,0)=f(x) and h(x9 l)=g(x). 

We can state this in more intuitive manner: there exists a 
continuous transition from the mapping / to the mapping g (we 
interpret the parameter t to be time). 

Let us note that if Y = £ (or more generally, Y = £% then 
the functions / and g are always homotopic. 

For it suffices to set 
h(x,t)=f(x)+t(g(x)-f(x)). 

If, however, Y = £fn, then this is no longer true. Namely, the 
identity and a constant are not homotopic. This means that if 

X=Y=y„, f(x) = x, g(x) = c, ce#>n9 

then there does not exist a continuous function h satisfying con­
ditions (34). 

For let us assume that such a function h exists and set 
f*(tx) = h(x9 1 - 0 for x e &„ and 0 < t < 1. 

Since every point of Jf „+1 can be represented uniquely in the 
form z = tx (with the exception of the point z = 0), therefore 
the function/* is continuous, i.e./* e (^π)^,,+1. And at the same 
time we have 

/*(*) = A(*,0) =/(*) = *, 
i.e. the function/* is a retract of Jfn+i to its surface. But this is 
impossible by the last corollary. 

Exercises 

1. Let S be an «-dimensional simplex lying in the space $n. Prove that the 
boundary of the simplex S is the union of all its faces of dimension < n. 

2. The continuum C consists of the closure of the graph of the function 
y = sin(l/x) for 0 < |*| < 1/π and of an arc joining the points (—1/π, 0), 
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(1/π, 0) outside of the rest of the continuum C. Prove that under every con­
tinuous mapping of the set C onto a subset there exists a fixed point. 

3. Let S = po ...p„ be a given simplex and let X be a given metric space 
covered with open sets: X =* G0 u ... u G„. 

Consider the mapping 

κ(χ) = λ0(χ) ·/><,+ ··. +λη(χ) ·/>„, 
where 

λι(*) = ρ(*. X-Gi)I{Q(x,X-G0)+ ... +ρ(Λ:,^-σπ)} 

(this is the so-called kappa mapping). 
Prove that 
(a) x(x)eS where ^(JC) is the /th barycentric coordinate of the point 

κ(χ) (i.e. conditions (2) and (5) are satisfied); 
(b) κ~ν(Ρί) = G/, where Pi has the same meaning as in Theorem 2 of § 3; 
(c) *-1G>i0.../>iic) = Gi0 r\ ... n Gik—[^JiGi, where the union is over 

all indices ι different from /0 , . . . , /*; 
(d) «(X-Gi) n ? i = 0 ; 
(e) if every intersection of m4-2 of the sets G0,..., Gn is void, then dim κ(Χ^ 

< /w. 
4. Let S = po ...pnbea. given simplex and let / be a continuous mapping 

of S into itself. We assume that, if p e Fr(S), then /(/?) e Fr(S) and that 
/(/?) # /?. Prove that f(S) = 5. 

Hint: Assuming that f(S) φ SV/Q denote by r the point belonging to S—f(S) 
and by g(p) the projection of the point f(p) from r into Fr(5). We then arrive 
at a contradiction of Brouwer theorem. 

5. Let S = po ... pn and let the sets G0, ...,G„, open in S, satisfy the con­
ditions S = G0 u ... u G„ and Gf c: pf for ι = 0 , . . . ,« . Then G0 n ... n G„ 

Äi«/: Make use of Theorem 2 of § 3, and of Exercise 9 of Chapter XIII. 
6. Let Ti denote the closure of the face lying opposite the vertex pu Prove 

that if the closed sets JF0, ..., Fn satisfy the conditions S = F0 VJ ... u f „ 
and Ti <= Fi, then F0 n ... n Fn^ 0. 

Hint: Use Exercise 5. 
7. Let S = po ...p„ and let / be a continuous mapping of S into itself 

such that f(Ti) <= Tj for / = 0 , . . . , w. Then f(S) = 5. 
.ίΓ/Λ/: Argue as in the solution of Exercise 4 and set F/ =#~l(7i)· Then 

apply Exercise 5. 
8. Show that the relation "/is homotopic to gn is an equivalence relation. 
9. If the homotopic mappings/0 and/ t have values in the space Y and if g0 

and g! are homotopic and defined on Y, then the composed mappings go ° / 0 
and g! °/i are homotopic. 

10. The spaces X and Y are said to have the same homotopy type if there 
are continuous mappings f: X-*Y and g: Y-+X such that g°f and fog 
are homotopic with the identity mappings. Show that the relation "X and 
Y have the same homotopy type" is an equivalence relation. 
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Show that 6" and Sm have the same homotopy type, while«/" and e9i?„_1 
have not. 

11. Let Xand Y be metric. Let X be compact. Then the mappings/, g e Yx 

are homotopic iff they can be joined in Yx by a continuum which is a conti­
nuous image of */. 

Hint: Use Exercise 8 of Chapter XVI. 
R e m a r k . Using the Theorem 2 of Chapter XVIII, § 5, one can replace 

the above condition by the existence of an arc joining / to g in Yx. 
12. Show that the Corollary of § 4 follows from the theorem (shown above) 

stating that on £fn the identity is not homotopic to a constant. 
Show also that this Corollary implies the fixed point theorem. 
Hint. Supposing that / : JT„fl -> Jfn+1 has no fixed point, consider for 

each x the intersection of Sfn with the ray containing the points f(x) and x, 
the first being its vertex. 



CHAPTER XXI 

CUTTINGS OF THE PLANE 

§ 1. Auxiliary properties of polygonal arcs 

As usual, we shall denote the plane of complex numbers by 
$2. By £f2 we denote the plane S2 extended by the point at 
infinity (called the Gauss plane); topologically £f2 does not differ 
from the surface of a three-dimensional ball. 

THEOREM 1. Any two points of a connected open set R (i.e. of 
a region) situated on Sf2 can be joined by a polygonal arc. 

The proof is completely analogous to the proof of Theorem 4 
of Chapter XVIII, § 4: by F we denote the set of all points of the 
region R which can be joined by a polygonal arc with the fixed 
point p e R and then we prove that this set is nonvoid and open 
and that the set R—F is open; the connectedness*of the set R 
implies that F = R. 

THEOREM 2. If L is a polygonal arc c 5^2, then the set $f2 —L 
is homeomorphic to the plane S2. 

The proof is by induction on the number n of links in the poly­
gonal arc. 

For n — 1 we have to prove that the Gauss plane minus a seg­
ment is homeomorphic with the Gauss plane minus a point. 

To this end, we describe about the centre of the segment L a 
sequence of concentric circles Kl9 K2, ... with radii tending to 0. 
Let Et, E2, ·.. be a sequence of ellipses (together with their in­
teriors) whose intersection is the segment L; we may assume here 
that E1 = K, (Fig. 17). 

We define the required homeomorphism h as follows: on the 
exterior of the circle Ex we set h(z) = z. Next we map the annulus 
E1—E2 homeomorphically onto the annulus K1—K2 without 
affecting the values oih on F r ^ ) ; in general, we mat) the annulus 
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Em—Em+1 onto Km— Km+l without affecting the values of h on 
F r (^ ) . 

The theorem is thus proved for n = 1. 

FIG. 17 

For n = 2 the polygonal arc L consists of two segments Ax 
and A2. We carry out a homeomorphic mapping of ^ 2 onto Sf2 > 
which leaves the segment Al invariant, but maps A2 into a recti­
linear extension of the segment Ax. The proof thus reduces to 
the case n = 1. 

A similar method allows us, in the case where L consists of 
n+l segments, to "straighten out" the last segment (perhaps 
contracting it) in order to obtain a polygonal arc consisting of n 
sides. 

R e m a r k s . Theorems 1 and 2 are valid in the space £n for 
arbitrary n. For n = 2 Theorem 2 can be sharpened by replacing 
the polygonal arc L by an arbitrary arc; namely, the complement 
of an arc contained in S2 is homeomorphic to the complement 
of a point. On the other hand, for n = 3 the theorem thus sharp­
ened is not valid: there exists in <f3 an arc, the so-called An-
tome's arc, whose complement is not homeomorphic to the com­
plement of a point. 

§ 2. Cuttings 

We say that the (closed or open) set A is a cutting of the space 
Sf2 (or: that it separates or cuts this space) if the set Sf2—A is 
not connected. 
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A separates £f2 between the points p and q if these points belong 
to distinct components of ¥2.—A. 

THEOREM. If the closed set A cuts Sf2 between p and q, then there 
exist two closed sets R and Q such that 

Sf2 = R\jQ, peR, qeQ and RnQ = A. 

Proo f . Let M be a component of the set Sf2—A which con­
tains the point p, and let N be the union of all the remaining com­
ponents of this set. Since the components of Sf2—A are open 
(see Chapter XVIII, § 2, Theorem 2) and the sets M, N and A are 
disjoint, then the sets R = M u A and Q = N u A are closed 
and, as can easily be seen, they satisfy the desired conditions. 

§ 3. Complex functions which vanish nowhere. Existence of the 
logarithm 

We shall denote by the letter 0> the plane minus the point 0, i.e. 

We say that the function fe0*A (i.e. continuous, defined on 
A, complex valued and everywhere different from 0) has a single-
valued continuous branch of the logarithm if it is of the form 

(1) /(z) = *?«<*), where u e (t 2)A 

(the function u is this branch). We then write 

More generally: i f / e ^ 4 and B c A, then we write 

f ~ 1 on B, 

if there exists a function u e (ß2)B such that 

(2) f(z) = eu^ for zeB. 

A fundamental theorem for the topology of the plane, which 
is our nearest goal, is the following theorem: 

EILENBERG THEOREM. Let A be a compact or open subset of 
the space 0>. A necessary and sufficient condition that the set A 
does not separate Sf2 between the points 0 and 00 is, that the identity 
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has, on the set A, a single-valued continuous branch of the logarithm, 
i.e. that there exists a function u e (6ΰ2)Α such that 

z==e<z) fa zeAt 

§ 4. Auxiliary theorems 

THEOREM 1. Let R denote a ray lying in the plane and emanating 
from the point 0. Then z ~ \ on the set $2—R. 

P r o o f . Let φ be the angle between R and the positive direc­
tion of the x-axis; we assume that 0 < φ < 2π. 

Since every point z of the plane is of the form z = \z\eix, we 
can assume that <p—2π < a < φ for points z not belonging to R. 
The function 

(3) w(z) = logz = log|z| + ia 

is continuous on S2—R and satisfies the identity 

z==:eu(z) f o r zes2-R. 

From this we obtain the following theorem. 
THEOREM ZIffe (S2-R) then f ~ 1 (whatever X is). 
For, the function u(f(x)) is continuous on the set X and 

f(x) = euMx» for xeX 

(where u is the function defined by the formula (3)). 
THEOREM 3. Let fe£Px. To every point x e X there corresponds 

a certain neighbourhood G such that 

(4) f~ 1 on G. 

P r o o f . Let R be a ray emanating from the point 0 and not 
containing the point f(x) (such a ray exists because f(x) Φ 0). 
Owing to the continuity o f / w e have 

R n f(G) = 0 , i.e. f(G) c S2-R 

for some neighbourhood G of the point x. 
This means that the function / restricted to G satisfies the 

assumption of Theorem 2. Hence, we have formula (4). 
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THEOREM 4. Let fe&>x, let a eX and let c be one of the values 
of logf{a). If f ~ 1, we can choose the function u satisfying for­
mula (1) in such a way that it satisfies the "initial" condition: 

(5) u(a) = c. 

P r o o f . Since / ~ 1, the function / is of the form 

f(x) = *·<*> where v e (£2)x. 

Let us set 

(6) u(x) = v(x)—v(a)+c. 

Hence, we have 
eu(x) = ev(x) . e-v{a) . ec =f(x)9 

since 
e-v{a) = lJf^ä) a n d ec = eiog/(a) = /(ö). 

Hence the function u satisfies condition (1). Moreover, formula 
(6) immediately implies formula (5). 

R e m a r k . The initial condition (5) in general does not de­
termine the function u uniquely. We have uniqueness, however, 
under the assumption that X is connected. This follows from the 
following theorem: 

THEOREM 5. If X is connected and 

(7) f{x) = <?"<*> = ev(*\ 

then v(x) = u(x)+constant. 
P r o o f . By virtue of (7), ev(x)~u(x) = 1, and therefore for every x 

there exists an integer k(x) such that v(x)—u(x) = 2k(x)ni. Hence, 
the function k(x) is continuous. Since k{x) is defined on a connec­
ted set and has integral values, it is therefore constant (for the 
continuous image of a connected set is connected (cf. Chapter 
XVII, § 2, Theorem 1)). 

THEOREM 6. If F is a closed subset of a metric space X and the 
function fe0*F satisfies the condition f ~ 1, then there exists 
a function g e£Px which is an extension of the function f and which 
satisfies the condition g ~ 1. 

P r o o f . By assumption, formula (1) is satisfied, and because 
of the Tietze Extension Theorem (Chapter XII, § 5, Corollary 1) 
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the function u can be extended to the entire space X. Let v be this 
extension. Hence, we have 

v e (S2)x and v(x) = u(x) for xeF. 

The function g(x) — ev^x) is the desired function. 
THEOREM 7. Let A and B be two closed or two open sets with 

connected intersection. Let fe&ÄKjB. If f ~ 1 on A and on B, 
then f ~ 1 on A u B. 

P r o o f . By assumption there exist two functions u e (S2)A 

and v e (S2)B such that 

ie"<*> for xeA, 
(8) Λ*) = {«·(.) for xeB 

Let A c\ ΒΦ 0 , and a e A n B. We can assume that v has 
been so chosen that v(a) = u(a) (cf. Theorem 4). Since the set 
A n B is connected, it follows (by virtue of Theorem 5) that 
v(x) = u(x) for every x e A r\ B. Hence, if we assume that 

\u(x) for xeA9 

1^(Λ:) for x eB, 

then—as can easily be verified (see Exercise 1 of Chapter XII)—the 
function w is continuous, i.e. w e (S2)A^B. As f(x) = ew(x) for 
XEAKJ B (cf. (8)), hence / ~ 1. 

We arrive at the same conclusion if A n B = 0 . 
THEOREM 8. Let fe£Px and let Cl9 C2, ..., Cn, ... be a sequence 

of connected sets such that 
(9) I = C 1 u C 2 u . . . u C „ u ..., 

and 

(10) C c Int(C+ 1) for * = 1 , 2 , . . . 

Iff~ 1 ö« Cnfor every n, then f ~ 1 few XJ. 
P r o o f . Let tf e Cx. By assumption we have 

(11) f{x) = <?«,,(*) for x e C „ and un e (£2)c». 

We can assume (see Theorem 4) that un(a) = MI(Ö). It follows, 
by virtue of the connectedness of the set Cl9 that un(x) = ι*ι(χ) 
for xeCl9 and since wn+i(tf) = un(ä), we have similarly 

(12) un+l(x) = un(x) for x e C „ . 
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Let 
(13) u(x) = un{x) for xeCn. 

Because of (12) and (9), formula (13) defines the function u 
uniquely for every x eG. This is a continuous function. For, 
if x0 e C„, then by virtue of (10) x0 e Int (C„+1); but since u(x) 
= "n+iW f°r x e Ci> the continuity of the function un+1 at the 
point x0 implies the continuity of the function u at this point (cf. 
Chapter XII, Exercise 2). Finally, formulas (11) and (12) yield 

f(x) = e«<*> for x e X, i.e. / ~ 1. 

THEOREM 9. Let G be an open subset of a metric separable (or, 
more generally, perfectly normal, see footnote on p. 242J and 
locally connected space. Let fe£PG. If 
(14) / ~ 1 on C 
for every closed connected subset of G, then f ~ 1 (on G). 

Proo f . 1. Let us first assume that G is connected. Then by 
Theorem 7 of Chapter XVIII, § 2, there exists a sequence R1, R2, ... 
of open connected sets such that 

(15) G = R1 u R2 u ... and Rn c Rn+l. 

Put Cn = Rn. Obviously conditions (9) and (10) are fulfilled 
(replacing X by G and C by R in (9)), and therefore / ~ 1 on G. 

2. If G is not connected, we consider its decomposition into 
components 
(16) G = Gx u G2 u ... u Gn u ... 

Since (/„ is connected and open (by virtue of Theorem 2 of 
Chapter XVIII, § 2), it follows from the part of the theorem al­
ready proved that 

f ~ 1 on Gn, 

i.e. f(x) = *»»<*) for JceG„, and ©„ e (<^2)σ«. 
Let e;(x) = z;n(jc) for x e Gn. Since the sets Gn are open, it fol­

lows (cf. Chapter XII, Exercise 2) that the function v is conti­
nuous. Hence we have 

(17) /(*) = *»<*>, where v e (<f 2)G, i.e. / - 1. 
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§ 5. Corollaries to the auxiliary theorems 
COROLLARY 1. If F^Faf and fe0>F, then f ~ 1. 
P roo f . By Theorem 3 of § 4, there is an open cover {Gj, 

teF, of F such that t e Gt and / ~ 1 on F n Gt. Since F is 
compact, we may assume that this cover is finite. Accordingly 
there exists a system of points 0 = a0 < at < ... < an = 1 such 
that / ^ 1 on the intersection F n (ak-i<tk) for k = 1, 2, ..., n. 

The intersection [F n {α0αλ)] n [F n (tfitf2)] being contained 
in {tfx} is connected (perhaps void). Hence we have / ~ 1 on 
F n (a0ai u a±a2) = F n (a0a2) by virtue of Theorem 7 of § 4. 

