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PREFACE

This monograph is designed for a reader who has some acquain-
tance with problems of axiomatics and with the standard methods
of mathematical logic. No special knowledge of set theory and its
axiomatics is presupposed.

The Part of Professor Fraenkel gives an introduction to the
original Zermelo-Fraenkel form of set-theoretic axiomatics and an
account of its following development.

My part is an independent presentation of a formal system of
axiomatic set theory. The formal development is carried out in
detail, only in chapt. VII, which is about the applications to usual
mathematics, it seemed necessary to restrict myself to some indi-
cations of the method of englobing analysis, cardinal arithmetic and
abstract algebraic theories in the system. Theseindications, however,
certainly will be sufficient to make appear the possibility of such
an englobing.

In composing my part I had the continual and most efficient
help of Dr. Gert Miiller, with whom I have talked over all details.
I express him my very hearty thanks.

To North-Holland Publishing Company and its Director Mr. M. D.
Frank I am thankful for the obligingness in the technical questions
and the elegant accomplishment of the rather complicated print.

Ziirich, March 1958 PAauL BERNAYS
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PART 1

HISTORICAL INTRODUCTION
BY

A. A FRAENKEL






HISTORICAL INTRODUCTION

1. INTRODUCTORY REMARKS

The axiomatic method in mathematics, which started with
Euclid’s Elements and was revived in the 19th century, again
chiefly for the purpose of geometry, has made an enormous progress
since the beginning of the 20th century; almost all fields of mathe-
matics and logic, and some of physics and other sciences, have
since undergone an axiomatic analysis.

While the axiomatic method is appropriate to the homogeneous
and continuous domain of geometry to a greater extent than to
arithmetic (where a constructive development from simple objects
to complicated ones is natural) in set-theory the axiomatic point
of view is particularly appropriate for two reasons. First, the anti-
nomies of set-theory which appeared about the turn of the 20th
century, show that the quasi-constructive procedure !) of Cantor’s
set-theory has to be restricted in some way, and thus an axiomatic
determination of the restriction becomes imperative. Secondly, the
fact that all other mathematical branches can be incorporated in
set-theory, leads to the idea of setting up a comprehensive axiom
system 2) of set-theory in which the axiomatic theories of other
disciplines can be embedded.

It is natural that, after the shock of the antinomies, the stress
should be laid on restricting the concept of set axiomatically in such
a way that the known contradictions were eliminated and new ones
were not to be expected. This was the trend of Zermelo and his
followers (since 1908), as described in Nos. 2-6 below. After confid-
ence in the intrinsic soundness of the theory had been re-established
by the success of this step, the question arose whether the restric-

1) A quite different constructive theory, developed by L. E. J. Brouwer
since 1907 in accordance with the principles of neo-intuitionism, is outside
the subject of the present monograph. See Fraenkel-Bar Hillel [1958], ch. IV.

%) A different comprehensive system has been set up in Principia
Mathematica.
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tions imposed on the extent of the set-concept were not exaggerated.
Therefore one endeavoured to approach the exact borderline that
separates the legitimate theory from the zone of contradictions;
this tendency is exhibited in more recent researches (see No. 7
below, and the main part of this monograph 1)).

A few other early attempts to found set-theory axiomatically
have either not had sufficient success or not been developed to a
point which allows a final judgment 2).

While a discussion of the axiomatic method in general is beyond
the scope of this monograph, a few informal explanations with
special reference to set-theory are required. The axiomatization
of set-theory renounces a definition of the concept of set and of
the relation between a set s and its elements. The latter, a dyadic

1) Cf. Borgers [1949] and the comparative surveys of Zermelo’s and
other methods in Wang [1949] and [1950] and Wang-McNaughton [1953].
(For all references, see the Bibliography at the end of the monograph.)