Similarly, / ~ 1 on F n (a0a2 u a2a3) = F n (#0^3)· 
By induction we prove that f ~ I on F n (a0a„) = F. 
COROLLARY 2. Let K be a square (with interior) <=. S2. Every 

function f e &K satisfies the formula f ~ 1. 
P roo f . Let us decompose the square K into a finite number 

of squares Ai9 A2, ..., An, enumerating them in such a way that 
the intersection 
(18) Ak n (At u ... u Ak^) 

is connected for fc = 2, 3 , . . . , Λ (cf. Fig. 18). We assume that 
these squares are so small that / ~ 1 on each of them individually 
(according to Theorem 3 of § 4). 
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FIG. 18 

Since/ ~ 1 on Ax and on A2 and since the intersection At n A2 
is connected, we have /~ 1 on Ax u A2. Reasoning by induction 
and using the fact that the intersection (18) is connected, we de­
duce t h a t / ~ 1 on Ax u ... u An, i.e. on K. 

COROLLARY 3. Every function fe^(^2) satisfies theformula f ~ 1. 
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P roo f . Let Kn be a square with side n and with centre 0. 
Since 

S2 = Kt u K2 u ... u Kn u ... 

and since / ~ 1 on #„ by virtue of the preceding theorem, we 
deduce from Theorem 8 of § 4, that / ~ 1 on 82. 

R e m a r k . Corollaries 1-3 hold not ^nly for the sets */, K 
and $2, but also for arbitrary sets which are homeomorphic to 
these sets; in particular, for arbitrary arcs, for a circular disk, 
for the complement (with respect to 5f2) of a polygonal arc. 

Let us carry out the proof for the arc. 
Let A be a homeomorphic mapping of the segment J onto 

the arc A. L e t / e ^ 4 . Substituting z = h(x) for x e / , we there­
fore have 

f(z) =fh(x) = eu& = euh~l& = e*z\ 

where v(z) = uh~x(z\ z e A. 
COROLLARY 4. Let C denote the circumference \z\ = r. There 

does not exist a single-valued branch of the logarithm on C; that is, 
z not ~ I on C. 

P r o o f . Let z0 = (r, 0), and A = C—{z0}. For z e A we 
have 

(19) z = re^z\ where 0 < α ( ζ ) < 2 π . 

Obviously the function a is continuous on A. 
Let us assume that our theorem is false. Then 

z = reiß^\ 

where ß is a real valued function continuous on C. 
Since A is connected we have (see Theorem 5 of § 4) : 

(20) a(z) = ß(z)+constant. 

It would then follow from this that the function a can be 
extended in a continuous manner onto C. But this is impossible. 
For, let limzrt = z0. If the points zn lie above the x-axis, then 

n->oo 
limoc(zn) = 0, and if they lie below the x-axis, then lima(z„) = 2π. 
Λ-*00 Π->00 
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§ 6. Theorems on the cuttings of the plane 

P r o o f o f E i l e n b e r g t h e o r e m (see § 3). Let A a&. 
We shall consider separately the case where A is a closed subset 
of £f2 and the case where A is an open set. 

1. A is closed. Let us assume that A does not separate £f2 be­
tween the points p = 0 and q = oo. We have to prove that 

(21) z ~ l on A. 

Since the points p and q lie in one of the components of the 
set £f2—A, there exists a polygonal arc L (cf. Theorem 1 of § 1) 
such that 
(22) L=pq a#>2-A. 

By Theorem 2 of § 1, the set 9>
2—L is homeomorphic to the 

plane S2, and hence by virtue of Corollary 3 of § 5 (cf. Remark) 
we have z ~ 1 on ̂ 2—L^ whence formula (21) follows, for A 
aSf2-L by (22). 

Let us assume next that A separates £f2 between the points 
p — 0 and q = oo. Hence, there exist (see § 2) two closed sets R 
and Q such that 

(23) y2 = RuQ, peR, qeQ, 

(24) RnQ = A. 

We shall show that the assumption (21) leads to a contradiction. 
In fact, from (21) it follows that (cf. Theorem 6 of § 4) 

5) 
Let 

6) 

us 

z = 

set 

700 

eu(z) on 

leu(.z) 

A, 

if 
if 

where u e 

zeQ, 
z e R and 

(<f 2 ) · ^ 

ζΦ 0. 

By (24) and (25), the function / is defined and continuous for 
every z Φ 0 (cf. Chapter XII, Exercise 1), i.e. 

(27) , / e ^2~[0], whence / - 1 

by virtue of Corollary 3 of § 5 (cf. Remark). 
Since the point 0 does not belong to β, there exists a disk 

with centre at the point 0 which is disjoint from Q and hence 
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contained in R. Let C be the circumference of this disk. Hence 
we have (cf. ( 2 7 ) ) / - 1 on C5 i.e. by (26) z ~ 1 on C. But this 
contradicts Corollary 4 of § 5. 

2. A is open. Let us assume that the set A does not separate 
the plane £f2 between the points p = 0 and q = oo, i.e. that 
these points lie in the same component T of the set Sf2 — A. Hence, 
if F = F c A, then the points p and # lie in one component of 
the set Sf2—F (namely in the one that contains the set T). As 
already proved, we therefore have z ~ 1 on F. From this, by 
virtue of Theorem 9 of § 4, we obtain formula (21). 

Let us assume next that the set A separates the plane Sf2 between 
the points p = 0 and q = oo, i.e. that these points belong to 
distinct components of the set Sf2 — A. Therefore, there exist two 
closed sets M and N (see Chapter XVII, § 6, Theorem 6) such that 

(28) y2-A = Mv N9 peM, qeN, 

(29) MnN=0. 

Since the space Sf2 is normal (see Chapter XII, § 4, Theorem 6) 
and because of formula (29), there exist two open sets R and 
Q such that 

(30) M c R, N aQ9 

(31) RnQ = 0. 

Let 

(32) F=6f2-(RvQ). 

The set F is therefore closed. Because of (30) and (28), we have 

(33) F= Sf2-{R u Q) c ^ 2 - ( M u Λ0 = A, 

p e R and q e Q. 
Thus ^ 2 — F is the union of two open disjoint sets R and Q of 

which one contains p and the other contains q (cf. (32)). The set 
F therefore separates y2 between these points. By virtue of the 
part of the theorem already proved, we have z not ~ 1 on F. 

But since F c A (because of (33)) we have a fortiori z not ~ 1 
on A. 
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§ 7. Janiszewski theorems 

THEOREM 1. Let A and B be two closed or two open subsets 
of &V If neither of these sets separates ¥2 between the points p and 
q and if the intersection A n B is connected, then the union A u B 
also does not separate Sf2 between these points. 

P r o o f . By means of the homographic transformation 

(34) h(z) = {z-p)\(z-q) 

we reduce the proof to the case where 

(35) /? = 0, g = o o . 

Hence let us assume that the equalities (35) hold. 
Since neither A nor B separates the plane Sf2 between the points 

p and q, the relations 

z ~ 1 on A and z ~ 1 on B 

hold, by the Eilenberg theorem. 
It follows from this, by virtue of Theorem 7 of § 4, that z ~ 1 

on A u B. And therefore, by the Eilenberg theorem, A u B 
does not separate £f2 between p and q. 

THEOREM 2. As before, let A and B be two open or two closed 
subsets of£f2. If the sets A and B are connected but the intersection 
Ar\ B is not connected, then the union A u B separates Sf2 between 
some pair of points. 

P r o o f . We use the usual notation 

Ae=ST2-A, Bc = y2-B. 

Let us assume—contrary to our theorem—that the set A u B 
does not separate 9*2, i.e. that the set Sf2—(A u B) = Ac n Bc 

is connected. We shall prove that then the assumptions of Theo­
rem 1 are satisfied by the sets Ac and Bc where p, q is an arbitrary 
pair of points belonging to A n B. 

In fact, both Ac and Bc are open or both are closed, and their 
intersection Ac n Bc is connected. It remains to prove that neither 
the set Ac nor the set Bc separates £f2 between the points p and q, 
i.e. that these points belong to some component of the complement 
of the set Ac, i.e. to some component of the set A, and, similarly, 
to some component of the set B. But this follows immediately 
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from the assumption that the sets A and B are connected and 
contain the points p and q. 

Applying the first Janiszewski theorem to the sets Ac and Bc
9 

we deduce that the union Ac u Bc does not separate ¥2 between 
p and q, i.e. that p and q belong to the same component of the 
set {Ac u Bc)c = A n B. But since the points p and q are arbitrary 
points belonging to A n B, it follows from this that the set A n B 
is connected, contrary to assumption. 

§ 8. Jordan theorem 

Every simple closed curve C c £f2 (i,e. every set homeomorphic 
to Sf\) decomposes Sf2 into two regions and is their common boun­
dary. 

We precede the proof with the following lemma. 
LEMMA. NO arc or closed subset of an arc separates Sf2. 
P r o o f . Let us assume, on the contrary, that some closed 

subset F of the arc L separates ¥2 between the points p and q. 
Applying the homographic transformation (34) we can assume 
that these points are p = 0 and q = oo. By the Eilenberg theorem 
we have z not ~ 1 on F. But this contradicts Corollary 1 of § 5 
(see § 5, Remark). 

P r o o f o f t h e J o r d a n t h e o r e m . Since the curve C 
can be represented as the union of two arcs whose intersection 
is not connected (namely consisting of two points) we deduce 
from the second Janiszewski theorem that C separates Sf2. 

Let 

(36) * i , i ? 2 , . . · 

denote the sequence of components of the set Sf2 — C. We have 
proved that this sequence contains at least two terms. It remains 
to prove that it does not contain more than two terms and that 

(37) F r ( Ä 0 = C = F r ( Ä 2 ) . 

We shall begin with the proof of formula (37). By virtue of 
Theorem 5 of Chapter XVIII, § 2, we have 

(38) Fr(^0 c C. 
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If formula (37) did not hold, then the set Fr(jRx) would be 
a closed subset of some arc (contained in C) and therefore, by 
the lemma, it would not separate £f2. But this is impossible 
because FrC^) obviously separates £f2 between every point 
of Rx and every point of R2. 

Hence the first of the identities (37) is proved and the second 
is obtained by symmetry. 

It remains to prove that the sequence (36) consists of two terms. 
Let us assume the contrary, i.e. that there exist at least three 

regions Ri9 R2, R3. Let 
(39) PjeRj for ; = 1,2,3. 

Let us assume that the region R3 is bounded. Let Z be a straight 
line passing through the point p3. This straight line therefore 
contains a segment L = ap3b lying in R3 with the exception 
of the endpoints which belong to C: 

(40) I c A 3 u { a } u {b}. 

Let aqxb and aq2b be the arcs of the curve C determined by 
the points a and b (see Fig. 19). 

Hence we have 
(41) aq1b u aq2b = C, 
and 
(42) aqxb n aq2b = {a, b}. 

Let 

(43) Ax = aqxb u Ly A2 = aq2b u L. 

It follows from formulas (42) and (43) that 
(44) Ax n A2 = L. 

Since qi9q2e C, we therefore deduce from (37) that the sets 
-Ki u {tfi} u ^2 and Rt u {#2} u i*2 are connected, and from 
(39) that they contain the points px and p2. Since these sets are 
disjoint from A2 and Ax respectively (cf. (40) and (43)), the 
sets Ai and A2 do not separate «^ between px and p2. From 
formula (44) we deduce by virtue of the first Janiszewski theorem 
that At u A2 does not separate £f2 between pt and p2 either. 
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But this is impossible because (cf. (41) and (43)) At\j A2 = C u L, 
and C separates £f2 between px and p2. 

02 

FIG. 19 

♦ R e m a r k 1. We can sharpen the Jordan theorem by intro­
ducing the interesting concept of accessible point. Namely, we 
say that a point p lying on the boundary of the region R is accessible 
from this region if there exists an arc containing the point p and 
lying entirely—with the exception of the point p—in the region R. 

An example of a point which is not accessible is the following. 
Let C be the closure of the curve y = sin(l/A;), 0 < |x| < 1, and 
let R be the complement of the continuum C; the point <0,0> 
is not accessible from the region R. 

One can prove that every point of a simple closed curve is 
accessible from both regions into which the curve separates the plane. 

In the general case of an arbitrary region R c Sn, the points 
which are accessible from R form a dense set on its boundary. 

For let p e ¥r(R). For ε > 0 there exists a point q e R at a 
distance < ε from p. On the segment qp let r be the first point 
(starting from q) of the set Fr(Ä). Therefore the segment qr 
lies—with the exception of the point r—entirely in the region R. 
Hence, the point r is accessible from R. At the same time \r—p\ 
< \q-p\ < e. 

*R e m a r k 2. Another generalization of the Jordan theorem 
is the following theorem (of Schönflies): 

Let C be a simple closed curve contained in Sf2. Every homeo­
morphism h of £f± onto C can be extended to a homeomorphism 
A* of the entire plane £f2 onto itself \ i.e. h*(6/'2) = 5^2 ond h*(p) 
= h(p)forpeSf,. 
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On the basis of this theorem one can prove that every topo­
logical property of «Ŝ i with respect to the plane 9?

2 (such as the 
number of components in <Ŝ 2 — &i afld the accessibility of points 
on the circumference) also holds for any simple closed curve. 

An analogous theorem concerns arcs lying in £f2 · every homeo-
morphism defined on the segment«/ can be extended to a homeo-
morphism of Sf2 onto if2. 

However, this theorem is not valid for arcs (nor for simple 
closed curves) lying in S3. The Antoine arc referred to in the 
remark at the end of § 1 is a counter-example. 

* R e m a r k 3. Jordan theorem is a special case of the following 
theorem on the invariance of the number of components of the 
complement of a closed set lying on the sphere $fn (i.e. on the 
surface of the unit ball of Euclidean space $n+1): ifF = F c £?n 

and if the set Sfn—F has k components, then for every homeo-
morphism h: F-*£fn the set £fn—h(F) also has k components. 

The proof of this theorem can be carried out making use of 
the concept of homology extended to arbitrary compact sets.1" 

As for polyhedra, one proves that the Betti numbers are 
topological invariants and that the (n—l)th Betti number of 
the closed set F lying in 5̂ „ equals the number of components 
of the set Sfn—F minus 1. 

For sets lying in <^2 the proof of the above theorem can be 
carried out considering the function space 0>F to be a group. 
Namely, the group operation is defined as follows. 

Le t / 1 ? / 2 and / 3 be three elements of the space g?F. We assume 
that f3 =fi'f2 when f3(z) = / i ( z ) -f2(z) for every zeF. 

The functions / satisfying the condition / ~ 1 form a subgroup 
of the group ^ F , as can easily be verified. Let us denote it by 
G and let us consider the quotient group B(F) = 0>F/G. 

The rank of this group (the maximal number of linearly in­
dependent elements) equals the number of components of the 
set Sf2—F less one. 

Let us note finally that the proof of the invariance of the property 

t Another proof was given by K. Borsuk. This proof requires an apparatus 
which goes significantly beyond the scope of this book. See Fundamenta 
Mathematicae 37 (1950), pp. 217-241, and my Topology, vol. IT, p. 495. 
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of a closed subset F of yn of separating ifn can be carried out 
without the use of homology. For, the connectedness of £fn— F 
and of «5̂ n_i are equivalent.* 

Exercises 

1. Prove that zn is not ~ 1 for n φ 0 on the circumference of a circle with 
centre 0. 

2. Prove that if fe ^ 1 t h e n / - 1. 
Hint: Decompose «9% by the equator and apply Corollary 2 of § 5. 
3. Prove that the star-shaped curve consisting of n arcs having one end 

in common, and having no other points in common, does not decompose the 
plane. 

4. Prove that a curve consisting of three arcs having common endpoints, 
and having no other points in common (see Fig. 19), decomposes the plane 
into three regions. 

5. A connected space is said to be unicoherent if A r\ B is connected 
for every decomposition of the space into two closed connected sets A and l i 
Prove that the circular disk and the space Sf2 are unicoherent. 

6. Prove that if C is a subcontinuum of the plane SP2 (or more generally, 
of a connected unicoherent space), and R is a component of the complement 
of C, then Fr(R) is a continuum. 

Hint: Use Theorem 4 of Chapter XVII, § 3. 
7. Let the space X b e a locally connected unicoherent continuum. If the 

closed set F separates this space between the points a and b, then it contains 
a subcontinuum which also separates the space between these points. 

Hint: Consider the component R of the set X—F which contains the 
point a and the component P of the set X—R which contains the point b9 
and apply Exercise 4, above, and Exercise 9 of Chapter XVIII. 

8. Under the preceding assumptions on the space X, let A and B be two 
disjoint closed sets neither one of which separates X between p and q. Prove 
that A\J B does not separate the space between p and q either. 

9. Show by an example that without the unicoherence assumption the 
theorems of Exercises 6-8 do not hold. 

10. Let the function fe^i^x satisfy the condition/(-z) = -f(z) for 
every z e ^ j . Then the condition/~ 1 is not satisfied. 

11. The Borsuk-Ulam theorem on antipodes. For every function fe (β2)**2 

there exists a point z0 such that/(z0) =/(—z0). 
Hint: For every point/? belonging to the disk Jf2 with radius 1 and centre 0r 

let us denote by p+ the point belonging to the "upper half" of Sf2i whose 
projection is p. Let h(p) =f(p+)—f(—p+). Let us assume, contrary to the 
assertion of the theorem, that h(p) Φ 0 for every p. Show (making use of 

t Borsuk theorem, see Monatshefte für Mathematik und Physik 38 (1931),. 
p. 218, and Mathematische Annalen 106 (1932), p. 239. Cf. also P. Alek-
sandrov, Dimensionstheorie, § 5, Mathematische Annalen 106 (1932), p. 218 
or my Topology, vol. II, p. 470. 
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Corollary 2, § 5, and of the remark immediately following it) that this as­
sumption leads to a contradiction to the theorem of Exercise 10. 