2) Schoenflies [1921] talkes the relation between whole and part (proper
subset) as the primitive relation. This procedure at best attains a theory
of magnitude which does not provide for the properties of irreducible parts
(elements; see Merzbach [1925]); this also applies to finite sets. — The
idea of replacing the element-set relation by the part-whole relation is
also the basis of Foradori [1932].

The system of Finsler ([1926], [1933]; Gonseth [1941], pp. 162-180) is
based on three axioms only. While by means of the first two axioms it can
be proved (see Bacr [1928]) that any consistent model of Finsler’s system
admits of a further extension—as does, for instance, Hilbert’s system of
geometrical axioms when the axiom of Archimedes is dropped—the third
axiom postulates completeness in a sense analogous to Hilbert’s axiom.
For this reason, as well as for the doubts connected with Finsler’s notion
zerkelfrei, his system is hardly tenable.

The axiomatiec system of Gonseth [1933] (cf. [1936]) denies the assumption
that, given a set, it is settled whether a given object belongs to the set or
not. Hence the fundamental propositions on the non-equivalence of sets.
forfeit their validity and it is premature to judge the difficulties involved.

The intention of Ting-Ho [1938] is similar to that of Zermelo, but the
treatement is not strict enough to allow comparison. Cf. also Giorgi [1941].
Systems of a “logieistic™” type, such as Ramsey [1926], Quine [1937] and
[1940] (cf. [1941] and [1942]), Wang [1954], are not included in the subject-
matter of this monograph; neither Lorenzen [1955].
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relation (or predicate), is denoted by ¢; x ¢ s reads “z is contained
in, is an element of, belongs to, the set s or ‘s contains (the
element) x’’, and its negation is x £s. ¢ enters as an (undefined)
primitive relation, the membership relation. 1t is unsymmetrical
and the values of its second argument, possibly with the addition
of the null-set (see below), constitute the domain of sets. Certain
statements containing the membership relation and relations
defined through it will be introduced as axioms. A statement is
true if and only if it can be deduced from the axioms (by means
of a suitable system of logic, in particular certain rules of inference),
and the same applies to the existence of sets.

The situation is still simpler in the modification Z of Zermelo’s
system given in Nos. 2-6 below; here —as opposed to Zermelo’s
own system—no other objects than sets appear, hence the first
and the second arguments of the membership relation determine
the same domain. On the other hand, in the systems briefly
mentioned in No. 7 and extensively treated in the main part of
this monograph, the second arguments of the membership relation
may belong to a different domain, the domain of classes.

As to the elimination of contradictions, all that can be expected
is the exclusion of the logical and semantical antinomies known
at present; this is attained by the exclusion of ““overcomprehensive’”
sets in the system Z (cf. No. 7) and by the formulation of Axiom V
in No. 3. Sufficient hints at how the essential parts of classical set-
theory can be derived from the axioms of Nos. 2-5 are given in
No. 6. A few remarks only about the independence of axioms
occur in this historical part; the question is discussed in a more
profound way in the main part of the present monograph.

2. ZERMELO’S SYSTEM l). EQUALITY AND EXTENSIONALITY

The introduction to the main part of this monograph, written
by Bernays, begins with a reference to the historically first
axiomatization of set-theory, given by Zermelo in 1908. The chief

1) The main source is Zermelo [1908a]; see also [1930]. Cf. the expos-
itions in Fraenkel [1927] and [1928] (also Cavaillés [1938], Weyl [1946]),
Ackermann [1937], Church [1942] (pp. 180-181).
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purpose of this part of the monograph is to give a historical introduction
through an exposition of Zermelo’s system, with some improvements
which were inserted into it before the fundamental changes
performed by von Neumann and Bernays from 1925 and 1937 on
(see No. 7).

Prior to a systematic exposition, we start with some informal
remarks to motivate the method adopted afterwards.