12. A region R c SP2 is said to be simply connected if the set Sf2—R 
is connected. 

Prove that if a simply connected region R <^ &*2 contains a simple closed 
curve C, then it also contains one of the two components of its complement. 
In particular, if R does not contain the point at infinity, then it contains 
a bounded component of the set Sf2—C. "~" 

Hint: Note that the set Sf2—R is contained in one of the components 
of the set 5^2-C. 

R e m a r k . The property of simply connected regions formulated in the 
above theorem is also a sufficient condition for simple connectedness, as can 
be proved. 

13. Let R be a simply connected region contained in Sf2, and let L be an 
arc which, except for its endpoints, lies in R. Prove that the arc L separates 
the region R (i.e. that R—L is not connected). 

14. Prove the following more general theorem: let R be an arbitrary region 
contained in £?2, and let L be an arc which, except for its endpoints, 
lies in R; a necessary and sufficient condition for this arc to separate the region 
R, is that both its endpoints belong to the same component of the set £f2—R. 

Hint: In the proof of the necessity of the above condition make use of 
Theorem 6 of Chapter XVII, § 6, and of the first Janiszewski theorem. Make 
use of the second Janiszewski theorem in the proof of its sufficiency. Compare 
my Topology, vol. II, pp. 438 and 562. 

15. If C is a continuum contained in £f2, then each of the components 
of the set Sf 2—C is a simply connected region. 

Hint: Cf. Theorem 4 of Chapter XVII, § 3. 



SUPPLEMENT 

ELEMENTS OF ALGEBRAIC TOPOLOGY 

Introduction 
This Supplement contains an introduction to homology theory, 

which constitutes one of two basic branches of algebraic topology 
(the other being homotopy theory). We continue the consider­
ations of Chapter XX, where the concepts of simplex, simplicial 
subdivision, etc., were defined; unlike the other parts of this book, 
however, the Supplement makes use of algebraic concepts, notably 
those of group theory. This explains the name "algebraic" as 
opposed to "point set" topology. 

We shall restrict the presentation to the definition and funda­
mental properties of homology groups of polyhedra; this, however, 
will suffice to introduce a number of important concepts and 
illustrate the role of algebraic tools. The interplay of various 
branches of mathematics which we encounter here is worth 
noting: topology is a powerful tool in classical analysis, which, 
in turn, is connected with technology and natural sciences via 
its applications, while topology itself uses methods of algebra 
and set theory. 

When writing this Supplement we utilized Chapter XXI 
(complexes, chains, homologies) of the previous edition of this 
book; the text was enlarged and supplemented. 

The reader who would like to extend his knowledge of algebraic 
topology is referred to the following list of most popular books 
on the subject. Some of these books are primarily of historical 
interest, but those by Spanier and by Hilton and Wylie merit 
particular attention. The author of this Supplement is particularly 
indebted to the latter. 
P. S. A1 e x a n d r o v, Combinatorial Topology, Graylock, 

Rochester, 1956 and 1957. 
D. G. B o u r g i n, Modern Algebraic Topology, MacMillan, 

New York, 1963. 
S. E i 1 e n b e r g, and N. S t e e n r o d , Foundations of Algebraic 

Topology, Princeton University Press, Princeton, 1952. 
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P. J. H i l t o n , and S. W y 1 i e, Homology Theory, Cambridge 
University Press, Cambridge, 1960. 

S. T. H u , Homotopy Theory, Academic Press, New York, 1959. 
Homology Theory: A First Course in Algebraic Topology, 
Holden-Day, San Francisco, 1966. 

L. S. P o n t r y a g i n, Foundations of Combinatorial Topology, 
Graylock, Rochester, 1952. 

H. S e i f e r t and W. T h r e If a l l , Lehrbuch der Topologie, 
Teubner, Leipzig, 1934, and Chelsea, New York, 1947. 

A. H. S p a n i e r , Algebraic Topology, McGraw-Hill, New York, 
1966. 

A. H. W a 11 a c e, An Introduction to Algebraic Topology, 
Pergamon Press, Oxford, 1957. 

§ 1. Complexes. Polyhedra. Simplicial approximation 

A simplicial complex (or shortly: a complex) will be defined 
as a finite family of simplexes (lying in a Euclidean space of 
a fixed dimension) containing all the faces of its simplexes, and 
such that the intersection of the closures of each two of its elements 
is either empty or equal to the closure of their common face. 
The dimension of a complex will be defined as the least upper 
bound of the dimensions of its simplexes. 

The family of all the faces of an arbitrary simplex is an example 
of a simplicial complex; the family of all the triangles in Fig. 16 
—their sides and vertices constitute another example—is a two-
dimensional complex. 

THEOREM 1. A family of simplexes lying in a Euclidean space 
of a fixed dimension, containing with each simplex all its faces, 
forms a simplicial complex if, and only if, its elements are disjoint. 

P r o o f . If simplexes S and S' belong to a complex K and 
S n S' Φ 0 , then S and S' have a common face S" such that 
S n S' = S". If *S"' were a proper face of one of these simplexes, 
we would have either S" n S = 0 or S" n S' = 0 (see formula 
(4), Chapter XX^ § l)± and S" n (S n S') = 0 , contrary to the 
condition S n S' = S" and S n S' φ 0 . We have, therefore, 
S=S" = S'. 

In view of the quoted formula, the fact that the elements of 
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the family in question are disjoint implies that the intersection 
of the closures of any pair of its elements is either empty or equal 
to the closure of their common face. 

The union of all Simplexes of a complex K will be called the 
underlying polyhedron of K and will be denoted by |Jt|. It follows 
from the definition of a complex that if S e K, then Scz |JST|, and 

0 ) \K\ = UseKS) 

consequently, every polyhedron is compact. 
The representation of a polyhedron in the form of \K\ is not 

unique. Each complex K for which \K\ is a given polyhedron 
will be called a triangulation (or simplicial subdivision) of this 
polyhedron. 

A subset of a complex K which itself is a complex (i.e. it 
contains all the faces of its simplexes) will be called a subcomplex 
of K. An example of a subcomplex is provided by the set of all 
simplexes of a given complex which are of dimension < n; this 
subcomplex will be called the n-dimensional skeleton of the complex 
in question. The elements of the O-dimensional skeleton are 
called vertices of the complex. We easily verify that the union 
and the intersection of the subcomplexes Ki and K2 are sub-
complexes and that 

\KX u K2\ = \KX\ u \K2\ and \K, n K2\ = \K,\ n |JT2|. 

Any subset K0 of a polyhedron K such that for a certain trian­
gulation K of K there exists a subcomplex K0 whose underlying 
polyhedron is K0 will be called a subpolyhedron. Subpolyhedra 
are closed sets. 

Let K be a given simplicial complex. For each S e K the bary-
centric subdivision K(S) of the set S is a simplicial complex. 
We shall show that the family 

(2) K'=USCKK(S) 

is also a simplicial complex. 
Note first that all simplexes of the family K' lie in a Euclidean 

space, the same as that in which lie the elements of the complex K. 
Next, if a simplex belongs to K\ the same holds for all its faces, 
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since each of the complexes K(S) has this property. Let us now 
consider a pair S[, S'2 of elements of K' such that S[ n S'2 Φ 0 . 
Let SI e K(Si), where Si e K,i = 1,2, and let S3 be the common 
face of Si and S2 such that Sx n S2 = S3. We have, therefore, 
0 Φ S[ n S2 c S3 and Si n S3 # 0 # S2 n S3. Since the 
barycentric subdivision of S determines the barycentric subdivision 
of the closure of every face of S, we have S[, S2 e K(S3) and 
S[ = S2. In view of Theorem 1 it follows that K' is a simplicial 
complex. 

The complex ΛΓ(1) = Κ' will be called the (first) barycentric 
subdivision of the complex K. Further barycentric subdivisions 
are defined by the relation 

Kin) Α (jfOi-Dy f o r n = 2 , 3 , . . . 

It can easily be seen that if L is a subcomplex of K, then L("} 

is a subcomplex of Kin\ 
From (1) and (2) it follows that 

Ι ^ Ί = Us'sK'S' = USeK^JS'eK(S) S' = \JseKS = \K\9 

hence the underlying polyhedra of a complex K and all its bary­
centric subdivisions coincide. Theorem 2, Chapter XX, § 2, 
implies: 

THEOREM 2. For any simplicial complex K and any ε > 0 there 
exists a natural number n such that the Simplexes of the barycentric 
subdivision K{n) have diameters < ε. 

COROLLARY. Every polyhedron has, for any ε > 0, a triangulation 
with Simplexes of diameters < ε. 

A mapping φ of the set of vertices of a complex K into the 
set of vertices of a complex L will be called a simplicial map, 
if for every simplex p0 ... pneK the points φ(ρ0), ···? ψ(ρη) are 
vertices of a certain simplex in L; this simplex can have dimension 
smaller than n9 since different vertices of K can be mapped into 
the same vertex of L. By assigning to each simplex p0 ... pne K 
the simplex in L whose set of vertices is {<p(p0), ••-,φ&η)} w e 
define a mapping of the complex K into the complex L; this 
mapping is an extension of φ and will be denoted by the same 
letter φ. The term "simplicial map" will be used both for the 

file:///JseKS


ELEMENTS OF ALGEBRAIC TOPOLOGY 295 

mapping of the set of vertices, as well as for the corresponding 
mapping of the complex. We easily verify that the composition 
of simplicial maps is again a simplicial map. 

Simplicial maps φ, ψ: Κ -* L will be called contiguous if for 
every S e K there exists a simplex T(S) e L such that <p(S) and 
y)(S) are faces of T(S). 

Let K be an arbitrary simplicial complex. Let us assign to 
every vertex b(S) of the complex K' one of the vertices of the 
simplex S e K. If b(S0) ... b(S„) is a simplex in K\ we may assume 
that S0 > ... > Sn, which implies that all the vertices of the 
simplexes S0, ...,Sn are vertices of *SO, and, consequently, our 
mapping is a simplicial map. Mappings obtained in this manner 
will be called standard translations of K' in K. Every two standard 
translations are contiguous. Iterations of standard translations 
will be called standard maps. 

The set 

StK(p) = UP<SSKS CZ \K\ 

will be called the star of the vertex p e K. Since the family 
{Se K: (p < S)'} is a subcomplex of K, the complement of a 
star is a subpolyhedron of |JT|, and stars are open sets in |JT|. 

Note that 

(3) ifp<SeK, then StK\b{S)) cz StK(p). 

Indeed, if a simplex b(S0)... b(Sn) eK\ where »SO > ... > S„ 
contains b(S) among its vertices, then p < S0 and b(S0) ... b(Sn) 
^S0cz StjrGO. 

THEOREM 3. The intersection of stars StK(p0) ΓΛ ... n StK(p„), 
where pt Φ pj for i Φ j is non-empty if and only if p0 ... pneK. 

P r o o f . If StjrOo) n ... n StK(pn)^ 0, then there exist 
simplexes S0, ..., SneK such that px < St for i = 0, 1, ..., n 
and a point/? e S0 n ... n Sn. Since the simplexes of the complex 
K are pairwise disjoint, we have S0 = St = ... = Sn = S and 
Pi < S for / = 0, 1, ..., n. Thus, p0 ... pn is a face of the simplex 
S and, consequently, is an element of K. 

If /?o ..·/?„ e K, then p0 ...pn c St^OO for i = 0, ..., n, and 
StAr(/?o)n ... n StK(pn)^ 0. 
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Let / be a continuous mapping of a polyhedron K into a poly­
hedron L. We shall define a simplicial approximation of / as 
a triple (K, L, φ) where JSTand L are triangulations of K and L and 
99 is a function mapping the set of vertices of K into the set of 
vertices of L, such that for every p e K 

stjKp) ^ / - ' ( s t * (?(/>))). 

Applying Theorem 3 twice we show that for any simplicial 
approximation (K, L, φ) of a continuous mapping/, the function φ 
is a simplicial map; we will call it also a simplicial approximation 
o f / 

THEOREM 4. If (K, L9 φ) and (K, L, ψ) are simplicial approxi­
mations of a mapping f: K-+ L, then φ and ψ are contiguous. 

P r o o f . For every simplex S = p0 ... pneK we have for 
1 = 0, ..., n: 

Skip,·) <=/-'(st^OO;,·))) ny-'CstLfoö»,))) 

=/- 1 (St t ( 9 >O f ) )nSt L (y- (A)) ) . 

Consequently, 

0^ nustKiPd cr^nr-ost^fo)) n SU^A-O) 
and 

StLOOo)) n StL(v(p0)) n ... n StL(^(/?w)) n StL(^(p„)) # 0 . 

As 7(5) e l we may take the simplex with the set of vertices 

{<P(PO) 3 ψ(Ρο), · · ·, <K/0, v(/V>} · 

THEOREM 5. If(K, L, φ) is a simplicial approximation of a map­
ping f and (L, Μ, ψ) is a simplicial approximation of a mapping g, 
then (K, M, ψφ) is a simplicial approximation of the composition gf 

P r o o f . For an arbitrary vertex p e Kv/e have 

ShGO ^/-'(suOOO)) 
and 

StL(<p(p)) <= g - i (S t M ( W (p) ) ) . 
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Therefore 

StK(p) czrig-*(StM(yj<p(j>)) = (g/T^StMCwCp)))· 

It follows from (3) that standard translations are simplicial 
approximations of the identity. This fact, together with Theorem 
5, implies the following two theorems: 

THEOREM 6. If (K, V 9 <p) is a simplicial approximation of a map­
ping f, and a is a standard translation of L' in L, then (K, L, σφ) 
is also a simplicial approximation off 

THEOREM 7. If (K9 L, φ) is a simplicial approximation of a 
mapping fand a is a standard translation ofK' in K, then (Κ', L,<pa) 
is also a simplicial approximation off 

Theorems 4 and 7 imply: 

THEOREM 8. If (K, L,<p) and (K(m),L,y>) are simplicial ap­
proximations of the same mapping, and a: Kim) -* K is a standard 
map, then φσ and ψ are contiguous. 

THEOREM 9. For every polyhedron L = \L\ there exists an ε > 0 
such that iff and g are continuous mappings of an arbitrary poly­
hedron K = \K\ into L, and\f—g\ < ε, then f and g have a common 
simplicial approximation (Kim\ L, φ) for a certain m > 1. 

P r o o f . The family of sets {Stx,(#)}, where q is a vertex of L, 
forms an open cover of the space L; let ε be the Lebesgue 
coefficient of this cover (see Theorem 7, Chapter XVI, § 5). 
If \f—g\ < ε> ^ η the family of sets of the form / _ 1 (St^fa)) n 
n g - 1 (Stz,(#)), where q is a vertex of L, forms an open cover of K. 
Indeed, for every x e K there exists a vertex q e L such that 
{f(x),g(x)} <= StL(q), i.e. x ef-\StL(qj) n g'^St^q)). By Theo-
rem 2 and the theorem on the Lebesgue coefficient there exists 
a natural number m such that for every vertex p of the complex 
K{m) one can find a vertex <p(p) e L such that 

StK(m)(p) czf-*(StL(<p(p))) n S - ' C M P G O ) ) · 

The mapping φ is a simplicial approximation off and g. 
COROLLARY. Every continuous mapping of a polyhedron into 

a polyhedron has a simplicial approximation. 
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§ 2. Abelian groups 

In this section we shall present those notions and theorems of 
the theory of groups which will be used in the construction of 
homology groups of simplicial complexes. 

D e f i n i t i o n 1. LetG be a given set, and suppose that a 
binary operation (to be called addition) is defined, which to every 
pair a, b of elements of G assigns an element a+b of G (to be 
called the sum of a and b). We say that G is a commutative (or 
Abelian) group if the following conditions (axioms of group theory) 
are satisfied: 

(i) (a+b)+c = a+Q>+c\ 
(ii) a+b = b+a, 

(iii) there exists a unique element of G (denoted by 0) such that 
a+0 — a for every a in (7, 

(iv) for every a in G there exists a unique inverse element (denoted 
by —a) such that a+(—a) = 0. 

Given aeG and a natural number m we denote by ma the ele­
ment of G obtained as the result of m-fold addition of a (in view 
of (i) this element is well defined). Moreover, we put 0a = 0 
and (—m)a = m(—a). We easily verify that 

ma+na = (m-\-ri)a 

for any integers m and n. 

EXAMPLE 1. The set of all integers forms a group with respect 
to the operation of addition, but does not form a group with 
respect to the operation of multiplication, since axiom (iv) does 
not hold in the latter case. 

EXAMPLE 2. The set of complex numbers z such that | z j = 1 
(i.e. numbers of the form eix) forms a commutative group with 
respect to multiplication. 

EXAMPLE 3. The set of continuous non-vanishing complex-
valued functions / defined on a space X forms a commutative 
group if the group operation is defined as 

(h = / ι -Λ) = AxlfzW = / i (*)- /a(*) l · 
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D e f i n i t i o n 2. If a subset G0 of G forms a group with 
respect to the operation in G, i.e. if 0 e G0 and a9b eG0 implies 
(a+b) 6 G0, (—ä) e G0, we say that G0 is a subgroup of G. 

The equivalence relation mod G0 for elements of the group G 
is defined as 

(4) [a~b (mod G0)] = [(a-b) e G0]. 

THEOREM 1. Relation (4) is an equivalence relation, i.e. it is re-
flexive, symmetric and transitive. 

P r o o f , a ~ a (mod G0), i.e. a—a = 0 e G0 (since G0 is a sub­
group of G). Next, 

[* - Z> (mod G0)] = [(a-b) e G0] = [(b-a) e G0] 

== [b ~ a (mod G0)]. 

Let a ~ b (mod G0) and b ~ c (mod G0), i.e. (#—Z>) e G0 and 
(b—c) e G0. Then (a—b)+(b—c) e G0, whence a ~ c (mod G0). 

Relation (4) induces a partition of the elements of G into dis­
joint sets of equivalent elements. These sets are called cosets 
mod G0; thus, cosets mod G0 are equivalence sets of the rela­
tion a ~ b (mod G0) (see Exercise 19, Chapter IV). 

Let p(a) denote the set of elements equivalent to amodG0i 

i.e. the coset mod G0 containing a. We have 

[p(d) = P(b)] s [a~ b (mod G0)]. 

In the class of cosets mod G0 we define addition by the relation 

(5) p(a)+p(b)=p(a+b). 

We easily prove that addition of cosets as defined by (5) does 
not depend on the choice of elements of these cosets, and that 
the class of cosets with addition as defined by (5) forms a commu­
tative group. 

D e f i n i t i o n 3. The group of cosets mod G0 will be called 
the quotient group of G with respect to G0, and will be denoted 
by G/G0. The zero of the group GjGQ is G0. 

D e f i n i t i o n 4. Let G and H be two commutative groups. 
A transformation. f:G->H will be called a homomorphism if 

(6) f(a+b)=f(a)+f(b). 
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If, in addition,/ is one-to-one, we c a l l / a monomorphism. If/(G) 
= H, we say t h a t / i s an epimorphism. Transformations which are 
at the same time monomorphisms and epimorphisms are called 
isomorphisms. 

Compositions of homomorphisms (monomorphisms, epimor­
phisms, isomorphisms) are homomorphisms (monomorphisms, 
epimorphisms, isomorphisms). A homomorphism / is an isomor­
phism if, and only if, it has an inverse; then the inverse is also an 
isomorphism. 

EXAMPLE 4. The transformation mapping a group G into the 
zero of a group H is obviously a homomorphism; we call it the 
zero-homomorphism of G into H and denote it by 0. The transfor­
mation of the group of integers into the group of complex numbers 
of the form eix defined by assigning the complex number eim to 
the integer m is a monomorphism. For any group G the identity, 
i.e. the transformation defined by the relation f(a) = a is an 
isomorphism of G onto itself; this isomorphism will be denoted 
by i c . 

If there exists an isomorphism of G onto H, we say that these 
groups are isomorphic, and write 

[G » H. 

Clearly, the relation of isomorphism is reflexive, symmetric and 
transitive, i.e. it is an equivalence relation. 

In much the same way as topology deals with invariants of 
homeomorphisms, the theory of groups deals with invariants of 
isomorphisms. From the point of view of the theory of groups, 
two isomofphic groups have the same properties. The role of 
continuous functions in topology is played in the theory of groups 
by homomorphisms. 

THEOREM 2. Iffis a homomorphism of a group G into a group H, 
then 

1°. /(0) = 0, 
2°. A-a) = -/(a), 
3°. the image I m / = / ( G ) is a subgroup of H 
(on the left-hand side of 1° the symbol 0 denotes the zero element 

of the group G and on the right-hand side that of the group H). 
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Indeed, /(0) = /(0+0) = /(0)+/(0), whence /(0) = 0. Thus, 
0 = / [*+( -* ) ] =f(ä)+Ä-ä), and f(-a) = - /(a) . Relation 3° 
follows from (6) and 2°. 

THEOREM 3. For any subgroup G0 of a group G, the function map­
ping aeG into p(a) e G/G0 is an epimorphism. 

We shall call it the natural epimorphism p: G -» G/G0. 
D e f i n i t i o n 5. The kernel of a homeomorphism f:G-+H 

is defined as the set 
Ker /={x: / (x ) = 0}. 

THEOREM 4. Iff is a homeomorphism of a group G into a group H, 
then 

1°. Ker/ is a subgroup of G, 
2°. / is a monomorphism if, and only if, Ker/ = 0, 
3°. the groups G/Ker/ and Im/ are isomorphic. 
Proof . If f(a) = 0 and f(b) = 0, then f(a+b) = 0; if f(a) 

= 0, then f(—a) = —f(a) = 0, which proves that the kernel is 
a subgroup. 

If/ is a monomorphism, then Ker/ = 0. If Ker/ = 0, and f(x) 
= f(y), then /(*->>) = / ( x ) - / 0 0 = 0 and x = y. 

The isomorphism between the groups G/Ker/ and Im/ can be 
obtained by assigning to the element p(ä) e G/Ker/ the element 
f(a)eH (note that if p(a) = p(a% then/(a) =f(a')). 

Suppose now that we are given a homeomorphism / : G -► H 
and subgroups G0 <=.'G and HQ a H such that /(G0) ^ H0. If 
a ~ £ (mod G0), then f(a) ~ f(b) (mod H0), since f(a)—f(b) 
= f(a—b) e/(G0) <= //0 . The image under/of every equivalence 
set of the relation a ~ b (mod G0) is thus contained in a certain 
equivalence set of the relation of equivalence mod H0. If we 
assign to cosets mod G0 the cosets mod H0 containing their images 
under/ we define in fact the transformation/': G/G0 -> HjH0, 
such that pf—f'p, i.e. that the diagram 

G — ->/ / 

is commutative. 
G/G'o > # / # ο 
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Since 
f'0>(a)+p(b)) =f'p(a+b)=pf(a+b) = pf(a)+pf(b) 

=r(p(a))+f(p(b)), 
the transformation/' is a homomorphism, called the homomorphism 
induced by f. We note that if/is an isomorphism, and/(G0) = H0, 
then/' is an isomorphism of the group G[G0 onto H/H0. 

If/, g: G -» //are homomorphisms, the functions/+g: G -> H 
and /—g: G -+ H defined as 

(7) (f+g)(a)=M+g<fi), (J-S)(a)-Aa)-g(fl) 
are also homomorphisms, to be called the sum and the difference 
of the homomorphisms/and g respectively. 

D e f i n i t i o n 6. The Cartesian product GXX ... xGn of 
groups Gl9..., G„ with the addition defined as 

( Ä I , . . . , Ö » ) + ( * I , . . . A ) = ( Ö I + * I , . . . , Ö » + * » ) 

will be called the direct sum of the groups G±, ..., Gn. 
We can easily see that the operation defined above satisfies 

conditions (i)-(iv); the zero element is (0, ...,0), the inverse of 
(al9 ...,tf„)is (-*! , . . . , -an). 

D e f i n i t i o n 7. We shall define the free group generated by 
a non-empty set A as the set of all integer-valued functions defined 
on A each of which assume non-zero values only for a finite number 
of elements of A, with the addition of functions (satisfying (i)-
(iv)) defined by the first of formulas (7). Elements of A will be 
called generators of the free group. In addition, we assume that 
the empty set generates the zero group, i.e. the group containing 
only the element 0. 

If we introduce for every a e A a function ä defined as 

{ 1 for x = a, 
0 for χΦα 

we can represent elements of the free group generated by A in 
a unique way as 

m1ä1+ .,. +mnän9 where al9 ...9aneA, 
addition of elements being performed by adding coefficients at 
the corresponding functions. 
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In the sequel we shall indentify the function ä with the gener­
ator a, and the elements of the free group generated by A will be 
identified with formal linear combinations of the form 

mla1+ ... +mnan where al9 ..., an eA. 

Addition of such linear combinations consists in adding coeffi­
cients at the correponding generators. Thus, the free group con­
tains its generators. We can easily see that any free group with n 
generators is isomorphic with the direct sum of n copies of the 
group of integers. 

THEOREM 5. Every mapping of the set of generators of a free 
group into any group H can be uniquely extended to a homomorphism 
of this group into the group H. 

Proo f . Let A be the set of generators of a free group G, and 
let / be a mapping of A into a group H. The required extension 
of/is given by the homomorphism/: G -> H defined as 

7("*itfi+ ... + mnan) = m1f(a1)+ ... + m„f(an). 

§ 3. Categories and functors 
In mathematics we often study a certain class of objects—which 

are generally sets satisfying certain additional conditions, such 
as the performability of certain operations in them under definite 
axioms—and a suitably chosen class of transformations of those 
objects, for instance transformations preserving the operations 
in question. We encounter such situations in the set theory (ob­
jects—all sets, transformations—all functions), in topology (ob­
jects—topological spaces, transformations—continuous functions) 
or in group theory (objects—groups, transformations—homo-
morphisms). The concept of category supplies an abstract descrip­
tion of such a situation. 

D e f i n i t i o n L A category will be defined as a class (£ (see 
Chapter III, § 7)—whose elements will be called objects—given 
together with 

(i) a set M(A, B) assigned to each pair of objects A, B e (£; 
elements of M(A, B) will be called morphisms of A into B; 

(ii) the operation of composition of morphisms, which assigns 
to each triple A,B9C e(£ a mapping of the Cartesian product 
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M(A, B)x M(B9 C) into M(A9 C). The composition of morphisms 
fe M(A9 B) and g e M(B, C) will be denoted by g of (we shall 
also write gf); the morphism go/belongs to M(A9 C). 

We shall assume that 
(iii) iffe M(A9 B)9 g e M(B9 C) and h e M(C9 D)9 then 

ho(gof)= (hog)of; 

(W)for each object A eQi there exists a morphism eA e M(A, A)9 

called the identity morphism, such that 

fo eA =ffor fe M(A,B) and eA of = ffor fe M(B9 A). 

EXAMPLE 1. Taking as (£ the class of all sets, and as M(A9 B) 
the class of all functions / : A -► B9 we define the category of all 
sets. The composition of morphisms is here the usual composi­
tion of functions, and the identity morphism is eA(x) = x. 

EXAMPLE 2. The category of topological spaces is defined by 
taking as (£ the class of all topological spaces, and as M(A, B) 
the class of continuous functions / : A -> B. This category will 
be denoted by T. Restricting the class (£ to more special topolo­
gical spaces we obtain the category M of metric spaces, the cate­
gory H of Hausdorjf spaces, the category C of compact spaces, 
etc. 

The category P of polyhedra is defined by taking as (£ the class 
of all polyhedra, and their continuous mappings as morphisms. 

EXAMPLE 3. The objects of the category SC of simplicial com­
plexes are simplicial complexes, and the morphisms of this cate­
gory are simplicial maps of complexes. 

EXAMPLE 4. We define the category G of Abelian groups taking 
as (£ the class of all Abelian groups, and as M{A, B) the set of 
all homomorphisms of A into B. The composition of morphisms 
in G is defined as the usual composition of functions, and the 
identity morphism of a group A is the isomorphism lA. 

The basic concept of category theory is that of functor. 
D e f i n i t i o n 2. A function which to each object A of a 

category K assigns an object F(A) of a category L, and to each 
morphism fe M(A, B), where A, B are objects of the category 
K, assigns a morphism F(f) e M(F(A), F(B)) will be called a co-
variant functor if 
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(v) F(eA) = eF(A), 
(\i)F(gof) = F(g)oF(f). 
If F(f)eM(F(B), F(A)) for fe M(A, B) and condition (vi) is 

replaced by 
W)F{gof) = F(f)oF{g) 

we shall speak of a contravariant functor. 
Functors can be composed: the composition of two covariant 

or two contravariant functors is a covariant functor, while the 
composition of a covariant functor with a contravariant one is 
a contravariant functor. 

EXAMPLE 5. Let T be a fixed set. Let us assign to each set X 
the Cartesian product Xx T, and to a function / : X -> Y the 
function f: XxT-+YxT defined as / ' ( * , t) = (/(*), t). We 
easily show (see Exercises 17 and 23, Chapter IV) that such assign­
ing is a covariant functor from the category of all sets into itself. 
From Theorem 4, Chapter XIII, § 2, it follows that if T is a topo-
logical space, then the mapping defined above is a functor from 
the category of topological spaces into itself. 

EXAMPLE 6. Let T be a fixed set. Let us assign to each set X 
the set of all functions defined on X with values in T, i.e. the set 
Tx. To a function/: X -► Y, let us assign the function df: TY -► Tx 

defined as df(g) = gf, where g e TY. The reader will verify (see 
Exercise 22, Chapter IV) that such assigning is a contravariant 
functor from the category of all sets into itself. Let us now assume 
that T is a topological space. For each topological space X, con­
sider the compact-open topology in the set Tx (see Chapter XVI, 
§ 7). We shall show that the above assigning is a functor from the 
category T of topological spaces into itself. 

It suffices to verify that, for any continuous mapping/: X -> F, 
the mapping df: TY -► Tx is also continuous. This, however, 
follows from Corollary 3 to Theorem 2, Chapter XII, § 1, since 
for any set T(C, H) from the subbase of the space Tx (C is a com­
pact subset of X and H is an open set in T), we have 

dj*(T{C9 /*)) = {g: gf(Q c H} = T(/(C), H) 

and/ (C) c 7 is compact by Theorem 3, Chapter XVI, § 2. 
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V 

EXAMPLE 7. The Cech-Stone compactification is an important 
example of a covariant functor from the category of all com­
pletely regular ^"Ί-spaces to the category of compact spaces. This 
functor assigns to each space X its compactification βΧ, and to 
each mapping / : X -> Y c βΥ its extension g: βΧ -* βΥ; the 
latter exists in view of the theorem from Chapter XVI, § 4. 

§ 4. Homology groups of simplicial complexes 

We shall now describe a sequence of covariant functors (ho­
mology groups and induced homomorphisms) from the category 
SC of complexes and simplicial maps to the category G of Abelian 
groups. 

The first step in the construction of homology groups will con­
sist in the orientation of a simplicial complex. We start with the 
definition of an oriented simplex. Let S = p0 ...pn be an «-di­
mensional simplex, where n^l. Each sequence pJo, ..-9pjn con­
sisting of n+\ of its vertices (without repetition) will be called 
a n-dimensional oriented simplex; we shall identify two oriented 
simplexes if one of them can be obtained from the other by an 
even permutation (we say in this case that these simplexes have 
the same orientation); for instance 

(Ρο,Ρι,Ρι) = (Ρι,ΡΐιΡο) = (Ρ2>Ρο>Ρι)> 

(Ρο,Ρι,Ρι)^ (Ρι,Ρο,Ρι)-

Thus, each simplex S of dimension > 1 determines two oriented 
simplexes. The simplex with an orientation opposite to that of 
the simplex (p0, ...,/?„) will be denoted by — (p0, ...,/?„)· 

We shall say that the oriented (n—l)-dimensional face (pl9 ..., 
pn) of the oriented simplex (ρ0,Ρι, ···»/>«) is coherently oriented 
with this simplex. For instance, (p0,Pi) has coherent orienta­
tion with the simplex (p2,Po>Pi) = (Ρο,Ρι,Ρι), while (p0,p2) is 
not coherently oriented with (Ρο,Ρι,Ρι) (but coherently oriented 
with (pl9p0,p2)). 

Thus, given an oriented «-dimensional simplex and its oriented 
(n—l)-dimensional face (n > 2), we can decide whether or not 
it is coherently oriented with this simplex. We easily verify that 
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the orientation of the face resulting from omitting the vertex pJi9 

coherent with the orientation of simplex (pJo, ...,/>/„) is 

(-1)1ΪΛο, »''Ph-i'Pjtn* '->Pjn)· 
Moreover, that definition of coherent orientation of a face does 
not depend on the choice of the sequence of vertices which gives 
the considered oriented «-dimensional simplex in question. 

R e m a r k . The notions of oriented simplex and coherent 
orientation have a geometrical interpretation. The «-dimensional 
simplex S = p0 ...p„ situated in the space Sm determines in this 
space the «-dimensional hyperplane C(S), called the carrier of 5, 
defined as the set of all points of the form 

P = λ0Ρο+ ··· +hPm 
where A0+ ... +λη = 1. Formally, an oriented simplex is a pair 
consisting of S and one of two possible orientations of its carrier, 
i.e. one of the two classes of bases of the vector space C(S). Each 
sequence (pJo, ..., pJn) of vertices of the simplex S determines 
a certain base of the space C(5), namely the base consisting of 

> > — > 
vectors Pj0yPJn9Pji9pJn, —,Pj^l9Pjn. One can verify that sequen­
ces of vertices which give the same orientation of the simplex S 
lead to the same orientation of the space C(S)9 while sequences 
giving different orientations lead to different orientations of C(S). 
Thus, instead of considering pairs consisting of a simplex and 
a basis of its carrier, one can consider sequences of vertices of 
the simplex, identifying those sequences which lead to the same 
orientation of the carrier. 

If we are given an «-dimensional simplex S (« > 2) and its 
(« — l)-dimensional face S', then from each base of C(S") one 
can obtain a base of C(S) by adding one vector from C(S) which 
is not parallel to C(S'). Our definition of the coherent orientations 
is equivalent to the agreement that if we start from an arbitrary 
base which determines a given orientation of C(S') and add to it 
at the first place an arbitrary vector which pierces the face S' 
from inside S, we obtain a base of the space C(S) which gives 
the desired orientation of this space. This is illustrated in Fig. 20. 