Within a certain non-empty domain of objects we take, as the
only primitive relation of our axiomatic system Z, the membership
relation ¢ (see above). If x and y denote any objects of the domain,
the statement x ¢ y shall either hold true or not. While those
parts of logic that are necessary for Z, in particular the rules of
inference and quantification with respect to thing-variables, are
assumed to be pre-established, the relation of equality should be
treated explicitly. Here the following attitudes are possiblel).

1) Equality in its logical meaning as identity. Zermelo adopts
this attitude by calling x and y equal “if they denote the same
thing (object)”’. When the objects are sets he in addition rests on
an axiom ot extensionality (see below) which states that a set is
determined by its elements.

Thus Zermelo’s axiom differs intrinsically from the Axiom of
Extensionality as expressed below (p. 8), which refers to all objects
of the domain 2).

2) Equality as a (second) primitive relation within Z. Then
the usual properties of any equivalence (equality) relation must
be guaranteed axiomatically, in particular substitutivity with
regard to ¢ in the two-fold sense: of extensionality as above, and
of equal objects being elements of the same sets.

3) Equality as a mathematically defined relation. We may define
x=y either by “if every set that contains z contains also y and
vice versa”, or by “if x and y contain the same elements’”’. The

1) Cf. Fraenkel [1927] and [1927a], A. Robinso(h)n [1939]. For a more
general attitude, cf. Hailperin [1954]. See also the main part of the present
monograph.

2)  The situation becomes somewhat different if, as done in Quine [1940],
every “individual” (p. 7) is regarded as a unit-set containing itself.
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second way is possible only if, as assumed in the following, every
object is a set (including the null-set). In the former case, exten-
sionality must be postulated axiomatically; in the latter, an axiom
has to guarantee the former property.

In this part we adopt method 3), which seems superior to 2)
insofar as a single primitive relation only occurs in the system,
and to 1) since the system is constructed upon a weaker basic
discipline. It makes no essential difference which of the two
definitions of equality is chosen, provided we take a suitable
decision about the existence of individuals (called Urelemente in
Zermelo [1930]), i.e. of objects which contain no element 1).

Taking into account the admissibility of a set which has no
element (‘null-set”), three positions about individuals are tenable:
that the domain contains one null-set and also other individuals,
individuals but no null-set, one null-set but no other individuals.
(A domain without null-set and individuals would be impractical.)
The first position was taken by Zermelo and, for instance, by
Ackermann [1937a]; the second by Quine from 1936 on; the
third, first proposed in Fraenkel [1921/22] and later accepted by
von Neumann, Bernays, and others, is adopted in the following.
This involves that all objects of Z are sets, hence that the values
of the first and of the second argument of the membership relation
constitute the same domain. In fact, for the purpose of developing
mathematics it has proved unnecessary to assume the existence
of individuals. However, as pointed out below in No. 4, there are
problems of independence for which the assumption that infinitely
many individuals can be admitted to the domain plays an im-
portant part; thus it appears that those problems are more
difficult within the system Z than in Zermelo’s original system.

We now outline the system Z, which is not empty and whose only
primitive relation is the dyadic relation ¢ of membership whose
arguments are sets.

1) This use of “individual’” has nothing to do with the distinction between
“individuals” and ‘“‘classes’ in logiec (cf., for instance, Tarski [1935], §2, and
the main part of this monograph). In the logical sense the sets are individuals,
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Definition I. If s and ¢ are sets such that, for all z, x¢s
implies x ¢ ¢, s is called a subset of ¢, in symbols s C ¢; in particular
a proper subset (s Ct) if there is a y ¢t with y £s.

In contrast with Cantor’s ‘‘comprehensive’”’ method of construc-
ting sets, this definition does not allow the construction of subsets
of ¢ by ““collecting” some of its elements. Only with regard to given
sets may we state that one is a subset of the other.

It follows that the relation C is reflexive (s Cs) and transitive
(i.e., sCt and ¢ Cu imply s Cu); C is irreflexive, transitive, and
asymmetrical (i.e., s Ct and ¢ Cs are incompatible).

In accordance with earlier remarks, equality is defined in either
of the following ways.

Definition ITa. If, forallx, s ximplies? ¢ x and eonversely,
s equals ¢ (s=t); the negation is s#¢ (s differs from #). That is to
say, sets are equal if contained in the same objects (sets).

Definition IIb. If sCt¢ and ¢tCs, then s=i¢; otherwise
s#1. That is to say, sets containing the same objects are equal.

Equality is a reflexive, symmetrical, and transitive relation.
The definitions are somehow peculiar to Z; in fact, in the systems
of No. 7 (below) not every object can become an element of another
object, as against ITa, while in Zermelo’s own system there may
exist different objects without elements, as against IIb.

Equality is substitutive with regard to the second argument
of ¢, i.e. from x ¢s and s=¢ it follows that x £¢1). But IIa does
not yield extensionality nor does IIb yield substitutivity regarding
the first argument; hence we supplement IIa and IIb respectively
with the axioms

Axiom Ia. sCt and ¢t Cs imply s=¢.
Axiom Ib. zes and x=y imply y es.

It makes no difference whether we adopt Definition IIa and
Axiom Ia, or IIb and Ib. Hence we shall simply speak of the
Definition (I11) of Equality and of the Axiom (I) of Extensionality.

1) This is evident in view of IIb; for the proof in view of Ila, ef.
A, Robinso(h)n [1939], footnote 4.



‘“‘CONSTRUCTIVE”’ AXIOMS OF ‘‘GENERAL’’ SET THEORY 9

Since a set is determined 1) by its elements, we denote the set
with the elements a, b, ¢, ... also by {a, b, ¢, ...}, regardless of the
order of the elements.

Definition III. Two sets without common elements are
called mutually exclusive. If s contains at least two elements, and
any two elements of s are mutually exclusive, s is called a disjointed
set.

3. ‘“CONSTRUCTIVE’ AXIOMS OF ‘““GENERAL’ SET THEORY

In the heading two ad hoc terms are used. “Constructive’” means
that, certain things (one set, two sets, a set and a predicate) being
given, the axiom states the existence of a uniquely determined
other set; ‘‘general” theory means—in contrast with the use in
the main part of the monograph; cf. Bernays [1942a], p. 133—
that no axioms of infinity (see No. 5) are included. (According
to the present attitude the Axiom of Power-Set, for instance, is
not an axiom of infinity.)

The axioms will be preceded by informal remarks which point
out the immediate purpose of every single axiom and, thereby,
hint at their independence.

The operation of ‘“‘uniting’’ two different sets2?) is introduced
by

Axiom II of Pairing 3). For any two different sets ¢ and b,
the pair {a, b}, or {b, a}, exists.

On account of extensionality we are entitled to use the definite
article (the pair) here and in the following three axioms, as well
as in Theorems 1-3 below.

1) Hence Zermelo’s name for Axiom Ia: Axziom der Besiimmiheit. Yet,
he explicitly restricts the axiom to the case that s and ¢ contain elements,
a restriction not adopted in our system Z.

2) Instead of this Zermelian operation, Kuratowski [1925] uses the
union of two sets in the sense of Axiom III. — For the case a = b, see
theorem 1 on p. 14.

3) In Zermelo’s terminology, Awxiom der Elementarmengen. This includes
postulating the null-set and the set containing a single given element;
both will be proved to exist in the present exposition.
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Given any number of sets, Axioms I and II do not enable us to
produce new sets other than pairs. The primary operations of
Boolean algebra, union and intersection, suggest themselves as
simplest additional procedures, and the former will prove sufficient.
We introduce it by

Axiom III of Sum-Set (Union). For any set s which contains
at least two elements, there exists the set whose elements
are the elements of the elements of s.