An orientation of a simplicial complex K will be defined as 
a function a which to every simplex S e K of dimension n > 1 
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assigns one of the oriented simplexes determined by it. An oriented 
(simplicial) complex will be defined as a pair (K, a) where K is 
the simplicial complex and a is its orientation. For the sake of 

FIG. 20 

unified notation we shall assume that oc(p) = (p) = p for every 
vertex p. 

For an arbitrary oriented complex (K, a) and an integer n > 0 
we shall denote by Cn(K, a) the free group generated by the set 
of all oriented simplexes a(S), where S is an «-dimensional simplex 
of K. This group will be called the group of n-dimensional chains 
of the complex (K, a). According to our convention concerning 
the representation of elements of the free group as linear combi­
nations of generators, elements of C„(K9 a) i.e. «-dimensional 
chains, have the form 

kMSi)+...+kma(SJ, 
where Sl, ..., Sm are «-dimensional simplexes of the complex K. 
In particular, zero-dimensional chains are linear combinations 

of vertices of the complex K9 while Cn(K9 a) = 0 for n exceeding 
the dimension of the complex K. 

For each «-dimensional simplex S = p0 . . .p n e K, where « > 1, 
the oriented simplex oc(S) is an element of the group Cn(K, a). 
Thus, the group Cn(K, a) contains some sequences of the form 
(Pjo> •••>/?i«)j namely those which determine the orientation a(5); 
each of these sequences is the same element of the group. For 
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reasons of computational convenience, we assume that sequences 
giving the orientation opposite to <x(S) also belong to Cn(K, a); 
each of these sequences denotes the element — <x(S). This con­
vention explains why we have denoted the simplex oriented oppo­
site to Oo, ...,/>„) by -(po, ...,/>„). 

We now define the homomorphisms <9„: Cn(K9 a) -► C^^K, a) 
for n > 2 by assigning to each generator cc(S) of the group 
Cn(K, a) the sum of its (n — l)-dimensional faces oriented coher­
ently with a(5) (see Theorem 5, § 2). We thus have 

n 

(8) dH(*(S)) = UPo, ...,Λ) = J ? (-!)'(/><), ...,Λ, ...,Λ), 
ι = 0 

where the symbol Λ over a vertex signifies that this vertex is omitted, 
and (p0, ..., pn) is an arbitrary representation of the generator 
a(5). Since each generator of the group Ci(K, a) has exactly 
one representation in the form (p0,Pi), the formula 

(9) 3i(Po9Pi) =Pi—Po 
defines a homomorphism dt: Ci(K, <x) -» C0(K, a). Note that 
formula (8) for n = 1 reduces to formula (9). The homomorphisms 
dn9n = 1,2, ... are called boundary operators. 

THEOREM 1. For every n > 2 we have 

(10) 3 . - 1 ^ = 0. 

P r o o f . It suffices to verify that ^π-ι^π(α(5)) = 0, since 
the extension of the mapping dn-\dn from the set of generators 
to the homomorphism of the whole group C„(K, a) is uniquely 
determined. Let oc(S) = (p0, ...,/?„)· We then have 

n 

en^8„(a(s)) = B^^i-iyipo, ...,i>i, ...,Pn)) 
i=0 

n i-\ 

= ^(- lyLTc- iyoO, -,h, ...,Λ, ...,A> 
ί=0 7 = 0 

n 

The simplex (/?0, ..., Pk, . . . ,^ , , ...,/?„) appears in the above 
linear combination twice: first with the coefficient (—!)'(—1)* 
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and then with the coefficient (—l)k(—l)'"1. Since the sum of 
these coefficients is zero, we have 3η_12„(α(5)) = 0. 

The group Zn(K9 a) = Ker<9rt c Cn(K9 a), where n ̂  1, will 
be called the group of n-dimensional cycles of the complex (K, a); 
we assume in addition that Z0(K9 a) = C0(K, a). The group 
B„(K, a) = Imdn+1 cz C„(K9 a), where n > 0 will be called the 
grow/7 0 / n-dimensional boundaries of the complex (K, a). It 
follows from (10) that Bn(K, a) <= Zn(K9 a); the quotient group 
Hn(K, a) = Z„(i5T, (x)/Bn(K, a) is called the wi/z homology group 
of the oriented complex (K9 a). The index n runs through the 
numbers 0, 1,2, ..., but all groups Hn(K, a) with indices exceeding 
the dimensions of K are zero groups. 

In the terminology of § 2, two «-dimensional cycles zx and z2 

are equivalent mod Bn(K9 a) if (zt —z2) e -S«(JT, a). In this case 
we say that ζγ and z2 are homologous to each other in (IT, a); 
instead of writing z1 ~ z2 (mod Bn(K9 a)) we write 

zx « z2 in (JT, a). 

In particular, the condition z = <9„+i(/) means that the cycle z is 
homologous to zero in(JiT, a). 

We shall show that the groups Hn(K, a) depend only on the 
complex K, and not on the choice of the orientation a. For 
every pair of orientations α, β of K define the homomorphisms 
0f: Cn(K9 a) - C„(tf, j9), putting for /1 > 0 

β*ί««Λ-ί ^ if β ® β «^ n ^ }) ~ l-j8(S) if a(S) = -j8(S). 
We can easily see that θ^θ^ and OJW* are identity isomorphisms 

of the groups Cn(JT, a) and Cn(K, ß) respectively, whence θ%β is 
an isomorphism of the group C„(K, a) onto Cn(K9 β). Moreover, 
transformations θ%β leave invariant every sequence (p0, ...,/?„); 
thus, the diagram 

Cn(K,a)—n—Cn(K9ß) 

i Olli 4, 
C^^a) ^^(Κ,β) 

is commutative, i.e. 3ΛΘ^ = 0 ^ dn for « = 1, 2, ... Consequently, 
under the isomorphism θ%β cycles are mapped into cycles and 
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boundaries into boundaries, which implies that the quotient 
groups Hn(K, a) and Hn(K, ß) are isomorphic. The nth homology 
group of the (unoriented) complex K will be defined as the group 
Hn(K9 a) where a is an arbitrary orientation of the complex K; 
this group will be denoted by Hn(K). Since in determining the 
homology, the choice of orientation is irrelevant, when considering 
groups of chains, cycles and boundaries, we shall, occasionally 
write Cn(K),Zn(K) and Bn(K)9 even though we shall always 
consider a fixed orientation of K. Moreover, we shall agree that 
in considering complexes with numbered vertices, the generators 

FIG. 21 

of groups of chains will be taken as sequences of vertices with 
increasing indices. 
. EXAMPLE 1. Let K be the complex consisting of all Simplexes 

(0, 1 and 2-dimensional) given in Fig. 21, except the simplexes 
012 and 345 (for simplicity we write k instead of pk). The chains 

Zl = (0, 1)+(1, 2)+(2, 0) and z2 = (3, 4) + (4, 5)+(5, 3) 
are cycles not homologous to zero in K, but homologous to one 
another. 

Indeed, let 
/ = (0, 4, 3)+(0,1, 4)+(l, 5, 4)+(l, 2, 5)+(2, 3, 5) + (0, 3, 2); 

then zx —z2 = d2l. 
EXAMPLE 2. A complex K will be called connected if it cannot 

be decomposed into two complexes without common vertices; 
in other words, if for every pair p, q of its vertices, there exists 



312 SET THEORY AND TOPOLOGY 

a finite system of vertices p — p0,Pi, >->,Pr = q such that the 
simplexes Pi-iPi belong to K for / = 1,2,...,/*. Clearly, the 
connectedness of K is equivalent to the connectedness of its 
underlying polyhedron \K\. 

We shall prove that 
(11) if a non-empty complex K is connected, then HQ(K) κ, Z, 

where Z is the group of integers. 
Every element of the group ZQ(K) = C0(K) is of the form 

by assigning to it the sum k0-\- ... -\-km we define an epimor-
phism of the group Z0(K) onto the group Z. To prove (11) it 
suffices to show that 
(12) B0(K) - {koPo+ ... +kmPm: k0+... +km = 0}. 

Since 3ι(ρ0>/Ί) = Ρι—Ρο> the sum of the coefficients of every 
element in B0(K) is zero, i.e. the left-hand side of (12) is contained 
in the right-hand side. Let q be a fixed vertex of K. To prove the 
reverse inclusion it suffices to show that 

m 

k0p0+ ··· +kmpm « CZ%)# in K, 

which in turn reduces to showing that for an arbitrary vertex 
p e K and a number k e Z we have &/? « &# in JST. 

Let us consider a system of vertices p =ρθ9Ρι, ···,/^r = q 
such that /if-i/?,· e JST for i = 1, 2, ..., r and the chain / = k(pi9p0) 
+k(j>2,Pi)+ ... +k(pr,pr^) e Ci(K). Since <9χ/ = kpQ-kp1 

+kpi—kp2+ ... +kpr_1—kpr = kpQ—kpr = kp—kq, we get 
&/? « /r^ in iT, and the proof of (12) is complete. 

We shall now introduce the concept of a cone on a chain, 
which will be used in the next example and in § 6. 

Let (JT, a) be an arbitrary oriented complex, let p be a vertex 
in Ky and let a(5) = (p0, ...,/>„) be a generator of the group 
Cn(K, a). If the simplex pp0 ...pn belongs to K we say that p can 
be joined with a(5) (or with 5); it follows that p Φ pi for 
i = 0, 1,.. . ,«. If /? can be joined with a(5), then the oriented 
simplex (p9p0, ...9pn) belongs to the group Cn+l(K, a); this 
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simplex will be denoted by p<x(S). If p can be joined with every 
simplex appearing in the chain / € Cn(K), with non-zero coefficient, 
we say that p can be joined with the chain I. For an arbitrary 
vertex p e K which can be joined with a chain / = £ια(5Ί)+ ... 
... + kmcc(Sm) e Cn(K, a), the cone on I with vertex p will be de­
fined as the chain 

pi = k1pa(Sl)+ ... +kmpcc(Sm) e Cn+l(K, a). 

We can easily see that 

(13) dn+1(pl)=l-pdnl for n>09 

where d0l denotes the sum of the coefficients of the zero-dimen­
sional chain / and pk = kp. 

EXAMPLE 3. If a complex K has a vertex p such that for any 
simplex p0 ... pne K either p is one of its vertices or pp0 ...pn eK, 
we say that K is a cone; p is called the vertex of this cone, and 
the subcomplex K0 a K consisting of all simplexes which do 
not contain p as a vertex will be called the base of this cone. Thus 
for instance, the complex Kn consisting of all faces (including 
the improper one) of an arbitrary «-dimensional simplex is a cone; 
any vertex can serve in this case as the vertex of the cone, while 
the base will be the subcomplex consisting of the («—^-dimen­
sional face opposite to the vertex of the cone (i.e. the face which 
does not contain the selected vertex), and of all its faces. 

Let K be a cone with vertex p and base K0. Let us select an 
orientation a0 of the complex K0 and define the orientation a of 
the complex K taking as generators of the group Cn(K, a), where 
« > 1, the generators of the group Cn(K0,oc0) and simplexes 
of the form pcc0(S)9 where a0(5) is a generator of the group 
C t - l(i^O 9 α θ ) · 

Any «-dimensional chain of the complex (K, a) has, for n ^ 1, 
the form 

/ = Ph+h> where lt e Cn_i(K09 <x0), h e Cn(K09 a0). 

In view of (13) the boundary of the chain / is the chain 

dnl=h —pdn-i h + Snl2= ~pS„-1 h + (/i + Sn l2). 

If leZn(K,ot), then dn^J1=0 and dnl2 = - / X ; for the chain 
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V = pl2 e Cn+iiK, a) we have 

dn+iV = dn+lpl2 = l2—pSnl2 =ρ1ί+1ι = U 

i.e. 

(14) Zn(K, a) = BH(K9 a) for n > 1. 

Since every cone is a connected complex, (14) and (11) imply: 

(15) for an arbitrary cone K we have 

Hn(K) = 0 for n > 1 and H0(K) « Z. 
In particular, for the complex Kn consisting of all the faces of 

a certain ^-dimensional simplex, we have 

(16) Hm(Kn) = 0 for m > 1, H0(Kn) * Z. 

EXAMPLE 4. Consider the complex 5" consisting of all the faces 
of dimension < n of an (#+l)-dimensional simplex, where n ^ 1. 
Sines Cm(Sn) = Cm(Kn+1) and Zm(5w) = Zm(Kn+1) for m < « 
and Bm(S")=*Bm(KH+l) for m < H - l , we have H0(Sn) « Z 
and Hm(Sn) = 0 for m < «—1. Let us find the nth homology 
group of Sn; clearly, Hn(Sn) = Zn(Sn), since 5,n has no simplexes, 
and hence no non-trivial chains, of dimension τι+1. Let / be a 
generator of the group Cn+1(Kn+1); the chain dn+1l e Cn(Sn) 
= Cn(Kn+1) is a non-zero cycle inS n . Moreover, every w-dimen-
sional cycle in Sn is of the form kdn+ll, since it is also a cycle 
in i P + 1 , and in view of (16) it is a boundary of a certain ( H - H ) -
dimensional chain. But every («+l)-dimensional chain is of the 
form kl. Thus, for the complex Sn consisting of all the faces of 
dimension < n of an («+l)-dimensional simplex (n > 1), we 
have 

(17) Hn(Sn) » Z , Hm(Sn) = 0 for m > n and n > m > 1, 

and Äo(S*) » Z. 

Let us now consider complexes K and Z, and a simplicial map 
99: JT-> L. Let a and α' be orientations of K and L respectively. 
Assuming for any generator OL(S) = (p0, ...,/?„) of the group 
CM(tf, a) 

o/a/cyv _ \(<P(Po)> '-><P(Pn)) if <P(Pj) # ?>(/>*) for 7 Φ k, 
10 otherwise, 
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we define a homomorphism <p%: Cn(K, a) -» C„(L, a') for n 
= 0 , 1 , . . . 

THEOREM 2. i w every H > 1 iAe diagram 

C„(tf,a) — ->C„(L,a') 
! | 

C^iiT,«) - C ^ C ^ a ' ) 
w commutative, i.e. $}_ι3Λ = 8ηφ%. 

P r o o f . It suffices to show that for every generator a(S) 
= (A>> ···> A) °f the group Cn(K, a) we have 

(18) ψη-1^η(Ρθ, —,Ρη) = 8Ηψΐ(ρθ9 · · · > Pn) · 
Equality (18) is obvious if ^(/τ,) # <p(j>k) for 7 ^ &. 

Suppose now that φ(ρ3) = <p(pk) for 7 > fc. We then have 
/I 

<P°n-ldn(PQ, ...,/>») = yS-1 L ^ ( —ϊνθΌ» ·>Α> · · ·> A)] 
i = 0 

= ?ί- ι[(-1)*(Ρο, · · · , A , · · · , Α ) + ( - 1 ) 7 ( Α ) , - . f t , · · · , A)+']> 
where / e K e r ^ _ l t 

If 0?o > · · · > A , · · · 9 Pn) e Ker <p2_ t , i.e. if a certain pair of vertices 
is mapped into the same vertex of the complex L, then also 
Oo, —,Pj, ...,/?„) G K e r ^ _ ! and <#!-AOo, · · · ,A) = 0. On the 
other hand, if (p0, ..., pk, ..., ρη) φ Ker φ°η_ 1, then 

9ί-ι(Α>, ~',Pk> ·>',Ρη) = (<p(jPo), ...,<p(j>k)>-~><p(j>*)) 
and 

< - I ( A ) , · · · ,£ / , - . , A ) = (<KA>), -^(Pj)* ..;>9>(Pn)). 
In view of the equality <p(/?fc) = ^(/τ,) it follows that 

ψη-ι(Ρο9 ..., Α·, . . . ,Λ) = (-l)J '~*"Vn-i(Po, . . . , i · · , A) 
and 

ψη-1^η(Ρθ> . . . ,A) = ^ - l [ ( - l ) f e O o , • • J h ·.·>/>«)] + 
+ 9 S - i [ ( - l ) J O o , - , Λ · , - . , A ) ] 

= ( - l )VS- i (Po , . · · , A , •••>A») + 
+ (-l)2j*-fc-VS-i(Po, . . . . A , — A ) = 0. 
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Under the assumption that (p(pj) = <p(Pk) for j φ k, the left-
hand side of (18) is thus equal to zero; in this case, the vanishing 
of the right-hand side is obvious, which proves (18). 

It follows from Theorem 2 that the homomorphism <p°n maps 
cycles into cycles and boundaries into boundaries, hence it deter­
mines the homomorphism φ%: Ηη(Κ, a) -* Hn(L, a'); we call φ% 
the homomorphism induced by the simplicial map φ. 

We easily observe that for other orientations β and β' of the 
complexes K and L respectively, we have 

(19) VS''Fn = PnW, 
i.e. the diagram 

CH(K,a)J*->Cn(L9*') 

I e«ß I θ«,β' 
Cn(K,ß)--L->Cn(L,ß') 

is commutative. Consequently, the homomorphism φ* of the 
group Hn(K) into the group Hn(L) induced by <p: K-* L does 
not depend on the choice of orientations a and a' which served 
in defining the homology groups of non-oriented complexes. 

Simple verification yields 
THEOREM 3. By assigning to simplicial complexes their nth 

homology groups (n = 0 , 1 , 2 , ...) and to simplicial maps the 
induced homomorphisms, we define a covariant functor from the 
category SC to the category G, i.e. for simplicial maps φ: K -> L 
and ψ: L -► M we have 

(ψφ)* = ψ*φ* 

and for the identity map i: K -> K we have 

§ 5. Chain complexes 
The construction of homology groups described in the preceding 

section can be split into two stages; more precisely, the functor 
which assigns homology groups to simplicial complexes, and 
induced homomorphisms to simplicial maps, can be represented 
as a composition of two functors. Such a decomposition allows 
a more thorough analysis of this functor and leads to computational 
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simplifications. Defining the pair of functors, whose composition 
yields the homology functor requires introducing a new category. 

D e f i n i t i o n 1. By a chain complex we shall mean an 
infinite sequence 

(20) C0 <-- C1 +- ... ^ Cn^ <-- C «-

of Abelian groups Cn and homomorphisms drt: Cn-+ C„..l9 to 
be called boundary operators, such that d„_idn = 0 for n = 2, 3, ... 
The chain complex (20) will be denoted by C = {C„, <9„}. 

D e f i n i t i o n 2. A cAtf/w homomorphism of a chain complex 
C = {C„, d„} into a chain complex D = {/)„, 3rt} will be defined 
as an infinite sequence of homomorphisms / = {/„}, where 
fn '· C, -► Dn and the diagram 

c „ — ^ z > „ 
I | 
+ /n -1 ^ 

C W _ X >A,-1 
is commutative, i.e. 

(21) fn-ldn = dnfn ΐθΤ H>\. 
The category whose objects are chain complexes and whose 

morphisms are chain homomorphisms will be called the category 
of chain complexes, and will be denoted by CC. The composition 
of morphisms / = {/„}: C -> D and g = {gn}: D -> E is defined 
as the chain homorphism gf—h — {hn}: C -► E where hn = g„fn; 
the identity morphism of a complex C = {C„, d„} is the sequence 
{lCn}, denoted by l c . 

A morphisms / = {/„} of the category CC will be called 
a monomorphisms (epimorphisms, isomorphisms) if every homo­
morphism fn is a monomorphism (epimorphism, isomorphism). 
The concept of chain subcomplexes can be carried from the 
category G to the category CC. 

A complex C = {C„, dn) is a chain subcomplex of D = {Dnf Bn} 
if Cn is a subgroup of Dn and B'n = dn\C„ for each «. 

An example of a chain complex is provided by the sequence 
of groups of chains and boundary operators C(K, a) 
= {Cn(K, a), dn} of an oriented simplicial complex (K, a). 
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Taking another orientation ß of the complex K we obtain 
a chain complex C(K, ß) isomorphic to C(K, a); this means not 
only that the corresponding groups of complexes C(K, a) and 
C(K, ß) are isomorphic, but also that the boundary operators 
act in the same manner in both complexes. Thus, we may treat 
chain complexes as assigned to non-oriented complexes; the chain 
complex assigned to a complex K will be denoted by C(K). It 
follows from Theorem 2 of the last section and from formula 
(19) that to every simplicial map <p: K -» L corresponds the chain 
homomorphism φ° — {φ°}: C(K) -» C(L). We easily note that 
if <p: K-+L and ψ: L -> M are simplicial maps, then (ψφ)° 
= ψ°φ°, and that to the identity map i: K -> K corresponds 
the identity i° = lC(K) = {lcn<Jo}· 

We thus obtain 
THEOREM 1. By assigning to every simplicial complex K the 

chain complex C(K) and to every simplicial map φ: K -> L the 
chain homomorphism <p°: C(K)-+C(L), we define a covariant 
functor from the category SC to the category CC. 

As in the case of complexes C(K), for any chain complex 
C = {C„, dn} one can define the group of n-dimensional cycles 
Zn(C) = Kerd„ for n > 1, Z0(C) = C0> and the group of n-di­
mensional boundaries Bn(C) = lmdn+i. The equality 8n~i^n == 0 
implies that Bn(C) c Zn(C) for « = 0 , 1 , 2 , . . . ; the quotient 
group Hn(C) = Zn(C)/Bn(C) will be called the nth homology 
group of the chain complex C. 

It follows from (21) that a chain homomorphism f:C->D 
maps cycles into cycles and boundaries into boundaries; hence 
for each n it determines /„*: Hn(C) -> Hn(D), the induced homo­
morphism. We easily verify that if/: C -+ D and g: D -+ E are 
chain homomorphisms, then (gf)* = g*/* and that the identity 
l c : C -> C induces the identity (lc)* = l//„(o · We thus obtain 

THEOREM 2. By assigning to chain complexes their nth homology 
groups (n = 0, 1, 2, ...) and to the chain homomorphisms the in­
duced homomorphisms of the nth homology groups, we define a co-
variant functor from the category CC to the category G. 

It is not difficult to see that the homology functor constructed 
in the preceding section is identical with the composition of func-
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tors described in Theorems 1 and 2. The passage from topology 
to algebra is described by the first of these functors, while the 
second has a purely algebraic character. 

D e f i n i t i o n 3. Two chain homomorphisms / , g: C-+D 
w h e r e / = {/„}, g = {gn}, C = {Cn9 dn} and D = {Dn, dn) will be 
called chain homotopic, and denoted by / « g, if there exists 
a sequence of homomorphisms A = {An}, where An: Cn-+ Dn+l 

or n = 0, 1, ... such that 

(22) fn-gn = 8n+1An+An_1dn for n = 1,2, ... 
and 
(23) / o - g o = M o . 

The sequence of homomorphisms A will be called the chain 
homotopy between / and g; note that it is not a chain homo-
morphism of C into D, since An maps Cn into Α»+ι· 

We easily verify that the relation of chain homotopy is reflexive, 
symmetric and transitive, i.e. it is an equivalence relation. 

THEOREM 3. If chain homomorphisms f g: C -► D are chain 
homotopic, then /„* = g* for « = 0 , 1 , . . . 

P r o o f . Let k be an arbitrary element of the group Hn(C) 
and z ek; we then have 8nz = 0, and in view of (22) and (23) 

fn(z)-gn(?) = 8n+lAn(z). 

Thus, fn(z) ~ gn(z)(modBn(D)) and f*(k) = g*(k). 
We shall now describe a certain method of obtaining chain 

homotopies. This method will play a fundamental role in the 
construction of the homology functor from the category P of 
polyhedra and continuous mappings to the category G. 

A chain complex C = {C„, dn} will be called geometric if all 
groups C„ are free groups with a finite number of generators, 
and for each n a certain system c", ..., c?„n of generators of Cn 

is selected. If in the representation of the boundary <9M+1c"+1 as 
a linear combination of generators c?, ..., c2,n, the generator 
cl appears with a coefficient different from zero, we write c\ < c"+1. 
By assigning to the element c = k^i+ ... +kmoc^0 of C0 the 

integer d0(c) = Σ ki9v/c define a homomorphism of the group C0 

into the group Z of integers. 
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A chain homomorphism/: C -* D, where C and D are geometric 
will be called geometric if d0(f0(c)) = d0(c) for every ceC0, 
i.e. if the diagram 

r fo n 
i | 
j d 0 120 
J- lz ^ 
Z >Z 

is commutative. 

Chain complexes assigned to oriented simplicial complexes 
are geometric, and so are chain homomorphisms assigned to 
simplicial maps. 

A geometric chain complex C will be called acyclic, if B0(C) 
= Ker<90 and Hn(C) = 0 for n > 1. From (12) and (15) it follows 
that 

(24) if K is a cone, then C(K, a) is an acyclic complex. 

Let / = {/„}: C -> D be a chain homomorphism of geometric 
complexes; a carrier o f /wi l l be defined as a function assigning 
to each generator cf of the group Cm (for m = 0, 1, ...) a sub-
complex D(cf) = {Dn{cf), d„} of the complex D, where the group 
Dn((f) is generated by a certain subset of the distinguished set 
of generators of Dn (which implies that the operator d0 in the 
complex D(cf) is the restriction of the operator <90 in D), such 
that 

(25) D(cn
k) is a subcomplex of D(cnj+1) if c\ < cnj+1 

and 

(26) /,(<f)e/>.(<#. 

All the complexes D(cf) are geometric chain complexes. 
The carrier will be called acyclic if each of the complexes D(cf) 

is acyclic. 
THEOREM 4. If C and D are geometric chain complexes, and 

f and g are geometric chain homomorphisms of C into D with 
a common acyclic carrier, then f and g are chain homotopic. 

P r o o f . Let the function assigning to each generator cf of 
the group Cm the subcomplex D(cf) of the complex D be an acyclic 
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carrier of /and g. We shall define recursively the homomorphisms 
An satisfying (22) and (23). Since/and g are geometric, for each 
generator cj of C0 we have 

ßo(fo(tf)-go(cJ)) = 0 
and since the complex D(cJ) is acyclic, there exists an element 
JoicjJeD^cJ) such that 

(27) / o ( c ° ) - g 0 ( c ? ) = M o ( c ° ) . 
Since the group C0 is free, the choice of the element A0(cj) for 

each of its generators determines the homomorphism A0: C0 -> D0 

satisfying, in view of (27), condition (23). 
Assume that a homomorphism An: Cn-+ Dn+l is defined for 

n < m and satisfies (22) or (23) if n = 0, and 

(28) Αη(<ή)βϋη+ί(<ή) 
for every generator c" of the group C„. 

Let cj+1 be an arbitrary generator of the group CM+1. The 
boundary dm+1c™+1 is an element of Cm, and /lOT(3m+1c7+1) 
is an element of the group Dm+l. Moreover, for every c™ < c™+1 

we have Am(dg) eDm+1(c?) c Z>m+1(c7+1), whence 

4 = / m + i ( ^ + 0 - g w + i ( c r 1 ) - ^ m ( 3 m + 1 c ^ 1 ) eZ>m+1(c7^). 

If m > 1, then from (22) for « = m we deduce that 

3 m + l ( 4 ) ^fmiPu+ldf + ^-gmOmHdf*') 

- [ / m < 5 m + 1 c 7 + 0 - ^ ( 3 m + l ^ + 1 ) - ^ - l ^ m + l ^ + 1 ] = 0; 
on the other hand, if m = 0, relation (23) yields 

W ) = /o (5 1 c j ) -g 0 (3 1 c j ) - | /o (3 1 c j ) -go(3 1 c j ) ] = 0. 

Since the complex D(cJ+1) is acyclic, there exists an element 

^ ( c r ^ A ^ i c T 1 ) 
such that 
(29) / a H.1(c7+1)-*-f i(c7+ 1)-^-(3»fic7+ 1) = 5M+2JM+1(C7+1). 

Since the group Cm+1 is free, the choice of the element A m+i 
for each of its generators determines the homomorphism 
Am+i* Cm+i-*Dm+2 satisfying, in view of (29), relation (22) 
for n = m+1. The condition (28) is also satisfied for n = m+1, 
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which completes the construction of the chain homotopy A — {An} 
between / and g. 

Using Theorem 4 we shall prove 
THEOREM 5. If simplicial maps φ,ψ: K -► L are contiguous, 

then for every n they induce the same homomorphism of the group 
Hn(K) into the group Hn(L). 

P r o o f . Let a and β be arbitrary orientations of complexes 
K and L. For every simplex S e K the Simplexes ^(S) and ip{S) 
are faces of a certain simplex T(S) e L. Let us assign to a generator 
oc(S) of the group Cn(K, a) the subcomplex D(a(5)) = C(L(S)) 
of the complex D = C(L, ß)9 where L(S) is the subcomplex 
consisting of all faces of that simplex in L, whose set of vertices 
equals the union of the sets of vertices of <p(S) and f(S). We note 
that in this way we define an acyclic carrier of mappings φ° and 
ψ°; therefore <p° « ψ° and <p* = ψ* in virtue of Theorem 3. 

§ 6. Homology groups of polyhedra 
We shall show now that homology groups of a simplicial 

complex depend only on the underlying polyhedron of that com­
plex, and we shall describe homomorphisms of those groups 
induced by continuous mappings of polyhedra. This will lead 
to defining homology groups of polyhedra. 

We start by showing that homology groups of an arbitrary sim­
plicial complex and of its barycentric subdivision are isomorphic. 

Suppose that we are given an arbitrary simplicial complex 
K and let a be its orientation. We assign an orientation to the 
barycentric subdivision K' by taking as generators of the «th 
group of chains decreasing sequences of vertices, i.e. sequences 
(b(S0), ...9b(Sn)) where S0 > ... > Sn. Denote the orientation 
so defined by β. The simplex S0 e Kmll be called the carrier of the 
simplex (b(S0), ...,b(Sn)); we can easily see that b(S0) ... 6(Si,) 
c= S0. If a simplex S0 e K is the carrier of each of the Simplexes 
appearing with non-zero coefficient in a certain chain / e Cn(K', ß), 
we say that S0 is the carrier of that chain. 

In the first section we defined a class of simplicial maps of K' 
into K, called standard translations; let a: K' -> K be one of them. 
It induces the chain homomorphism σ°: C(K', ß)-^C(K9 a). We shall 
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now define a chain homomorphism s = {sn}: C(K9 a) -> C(K\ ß) 
such that s% is the inverse of σ*. This will imply that a* is an 
isomorphism. 

We define s = {sn} by induction. For « = 0 , 1 , 2 , . . . we shall 
construct a homomorphism sn: Cn(K, a) -► Cn(K',ß) such that 

(30) sn^dn = dnsn for « > 1 

and 

(31) S is the carrier of sn(<x(S)) for every 

«-dimensional simplex S eK. 
The group of zero-dimensional chains of K is a subgroup of 

the group of zero-dimensional chains of K'. For s0 we take the 
embedding, i.e. the monomorphism assigning to an element of 
C0(K, a) the same element in C0(K', β); evidently s0 satisfies 
condition (31) for n = 0. 

Suppose now that homomorphisms sn: Cn(K, a) -► Cn(K\ β) 
are defined for n < m and satisfy conditions (30) and (31). 

Let oc(S) be an arbitrary generator of the group CmArl(K, a). 
The chain dm+1a(S) belongs to the group Cm(K, a). By (31) for 
n = m, the carrier of any simplex in Kf which appears with a non-
vanishing coefficient in the chain smdm+1oc(S) coincides with a face 
of S. Thus, the vertex b(S) can be joined with the chain smdm+1oc(S) 
and the cone b(S)smdm+ia(S) is a well defined element of the 
group Cm+1(K', β). Putting 

(32) sm+i (a(S)) = b(S)sm 8m+l a(5) 

for every generator a(5) of the group Cm+1(K, a), we define the 
homomorphism sm+1: Cm+1(K, a) -> Cm+1(K\ β) satisfying con­
dition (31) for n = ra+1. Using (13) we obtain 

(a(S)) = smBm^MS)-b{S)Bmsmdm+1ai{S), 
which implies that 

(33) (a(S)) = ^mam+1a(5) 
in view of (30) for n = m if m > 1, or in view of the definition 
of So and the easily verifiable identity d0d1 = 0 if m = 0. It follows 
from (33) that condition (30) holds for n = m + 1 , which com­
pletes the construction of the sequence {sn}. 
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We shall now make a remark which will be used in the proof 
of Theorem 1. Suppose we are given simplicial complexes IT and 
L and a simplicial map <p: K -+ L. If p is a vertex of K joined 
with a simplex S, then φ(ρ) either can be joined with <p(S) or is 
one of its vertices. To simplify the formulation of the relation 
between chains in K and L we shall treat p as joined with every 
oriented simplex ot(S) which contains p, and define the cone poc(S) 
as the zero of the corresponding group of chains. We note easily 
that (under the above convention), if p can be joined with 
/ G Cm(K), then φ(ρ) can be joined with <pm(I) and 

(34) <Ά+ι(ρΙ) = φ(ρ)<Ά(Ι). 

THEOREM 1. If σ: K' -* K is a standard translation and s 
= {sn}: C(K, a) -> C{K', β) is the chain homomorphism constructed 
above, then for every n 

(35) O w = lcn(*,a), hence a*s* = lHn{Kt*) 
and 

(36) sa° « 1C(AV), hence 5*σ* = lHn(K\ßy 

P r o o f . We shall prove (35) by induction. The validity of σ§£0 

= lc0(tf,a) follows from the fact that σ keeps still all the vertices 
of the complex Κ' which belong to K. 

Suppose that (35) holds for n < m. Let a(S) = (p0, . . . , /Vn) 
be a generator of the group Cm+1(K, a). Using (32), (34) and (35) 
for n = m we have 

(37) c £ + 1 w ( a ( S ) ) = o°m+i[KS)smdm+la(S)] 
= σ(Α(5) )σ-^^ + 1 α(5) = a(6(S))0„+1a(S). 

Since σ(ό(5)) = /?^ for a certain y < m + 1 , we obtain 
m+l 

(38) a(b(S))dm+MS) =&Σ (-ι)*(Ρο> ...*h, - . 5 ^ + i ) 

= ( - 1 ) ; ( Λ ^ Ο , . . . , Λ , ...^m+l) 
= (-l)2J(Po,~.,Pm+l)=0L(S). 

Equations (37) and (38) imply the validity of (35) for n = m + 1 , 
which completes the proof of the first part of the theorem. 
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To prove the second assertion, it suffices to define a common 
acyclic carrier of sa° and Ιακ',β)· Let cf — (b(S0), ..., b(Sm)) be 
an arbitrary generator of the group Cm{K'', β). Denote by S0 the 
subcomplex of K' consisting of all the faces of the simplex S0 and 
take as D(cf) the subcomplex C(SQ9 β) of the complex C(K\ β). 
Using (31) we easily verify that the function so defined is a carrier 
of sa°; the fact that it is also a carrier of \c{K\ß) is obvious. The 
acyclicity follows from the fact that the complex 50 is a cone with 
vertex b(S0). 