This set is called the sum-set of s, or the union of the elements
of s, and is denoted by Js. If s={a, b} we also write a U b for
s, and if s contains the elements a, b, ¢, ... we write alU bU cU ...
for | Js.

The union of two different sets exists by II and III. Given a
number of sets, certain types of new sets can be produced, i.e.
proved to exist, and the associativity of the union-operation is
easily shown. Nevertheless, clearly these axioms do not enable us
to proceed to more-than-denumerable sets if, say, a sequence of
denumerable sets is given, where ‘‘denumerable” and ‘‘sequence’
are informal terms to be formally defined later.

Cantor’s (second) tool for reaching higher powers was the
operation of (transfinite) multiplication, in particular exponentia-
tion. We can, however, content ourselves with the special tool of
the power-set, i.e.

Axiom IV of Power-Set. For any set s, there exists the set
whose elements are all subsets of s.

This set is called the power-set of s and denoted by Il(s)?).
The efficacy of this axiom differs from that of Cantor’s respective
operation not only in that the existence of s is presupposed, but
in that the existence of the subsets of s is here assumed to be
previously established. Since Axioms I-III yield only few very
special subsets of a given set and since Definition I does not

1y  Zermelo writes ©s for Us (Axiom III), and Us for II(s). Thus also,
for instance, in Kleene [1952]. In the main part of this monograph s
is used for Us.
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enable us to produce any subsets!), Axiom IV is at the present
juncture a very limited instrument and not at all sufficient to
yield the so-called ‘“‘theorem of Cantor” about the cardinality of
the power-set. For instance, the existence of infinite proper subsets
of an infinite set s cannot be ensured so far. Hence methods of
producing subsets of a given set remain the chief desideratum —and,
as we shall see a posteriori, the only one left within general set
theory. The principal method in Z (for an additional direction see
No. 4) is given by

Aziom V of Subsets 2). For any set s and any predicate % )
which is meaningful (“‘definite’”’) for all elements of s, there
exists the set y that contains just those elements = of s which
satisfy the predicate P (the condition PB(x})).

y is clearly a subset of s.

The weak point in this formulation of the axiom is the term
“meaningful predicate” (or property); in Zermelo’s terminology,
definite Higenschaft.

Informally this term may be understood to mean that, for each
x £ 8, P(x) should be either true or false, without demanding that
the decision ought to be reached at the present stage of scientific
development. Thus “z is transcendental” is meaningful when s
is a set of numbers, but not “z is finitely definable” or another
semantic condition, as those appearing in the antinomies of the
semantical type.

Clearly, such explanations cannot satisfy the requirements of
a formal deductive theory. Zermelo {1908a] (p. 263) gave the
following paraphrase: Eine Frage oder Aussage €, iber deren
Giiltigkeit oder Ungiiltigheit die Grundbeziehungen des Bereiches %)

1) This is also the case in Zermelo’s exposition, but has been misunder-
stood by some of his interpreters.

2)  Zermelo calls it Awziom der Aussonderung (of “‘sifting”).

3)  PB(x) is what is called by Rosser [1953] (e.g., p. 200) a condition on x;
other expressions are ‘“a statement with free occurrence of &’ or “‘a well-
formed formula™.

4) The intention is to the membership relation, and presumably also to
the equality relation.
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vermdge der Axtome und der allgemeingiiltigen logischen Gesetze ohne
Willkiir entscheiden, hetsst “definit”. Ebenso wird auch eine “Klassen-
aussage” E(x ), in welcher der variable Term x alle Individuen einer
Klasse & durchlaufen kann, als “‘definit”’ bezeichnet, wenn ste fir
jedes einzelne Individuum x der Klasse & definit ist. So ist die Frage,
ob a &b oder nicht ist, tmmer definit, ebenso die Frage, ob M C N
oder nicht.

13 years then elapsed until the first steps were taken to replace
this hardly satisfactory explanation by a more rigorous one. Fraenkel
{1921/22] and Skolem [1922/23] independently took two seemingly
different directions which, however, proved to be essentially
equivalent !), and of which the second is preferable for its more
general and natural character.