When defining homomorphisms sn we used a certain orientation 
of the complex K; one can verify that homomorphisms s'n defined 
in the same manner for another orientation a' of the complex K 
satisfy the condition s'n = snQ*a. It follows that s* can be treated 
as a homomorphism of the group Hn(K) into the group Hn(K') 
since it does not depend on the choice of the orientation, which 
served for determining the homology group of the non-oriented 
complex K. The same conclusion can be reached from Theorem 1 
since the homomorphism s* is inverse to the homomorphism 
a* induced by a simplicial map, and such homomorphisms do 
not depend on orientation. 

One considers also compositions of homomorphisms s*. If 
K is an arbitrary simplicial complex, and K(m) is its mth bary-
centric subdivision, then composing the homomorphisms 

*?: Hn(K) - Hn{K'\ s*: Hn(K') - HH(K™)9 ..., 

s*: Ηη(Κ^)^Ηη(ΚΜ)9 

we obtain a homomorphism 

*<">·: Hn(K)-+Hn(K^). 

Theorem 1 and Theorem 3 of § 4 imply the following 

COROLLARY. If a: K(m) -» K is a standard map, ands(
n
m)*: Hn{K) 

-> Hn(K{m)) is the composition of the corresponding homomorphisms 
5*, then for every n 

°is\r* = l/rn(JD and s<T>*a* = !//„(*(")). 

Suppose now that we are given two simplicial complexes K 
and L and a continuous mapping / : \K\ -> \L\. We shall assign to 
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this mapping a homomorphism /„: Hn(K) -* Hn(L) for n = 0 , 1 , . . . 
The definition of /„ is illustrated by the following diagram: 

Hn{K) — H„(K^) ~ ± //„(*«>) 
I 

\ \rt / 
<Pn\ | / > * 

\ | / 
Hn{L) 

Let φ: K(m) -> £ be a simplicial approximation of/, existing by 
virtue of the corollary to Theorem 9 of § 1, and let φη = <ρ*^'Μ)*. 
We shall show that the homomorphism of Hn(K) into Hn(L) 
defined in the above manner does not depend on the choice of 
a simplicial approximation φ. Let us consider another simplicial 
approximation ψ: K(l) -+ L o f / Without loss of generality we 
may assume / > ra, i.e. / = m-\-k with k > 0. Let a: K(l) -> Ä"(m) 

be a standard map; from Theorem 8 of § 1 it follows that maps 
φσ and ψ are contiguous, whence by Theorem 3 of § 4 and 
Theorem 5 of § 5 we have 
(39) φ* σ* = (φσ)* = ψ*. 

From the corollary to Theorem 1 we obtain 

(40) . σ·*ί*>* = 1Ηη<κΜ>· 
Using (39) and (40) we get 

ψη — ψη^η — ψη όη Λη "— TM υη Λη Λη — ψηύη — ψη J 

which shows that the homomorphism of Hn(K) into Hn{L) defined 
above depends only on / ; we shall denote this homomorphism 
b y / * . 

THEOREM 2. Iff: \K\ -> \L\ and g: \L\ -» |M|, ί/κ?/ι 

(gf)S=g:f! for n>0. 
P r o o f . The following diagram illustrates the proof: 

Hn(K) Hn{L) 
t 

st 
(0* 

vi 
o ( w ) * 

v* 
//„ (JiO) _ j ^ ^ C ) ) + Hn (M) 
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Let ψ: L(m) -> M be a simplicial approximation of g, and let 
9?: J5T(Z) -► Z(m) be a simplicial approximation of the mapping 
/ : \K\ - |£<m>| = \L\. From Theorem 6 of § 1 it follows that 
σφ, where a: X(m) -> L is a standard map, is a simplicial appro­
ximation of / , whence 

Since g* = ^?4m)*> it follows from the Corollary to Theorem 1 
that 

£?/? = V?^*^?^?^0* = V>t<pSUl)* = (w)?4°*> 
and we infer that g*/* = (g/)?, since <̂p is a simplicial approxi­
mation of gf (see Theorem 5 of § 1). 

Let us also note that for the identity transformation i: \K\ -> \K\ 
we have i* = lHn(K)for n = 0, 1, ... Indeed, as a simplicial ap­
proximation of / we can take the identity of K, which is a simpli­
cial map of K into K. 

THEOREM 3. If f: \K\ -> \L\ is a homeomorphism, then 
/ ? : Hn{K) -> //"„(£) w a« isomorphism for n = 0, 1, ... 

P r o o f . Let g: |L| -> |JC| be the inverse of/. Thus, g / a n d / g 
are identity mappings of the polyhedra \K\ and |L| respectively. 
Using Theorem 2 we get 

gnf* = (g/)? = lfrn(jr) and / * g * = (/g)* - lHn(L), 

which implies that the homomorphism g* is inverse to / ? , and 
/ ? is an isomorphism. 

It follows from Theorem 3 that if the underlying polyhedra 
of two complexes are homeomorphic, then the complexes have 
the same homology groups. This allows us to define homology 
groups of polyhedra and, more generally, homology groups of 
spaces homeomorphic with polyhedra. A topological space ho­
meomorphic to a polyhedron will be called a curvilinear polyhedron 
(or a triangulable space). Thus, X is a curvilinear polyhedron if, and 
only if, there exists a simplicial complex K and a homeomorphism 
/: \K\~* X. The pair (K, t) will be called a triangulation of the 
triangulable space X. Triangulable spaces and their continuous 
maps form the category TS. The nth homology group Hn{X) of 
a triangulable space X will be defined as the group Hn(K) where 
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(K91) is a certain triangulation of X. Theorem 3 implies that this 
definition is independent of the choice of triangulation, for if 
(Kl9 tx) is another triangulation of X, then (t^t)* *s a n isomor­
phism of the group Hn(K) onto the group Hn(Ki). 

Suppose now that we are given two curvilinear polyhedra X 
and Fand let (K, t) and (£, w) be their triangulations; moreover, 
let / : I - ^ F be an arbitrary continuous mapping. The map 
ir1 ft: \K\ -► \L\ induces a homomorphism of the group Hn(K) into 
the group Hn(L) for n = 0 , 1 , 2 , . . . This homomorphism, to be de­
noted by /* , will be regarded as a homomorphism of Hn(X) into 
Hn(Y) and will be called the homomorphism induced by f We 
easily note that for other triangulations (Kl9 tx) and (Lv, ut) of 
the spaces X and Y the diagram 

(«rV*i)i 
HM +HM 

t t 
Or1/)? (HI1!*); * Ι Λ * 

(w-YO? 
//,(*) ^/ζ,ίΐ) 

is commutative, i.e. the homomorphism fn: Hn(X)-+Hn(Y) 
does not depend on the choice of the triangulations of the spaces 
X and y, which served for its definition. 

From Theorem 2 and the above definition we obtain 

THEOREM 4. By assigning to triangulable spaces the nth homology 
group (n = 0, 1, ...) and to continuous mappings of triangulable 
spaces the induced homomorphisms, we define a covariant functor 
from the category TS to the category G. 

EXAMPLE 1. The unit «-ball tfn of the space Sn is homeomorphic 
to the closure of the «-dimensional simplex, whence its triangula­
tion is given by the complex Kn consisting of all the faces of that 
simplex (together with a certain homeomorphism). Therefore, 
by (16) we have 

(41) Hm(JTn) = Q for m > l , H0(jTn) « Z . 

A triangulation of the «-sphere Sf„, i.e. the surface of the ball 
3fn+19 is given by the complex described in Example 4 of § 4 



ELEMENTS OF ALGEBRAIC TOPOLOGY 329 

(together with a certain homeomorphism). Thus, in view of (17) 
we have for n > 1 

(42) Ήηψη) » H0(Sen) » Z and 

#m(^„) = 0 for other m. 

THEOREM 5. Homotopic continuous mappings of triangulable 
spaces induce the same homomorphism of homology groups. 

P r o o f . It suffices to prove that if / , g: \K\-* \L\ are homo-
topic, then/* = g* for every n. Note that if two maps of |JST| into 
\L\ have a common simplicial approximation, then they induce 
the same homomorphism of Hn(K) into Hn(L), since this simpli­
cial approximation can be used for defining homomorphisms 
induced by those maps. 

Let us take a continuous function h: \K\XS -» \L\ satisfying 
the condition 

h(x, 0) = f{x) and h(x, 1) = g(x) for xe\K\. 

By the compactness of the Cartesian product \K\xJ and by 
Theorem 4 of § 5, Chapter XVI, for every ε > 0 there exist 
numbers 0 = t0 < ... < tm = 1 such that |/i—/i_i| < e for 
i = 1 , . . . , m where f(x) = h(x, tt). Taking as £ the number 
satisfying the assertion of Theorem 9 of § 1, we obtain 

ft = (fo)t = (fi)t = - = σ».ι)? = σ»» = gn 
for /i = 0, 1 , . . . 

EXAMPLE 2. It follows from Theorem 5 that the identity 
/ : Sfn -+ Sfn and a constant mapping g: &*„-+£?„ are not 
homotopic for n > 1 (for w = 0 this fact is evident). As we know 
(see p. 270 and Exercise 12, Chapter XX), this is equivalent to the 
fixed-point theorem. Indeed, g~g"g\ where g': Sfn-+{c} 
and g": {c} -> S?n, whence g* = g'n'*g'n* is the zero homomorphism 
(since g'n* and g'n'* are zero homomorphisms, in view of the equality 
Hn(c) = 0), while / * = l z . 

§ 7. Homology groups with coefficients 

We shall now define homology groups of triangulable spaces 
with coefficients from an arbitrary Abelian group, and we shall 
assign homomorphisms of these groups to continuous maps 

file:///K/XS
file:///K/xJ


330 SET THEORY AND TOPOLOGY 

of triangulable spaces. Different homology groups will correspond 
to different groups of coefficients, thus enlarging the number 
of algebraic invariants corresponding to triangulable spaces. 
The construction of homology groups with coefficients will 
consist in applying the tensor product functor to a chain complex 
before computing homology groups of this complex. 

We start from the definition of the tensor product functor 
from the category G into itself. 

Let G be a fixed Abelian group. For every group A from the 
category G, denote by W(A, G) the free group generated by all 
pairs of the form (a, g) with a e A, g e <?, and by R(A, G) the 
smallest subgroup of W(A, G) containing all elements of the form 

(43) {a1+a2,g)-{a1,g)-(a2,g) and 

0 , gi+g2) — 0 , gi)—0, £2). 
The existence of such a subgroup follows from the fact that the 
intersection of an arbitrary family of subgroups of a given group 
is a subgroup of this group. 

By the tensor product A <8 G we shall understand the quotient 
group W(A, G)/R(A, G); the image of the generator (a, g) under 
the natural epimorphism p will be denoted by a®g. Since elements 
of the form (43) are mapped into the zero of the tensor product, 
we have 
(44) (a1+a2)®g = αλ ® g+a2 ®g and 

*® (gi+gi) = a®g1+a®g2. 
It follows from (44) that for any integer n > 0 w e have 

(45) na®g — n(a®g) and a(% ng = n(a®g); 

in particular 0®g = 0 = a®0, which in turn implies the vali­
dity of (45) for negative n. 

THEOREM 1. For any group G 

Z%G « G. 
P r o o f . Consider the homomorphism/of the group W{Z, G) 

into G defined by assigning the element kg e G to the generator 
(k9g). The homomorphism / vanishes on elements of the form 
(43), whence R(Z,G) c Ker/, and the formula 

f'p(x)=Ax) 
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defines a homomorphism / ' of Z®G into G such that f'(k®g) 
= kg. Since f'(l®g) = g, we conclude t h a t / ' is an epimorphism. 
Every element x of the group Z®G is of the form 

"*lO*l ® gl) + ..· +W*(«* ® gfc) 

and in view of (45) and (44) we get x = 1<g)g, where g = m1n1g1 + 
+ ... +mknkgk. I f / ' (*) = 0, then g = 0 and x = 0, hence / ' is 
also a monomorphism. 

Suppose we are given a homomorphism/: A -► i?. By assigning 
the element (/(a), g) e W(£, G) to the generator (a, g) e JF(4, G) 
we define a homomorphism, to be denoted by/ , of the free group 
W(A,G) into the group W(£, G). We note immediately that 

/ m a p s elements of the form (43) into elements of the same form 
in W(B, G); consequently, 7(^04, G)) c £ ( £ , G) and an induced 
homomorphism f: A ® G -* B <% G is defined such that 

f'p(x)=pf(x); 
in particular, f'(a <g> g) =f(a) <g> g. 

By simple checking we obtain 
THEOREM 2. 2?y assigning to every group A the tensor product 

A ® G a«rf to every homomorphism f: A -> B the homomorphism 
/ ' : 4̂ <g> G -► J? ̂  G we de/?fle a covariant functor from the category 
G into itself Moreover, iff h: A-+B, then (f±h)' =f'±h'. 

The tensor product functor can be applied also to chain com­
plexes. Suppose we are given a chain complex C = {C„, dn}. The 
sequence {Cn®G,d'n} of groups C„ <g> G and homomorphisms 
d'n: Cn<8> G -+ Cn_1 ® G is a chain complex, since, by Theorem 2, 
d'n-id'n = (<9/i-i<9n)' is the zero homomorphism. This complex 
will be called the tensor product of the complex C by G, and will 
be denoted by C <g> G. We can easily see that if s = {.?„} is a chain 
homomorphism of C into D, then J ' = {s'n} is a chain homomor­
phism of C <g> G into Z> <g> G, and that in this manner we define 
a covariant functor from category CC into itself. 

Composing the functor described in Theorem 1 of § 5 with 
the tensor product functor, and then with the functor described 
in Theorem 2 of § 5, we obtain a covariant functor from the 
category SC to the category G. This functor assigns the group 
Hn(K; G) = Hn(C(K) <g> G) to any complex K and the homomor-
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phism 9?°'*: Hn(K; G) -> Hn(L; G) to the simplicial map <p: K-> L. 
The group Hn(K\ G) will be called the nth homology group of 
K with coefficients from G, while the homomorphism φ°η'*, usually 
denoted shortly by φ*9 is called the induced homomorphism. 

EXAMPLE. Let us compute the homology groups with coefficients 
from G for the simplicial complex K consisting of a single vertex/?. 
We easily note that Cn{K) = 0 for n > 1 and CQ(K) « Z, hence 
all homomorphisms dn are zero homomorphisms. After taking 
the tensor product with the group G we have Cn(K) ® G = 0 
for n > 1, while C0(K)<® G « G by Theorem 1; the homomor­
phisms d'n are of course zero homomorphisms. It follows that 
Hn(K; G) = 0 for n > 1 and # 0 ( # ; G) ~ G. 

The construction of homology groups with coefficients from 
a group G for triangulable spaces and of homomorphisms of 
those groups induced by continuous mappings is analogous to 
the construction shown in § 6. We shall merely sketch the 
main stages of this construction without going into detailed proof, 
which would merely repeat the computations of the preceding 
section. 

To begin with, we show that homology groups with coefficients 
from G of a complex K and of its barycentric subdivision are 
isomorphic. We consider chain complexes C(K) ® G and C(K') <g> G 
and chain homomorphisms a°': C(K') <g> G -> C(K) <g> G and 
s': C(K)®G-+ C(K')®G. The fact that a°'s' is the identity 
is a consequence of the fact that the tensor product is a functor; 
the fact that s'a0' is chain homotopic to identity follows from the 
fact that, in view of the last assertion of Theorem 2, the tensor 
product functor maps chain homotopies into chain homotopies. 

Theorem 1 of § 6 and its corollary remain, therefore, valid 
for homology groups with coefficients. This allows us to assign 
a homomorphism / * : Hn(K; G) -> HH(L; G) to every continuous 
mapping/: \K\ -+ \L\. Next, we prove theorems corresponding to 
Theorems 2 and 3 of § 6 for homologies of simplicial complexes 
with coefficients. Using these theorems we define the functor 
which assigns the group Hn(X; G) to the triangulable space X, 
and the homomorphism/*: H„(X;G) -» Hn(Y; G) to the con­
tinuous mapping / : X -» Y. We can also prove a theorem corre-
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sponding to Theorem 5, which asserts that for a pair of homo-
topic mappings/, g: X -* Y the homomorphisms/* and g* of the 
group Hn(X; G) into Hn(Y; G) coincide. 

From the above example it follows that the Oth homology 
group of a point with coefficients from G is the group G. There­
fore the homology functors with coefficients differ for different 
groups of coefficients. Note also that there exists spaces for which 
some homology groups without coefficients are zero groups, 
but groups with suitably chosen coefficients are non-zero groups 
(see Exercise 15). 

One can easily show that the group G ® Z is isomorphic to 
G and that under identification of groups G and G <g> Z, and 
H and H®Z the homomorphisms f:G->H and / ' : G®Z 
-> H (g> Z are identified (the proof is similar to that of Theorem 1). 
It follows that homology groups defined in §§ 4 and 6 are identical 
with homology groups with integer coefficients. 

§ 8. Cohomology groups 
We shall define one more functor from the category of trian-

gulable spaces to the category of Abelian groups, namely cohomo­
logy groups with coefficients from a group G. The construction 
of this functor, as in the case of the construction of homology 
groups with coefficients, consists in applying a certain functor 
to chain complexes before computing homology groups. Unlike 
the functors described in the preceding sections, the functor 
introduced in this section will be contravariant. 

We shall start from defining the contravariant functor Horn 
from the category G into itself. 