The first inethod formalizes “definiteness” by means of a special
concept of function defined by the operations of Axioms II-V; the
inclusion of V itself leads to a certain hierarchy of orders, in accor-
dance with the fact that the axiom constitutes an axiom schema.
The actual derivation of classical (general) set-theory, comprising
the theories of order and well-order, shows that this apparently
special concept of function is sufficient 2).

The second method 3) formalizes “definiteness” by using the
concept of (elementary) formula, i.e. of “statement” in the sense
of Rosser [1953] (p. 208), obtained from variables and the member-
ship relation by negation, conjunction, disjunction, and quanti-
fication with respect to thing-variables, within the first-order
predicate calculus with its truth-functions. As proven by Skolem,
this procedure covers the first method; it, too, shows the axiom
to represent an axiom schema which contains infinitely many
particular axioms.

1) Cf, in particular, Skolem [1929]. For thec first method, cf. Fraenlkel
[1922] and [1927] and von Neumann [1928a].

?) Sec below No. 6. For existence theorems as those connected with
ordinal numbers, the Axiom of Substitution (No. 5), with the generalized
function conecpt of von Neumann [1928a], is required. Cf. also Curry
[1934], p. 590, and [1936], p. 375.

3) Cf. Skolem [1929] (§2) and [1930]; there Schroder’s Algebra der
Logik i used, but this is not an essential feature.
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On the other hand, Quine !) suggests an extension of the Axiom
of Subsets which would render Axioms II-IV (above) unnecessary.

Zermelo, however, rejected Fraenkel-Skolem’s methods of for-
malizing his concept definite, particularly because they implicitly
involve the concept of natural number which, in Zermelo’s view,
should be based upon set theory. Instead he introduced, in [1929],
a special and rather complicated axiomatization of the concept of
definiteness (or of function) imbedded in his axiom system [1908a].
This method suffers from various disadvantages pointed out in
Skolem [1930]; to be sure, through the increase in primitive
concepts the axiom of subsets is transformed from an axiom
schema into an axiom proper.

In what follows, no explicit attitude among those mentioned
regarding “definiteness’” in Axiom V will be adopted. Yet implicitly
we shall be guided by Skolem’s conception.

On account of the Axiom of Subsets, the Axiom of Power-Set
gains its actual strength. The connection between these two axioms
is essentially impredicative; whenever, for instance, the predicate
used in Axiom V refers to the power-set of s, a particular subset
of s is defined by means of the totality of all its subsets. In fact,
we have to consider Axiom V, in contrast with the preceding
axioms, to be an axiom schema 2) which yields infinitely many
single axioms corresponding to the predicates chosen, and the
system Z proves not to be finitizable 3), i.e. reducible to finitely
many axioms proper —in contrast with the systems appearing below
in No. 7, or to Quine [1937] (or [1953])%); on the other hand, in
the latter systems the number of primitive concepts is greater
than in Z, or else the “metalogical” rule corresponding to Axiom V
is added to the usual rules.

1) Quine [1936], [1937], [1953]; in this system no null-set appears. A
similar attitude is taken in Lindenbaum-Mostowski [1938] and other
researches of these authors.

2) This concept was first introduced in von Neumann [1927], p. 13.

3) See Wang [1952]; consult, however, Wang [1955], pp. 82/3. Cf.
Mostowski [1951] and [1953].

1) The proof in Hailperin [1944] is rather surprising since Quine’s
original class axiom schema is impredicative.
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Finally, we draw a few conclusions from Axioms I-V.

Definition. A set which contains no element is called a
null-set.

By extensionality, there exists at most one null-set, which shall
be denoted by O. It clearly is a subset of every set.

Theorem 1. There exists one null-set and, for every set ¢,
the unit-set {t} whose only element is ¢.