Let G be a fixed Abelian group. For every group A from the 
category G denote by Horn (A, G) the set of all homomorphisms 
of A into G. With the addition of homomorphisms defined by 
formula (7) the set Horn04,(7) is an Abelian group; the role 
of zero is played by the zero homomorphism of A into G. The 
group Hom(^, G) will be called the group of homomorphisms 
of A into G. 

THEOREM 1. For any group G 

Hom(Z, G) « G. 
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Proo f . Since Z is the free group generated by the number 1, 
each homomorphism of Z into G is uniquely determined by its 
value at 1, and by assigning an arbitrary element of G to 1 we 
define a certain homomorphism. We easily verify that the corre­
spondence between fe Horn(Z,G) and /(l) e G establishes the 
isomorphism between these groups. 

Suppose we are given a homomorphism/: A -► B. By assigning 
to the element g e Hom(5, G) the element f(g) eHom(i , G), 
defined as 

(46) [f fe)](a) = gf(a) 

we define a homomorphism / ' : Hom(Z?, G) -> Hom(^4, G). In­
deed 

[f fei+fo)] (fl) = (g!+g2)/(a) = glf(a)+g2f{a) 
= [f(fi)](a)+fffe)](a), 

i.e. 

THEOREM 2. By assigning the group ofhomomorphisms Hom(^4, G) 
to every group A, and the homomorphism f9: Hom(2?, G) 
-> Hom(y4, G) to every homomorphism/: A -+ B we define a con-
travariant functor from the category G into itself Moreover, 
if f h: A-> B, then (f± A)* = / ' ± h\ 

Proo f . From (46) it follows immediately that VA = lHOm(A, oy 
If / : A -> B and h: B -► C are homomorphisms, then for 

g e Hom(C, G) we have 

[(¥) fe)] (a) = ghfiß) = [A'feMa) = [f'h'(g)] (a), 
i.e. 

(A/)' = / ' A \ 
Finally, 

[(f±hY(g)](a) = *(/·±Α) (β) = gfta)±gh(a) 
= [/'(g)](a)±[A'(g)](fl), 

i.e. 
(f±hy(g)=f'(g)±h'(g) and {f±Kf =f±h\ 
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The functor Horn can also be applied to chain complexes; 
it leads from the category CC to a certain category which will 
be described below. 

D e f i n i t i o n 1. By a cochain complex we shall mean an 
infinite sequence 

δ1 δ2 δη 

(47) C°-*Cl-+ ... -* C"-1 -> C" -► ... 

of Abelian groups Cn and homomorphisms dn: C""1 -+ Cn called 
coboundary operators, such that δηδη~1 — 0 for « = 2 , 3 , . . . 
The cochain complex (47) will be denoted by C = {Cn, δη}. 

D e f i n i t i o n 2. A cochain homomorphism of cochain complex 
C = {Cn, δη} into a cochain complex D = {Dn, δη} will be defined 
as an infinite sequence of homomorphisms / = {/"}, where 
/" : Cn -> Dn and the diagram 

fn 

Cn —+Dn 

δη \δη 

is commutative, i.e. 

(48) /"δη = δη/η~1 for n ^ l . 

The category whose objects are cochain complexes, and whose 
morphisms are cochain homomorphisms will be called the category 
of cochain complexes, and will be denoted by CCC. The composi­
tion of morphisms, and the identity morphism are defined as 
in the category CC. 

Given a cochain complex C = {Cn, δη}9 the group of n-dimensional 
cocycles will be defined as the groups Zn(C) = Ker3"+ 1, and the 
group of n-dimensional coboundaries will be defined as Bn(C) 
= Im δη for n > 1; the group of ^-dimensional coboundaries 
B°(C) will be defined as the zero group. The identity δ'δ"1 = 0 
implies that Bn{C) c Zn(C) for n = 0, 1, ...; the quotient group 
Hn(C) = Zn(C)IB\C) will be called the nth cohomology group 
of the cochain complex C. 

It follows from (48) that a cochain homomorphism / : C -> D 
maps cocycles into cocycles and coboundaries into coboundaries; 
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thus, it determines for every n, the induced homomorphism f'%: Hn(C) 
-» Hn(D). The following theorem holds: 

THEOREM 3. By assigning the nth cohomology groups to cochain 
complexes, and the induced homomorphisms of those groups to 
cochain homomorphisms, we define a covariant functor from the 
category CCC to the category G. 

D e f i n i t i o n 3. Two cochain homomorphisms/, g: C -> D 
where / = {/"}, g = {gn}, C = {Cn, δη} and D = {D\ δη} will 
be called cochain homotopic, and denoted by / « g, if there exists 
a sequence of homomorphisms Δ = {An} where An\ Cn+1 -> Dn 

for n = 0, 1, 2 , . . . such that 

(49) f"-g»=dHAH-1+AndH+1 for « = 1,2, . . . 

and 
(50) fo^go = AodK 

The sequence of homomorphisms A will be called a cochain 
homotopy between / and g. 

We easily prove 
THEOREM 4. If cochain homomorphisms f, g: C -> D are cochain 

homotopic, then / ^ = g j /ÖA* « = 0, 1, ... 
The functor Horn applied to a chain complex yields a certain 

cochain complex. Suppose we are given a chain complex 
C == {Cn, dn}. The sequence {Cn, dn} where C = Hom(C„, G) 
and δη = d„ is a cochain complex, since δηδη'1 = d,„d,

n_1=(dn_id„y 
is the zero homomorphism. This complex will be denoted by 
Hom(C, G). We easily verify that if s = {,?„} is a chain homomor­
phism of C into A then s' = {s£} is a cochain homomorphism 
of Hom(Z), G) into Hom(C, G) and that the mapping defined 
above is a contravariant functor from the category CC to the 
category CCC. 

Composing the functor described in Theorem 1 of § 5 with 
functor Horn, and then with the functor described in Theorem 
3, we obtain a contravariant functor from the category SC to 
the category G; the group Hn(K; G) = fl*(Hom(C(lT), G)) is 
assigned to any simplicial complex K, and the homomorphism 
<p%m: Hn(L; G) -► Hn(K; G) is assigned to any simplicial map 
φ: Κ-+ L. The group Hn(K; G) will be called the nth cohomology 
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group of K with coefficients from G, and the homomorphism 
q%n, denoted shortly by φ%, will be called the induced homo-
morphism. 

EXAMPLE. We shall determine the cohomology groups with 
coefficients from G of the simplicial complex K consisting of 
a single vertex p. We know that Cn(K) = 0 for n > 1, C0(K) « Z 
and the homomorphisms <9„ are zero homomorphisms. After 
applying the functor Horn we obtain Hom(Cn(K), G) = 0 for 
n > 1, while Hom(C0(Ä'), G) Ä G in virtue of Theorem 1; clearly 
the homomorphisms δη = d'n are zero homomorphisms. It follows 
that Hn(K; G) = 0 for n > 1 and Hn(K; G) « G. 

The construction of cohomology groups with coefficients from 
G for triangulable spaces, and of homomorphisms of those groups 
induced by continuous mappings is analogous to the construc­
tion presented in § 7. We shall merely sketch the main steps 
of this construction. 

To begin with, we show that cohomology groups with coeffi­
cients from G of a complex JTand of its barycentric subdivision K', 
are isomorphic. We consider cochain complexes Hom(C(iT), G) 
and Hon^CXiT), G) and cochain homomorphisms σ°': Hom(C(iT), 
G) - Hom(C(ir) , G) and s': Hom(C(Jr>, G) -> Hom(C(tf), G). 
Since Horn is a functor, s V is the identity; next, a°'s' is cochain 
homotopic with the identity, since (in view of the last assertion 
of Theorem 3) the functor Horn maps chain homotopies into 
chain homotopies. 

We leave it to the reader to formulate a corollary, corresponding 
to the corollary to Theorem 1 of § 6, which permits the assigning 
of a homomorphism fn: H"(L; G) -+ H"(K; G) to every conti­
nuous mapping / : \K\ -► \L\. Next we prove theorems correspond­
ing to Theorems 2 and 3 of § 6 for cohomologies of simplicial com­
plexes; using those theorems we define a functor which assigns 
to the triangulable space X the group Hn(X; G) and to the map­
ping / : X-+ Y the homomorphism f%\ Hn(Y; G) -► Hn(X, G). 
One can also prove the theorem corresponding to Theorem 5 
of § 6, which asserts that for a pair of homotopic mappings 
fg: X -► Y the homomorphisms f% and g% of the group Hn(Y, G) 
into Hn(X, G) are identical. 



338 SET THEORY AND TOPOLOGY 

Exercises 

1. Show that every simplex determines its vertices, i.e. that if p0...pn 
= Qo ··· qn> then the sets {p0, ···,/>*} and {q0,..., qn} coincide. 

Hint. Every point of the closure of a simplex S other than one of its ver­
tices is an interior point of some segment contained in S. 

2. Show that the simplicial subdivision of the set S defined in Chapter XX 
forms a simplicial complex, i.e. show that it contains all faces of its simplexes. 

3. Two homomorphisms Λ and f2 such that 

/ i h 
Gi -> G2 -» G3 

are said to form an exact sequence, if the group /i((/i) is the kernel of/2. 
Assuming that/i and/2 form an exact sequence, show that: 
1°. If Gi reduces to the zero element, then/2 is a monomorphism. 
2°. If G3 reduces to the zero element, then Λ is an epimorphism. 
4. More generally, we say that a given (finite or infinite) sequence of 

homomorphisms is exact, if every successive triple of its elements forms an 
exact sequence. 

Show that the following sequence of homomorphisms is exact: 

i P 
0 -* Go -* G -> G/Go — 0, 

where i denotes the identity (defined on elements of a subgroup G0 of G) 
and p is the natural epimorphism of G onto GIG0. 

5. The Cartesian product JJFt of any family of groups Ft9te T (see 
t 

Chapter IV, § 8) becomes a group if we define the addition of elements 
/and g of this product (called the direct product of groups Ft) by the formula 

ih=f+g)^ f\t(ht=ft+gt). 
Prove that 

1°. The zero element of the group JJFt is the function / equal to zero 
for every te T. 

2°. (-f)t = -ft for every te T. 
3°. The projection f-+ft is a homomorphism mapping JjFt onto Ft. 

t 

6. Suppose we are given an inverse system {T, F, <p} (see Chapter VII, 
§ 5), where for each t e T, Ft is a group, and φ^ is a homomorphism: 

<P*o: Fti-+Ft0
 f o r h<ti-

Show that the limit of this system, to be denoted by Lim{r, F, <p}> is 
a subgroup of the group JjFt. 

t 

7. Show that if T is the set of all positive integers, F«+i c Fw and φίη 
is the identity for n> m, then the elements of the limit Lim are constant 
functions with values in the intersection of the sets F„. 
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8. Let T be a directed set, let Ft be an Abelian group for every / e T, and 
let φ\^ be a homomorphism 

ψ'ύ' Ft0-+Fti for /ο<?Ί. 

The system {T, F, φ) will be called direct, if 
t Λ f j f f 

<#; for t0<>tl<>t2. 

The limit Lim{r, F, φ) is defined as follows: the elements of this limit 
are sets obtained by including to the same set two elements xe Ft and x* e Ft+ 
if there exists t0 such that t <̂  t0, t* <ζ t0 and <pt° (x) = φ!*(χ). 

Addition of these sets is defined as follows: let Xj e Xj e Lim, where xj e Ftj 

for j = 0,1, let t0 <ζ t2i t, <? /2 and let [^„(^ο) + <Pt\(xi)] eX2- In this 
case we put X2 = X0+Xf 

Prove that according to the above definition, Lim is an Abelian group. 

9. Show that if Jis the set of all positive integers, Fn c Fn+i and <Pm is the 
identity for m < n, then Lim consists of one-point sets, with elements from 
the union of sets Fn. 

10. The definition of connectedness of a complex leads in a natural way 
to the definition of a component of a complex. Show that the homology 
groups of a complex are equal to direct sums of the corresponding homology 
groups of its components. 

Prove analogous theorems for homology groups with coefficients and 
for cohomology groups. 

11. The complex K consists of all segments Sx — poPi, S2 —P^Pi,..., 
Sm = Pm-iPm and vertices Po,Pu -yPm of the polygonal line L (Fig. 22), 

Let the chain z — k1S1+k2S2+ ... +kmSm be a cycle. Show that 
kx = k2 = ... =fcm = 0 . 

S^ 
Po PI Pm 

FIG. 22 FIG. 23 

12. The complex K consists of all the segments and vertices of the polygonal 
line L presented in Fig. 23. 

We orient the segments of L in the manner shown in Fig. 23. Denote the 
one-dimensional simplexes obtained in this way by 5A, . . . , 58. 
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Prove that 
(a) Every chain of the form 

8 
(i) k Σ ^ 

i=0 

is a cycle. 
(b) Every one-dimensional cycle of the complex K is of the form (i). 
(c) From (a) and (b) deduce that the first homology group of K is isomorphic 

to the group of integers. 
13. The complex K consists of all the segments and vertices of two polygonal 

lines LitL2 with one common vertex (Fig. 24). The segments of the complex 

FIG. 24 F;G. 25 

K are oriented as shown in Fig. 24; we denote them by Su or S2l·, the 
indices 1 and 2 referring to lines Li and L2. Put 

4 4 

Zl = / *S\l> Z2 = ^j 2 l' 
i = 1 /= 1 

Prove that 
(a) Every one-dimensional cycle z of the complex K is of the form 

(ii) z = klzl+k2z2. 
(b) Every chain of the form (ii) is a cycle. 
Deduce the structure of the homology groups of the complex K from (a) 

and (b). 
14. Fig. 25 with the sides ΐη and tl of the rectangle joined together represents 

a triangulation of the Möbius band. The orientation of the triangles of this 
triangulation, and also of the oriented segments tj is given in the figure. 
Putting 

6 6 

show that 
dl = z+2tl. 

15. A triangulation of the projective plane can be obtained as follows: 
consider the triangulation of the rectangle presented in Fig. 26, consisting of 24 
oriented triangles /f, t2i..., t249 of 12 segments / } , t2,..., t\2i of interior 
segments, and of vertices; then join t\ with / j , t\ with t\, t\ with th, tl with 
tlo> t\ with tli and tl with t\2. 
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Instead of 12 segments ί ΐ , / ί» •••»*ΐ2 we obtain only 6, denoting them 
as before by *}, ...,t&. 

In this manner we obtained a triangulation of the projective plane. Putting 
24 6 

i = l y - 1 

show that d2l = 2z, and that z is not a boundary of any two-dimensional 
chain of K. 

FIG. 26 

Hint. If <Mi = *, then /! = £/. 
Compute the homology groups of the projective plane and its homology 

groups with coefficients from the group Z2 (i.e. the quotient group Z/2Z, 
where 2Z denotes the group of even numbers). 

16. Show that if a group H is the direct sum of m copies of the group Z, 
then the group H ® G is the direct sum of m copies of the group G. 

17. Prove that if K is a non-empty connected complex, then H0(K; G) = G. 
18. Show that if the group H is the direct sum of m copies of the group Z, 

then the group Mom(/f, G) is the direct sum of m copies of the group G. 
19. Show that if K is a non-empty connected complex, then H°(K; G) = G. 
20. Let {G0,..., G„} be a system of open sets in an (arbitrary) space X. 

Let p0i...,pn be a system of points of a Euclidean space such that 
(*) ( ? i o n . . . n G ^ 0 

implies linear independence of points piQ, ...,/7ik. The complex iV consisting 
of Simplexes plQ ...pik such that (*) holds will be called the nerve of the system 
{G0,.. . ,Gn}. 

Prove that 
1 °. If X = Po~Pn (where the vertices of the simplex in question are linearly 

independent), and if Gf denotes the star of pi9 then the nerve of the system 
{G0, ·.., Gn) is given by the complex consisting of all the faces of the simplex 
Po · · · Pn-
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2°. If X is a compact «-dimensional space, then for every ε > 0 there exists 
a continuous mapping / of this space into an /i-dimensional polyhedron N 
such that ö[f-*()>)] < ε for every >>e N. 

Hint. Consider the nerve of the cover given in the theorem from § 3, 
Chapter XIX, and the kappa mapping from Exercise 3, Chapter XX. 

21. Let {Go, · · · , Gm} and {H0,..., Hn) be two covers of X consisting of 
open non-empty sets. Moreover, suppose that the second cover is a refinement 
of the first one (i.e. for every j < n there exists an i < m such that Hj c (?,·). 

Suppose that a complex K with vertices p0, ...,pm is the nerve of the sys­
tem {Go,..., Gm}, and a complex L with vertices q0,..., qn is the nerve of the 
system {i/o, · · · , #/*}· Let / be the function assigning to every j < n a number 
/(;) < m such that 

Ä) c G / 0 > 

Show that the function π defined by the condition 

n(qj) = Pf(j) 
is a simplicial map of L into K (such a simplicial map is called a projection). 

R e m a r k . The concept of homology group for an arbitrary compact 
space X is introduced as follows. Let T be the family of all finite (open) covers 
of X. This family is directed by the relation <£, where A <ζ B mean» that B 
is a refinement of A. For each A e T denote by KA the nerve of A (see Exercise 
20), and let n\ be the projection of KB into KA (this projection is a simplicial 
map). Finally, for a given «, denote by /?5 the homomorphism of the group 
Hn(KB) into Hn(KA) induced by n\. 

One can show that the system {T, Hn(KA), p} is an inverse system. The 
limit of this system is called the nth homology group of the space X. 

In an analogous manner one defines the cohomology groups of compact 
spaces, using direct systems instead of inverse ones (see Exercise 8). 
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