Proof. First, for a set s£0 of the non-empty system Z, we
take a predicate which is not satisfied by any element z of s (e.g.,
z &s), and obtain O by Axiom V. Secondly, if {0, we obtain
s={t,0} by Axiom II; then the predicate x=t (or z0) gives,
by Axiom V, the subset {t}. If =0, {O} exists by Axiom IV.

Theorem 2. For every non-empty set ¢, there exists the set
whose elements are common to all elements of &.

It is called the intersection of the elements of ¢ and denoted by
Nt. If a, b, ... are the elements of ¢, the intersection is also denoted
byanbn ...

Proof. By Axiom III, s=|_J{ exists and contains the elements
of the elements of ¢. The predicate “x is contained in each element
of t”” defines, by Axiom V, a subset of s which is the intersection {"}z.

Theorem 3. For every disjointed set ¢, there exists the set
whose elements are the sets which contain a single element from
each element of ¢.

It is called the Cartesian product or cross product (in Cantor’s
terminology, Verbindungsmenge) of the elements of ¢, and shall
be denoted by Bt. If a, b, ... are the elements of ¢, the Cartesian
product is also denoted by axbx.... Clearly Bt=0 if O ¢t.

Proof. Every set that contains a single element from each
element of ¢ is at any rate a subset of | Ji. By Axioms III and IV,
there exists the power-set s=II(|_jt). We take the predicate “z s,
and for each 7 ¢ ¢ the intersection v M « is a unit-set”; hence, by
Axiom V, we obtain the Cartesian product %t
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4. THE AXIOM OF CHOICE 1)

After admitting the Axiom of Subsets, the question still remains
open whether other subsets of a given set, not uniquely charac-
terized by a certain predicate, are conceivable or even required.
To answer this question (at least, partly) we proceed as follows.

Let ¢ be a disjointed set with O £¢. According to Theorem 3 on
p- 14, the elements of the Cartesian product 93¢ are those subsets
of [ Jt whose intersections with each element of ¢ are unit-sets.
Yet the proof of the theorem does not show whether the assumption
O &t implies that Pt=£0.

True, our assumption seems to suggest the possibility of
“choosing” a single arbitrary element in each 7 ¢ ¢; the set ¢ that
contains just the elements chosen would be a subset of | J¢ with
the property desired, hence an element of B¢, which shows that
Bt£0. Yet except for the trivial case where each element of ¢ is
a unit-set, our argumentation does not show how the set ¢ can be
obtained by means of Axiom V. On the other hand, ¢f such a set ¢
exists, additional subsets of | Jt with the property desired can be
easily constructed from ¢, for example by replacing a definite
element of ¢ with another from the same element of ¢.

We therefore introduce a special axiom, the last one required
for “general” set theory, namely

Axiom VI of Choice (or Multiplicative Axiom 2)). For every
disjointed set ¢ for which O &¢, the Cartesian product ¢
differs from the null-set.

Each element of Pt shall be called a selection-set of ¢, as it
contains a single element from each element of ¢.

In contrast with Axioms II-V, a set produced by Axiom VI is
not uniquely determined by its data, i.e. by the set ¢. Hence VI is

1) For additional material to this subject, see the main part of this
monograph, and Chapter II, § 4, of Fraenkel-BarHillel [1958].

) This is the (appropriate) name due to B. Russell; in fact, the axiom
guarantees that a produet of cardinals 0 is itself 0. “‘Axiom of choice”
(Auswahlaxiom, axiome du choix, ete.) is the name given by Zermelo [1904]
for obvious psychological reasons; though less suitable, this name has by
now been universally accepted.
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not “‘constructive” in the sense of p. 9; in fact, misunderstandings
with regard to the purely existential character of the statement
of Axiom VI have led to many sterile discussions during some
decades 1).

Axiom VI was formulated as above by Russell [1906]. Zermelo %)
formulated it for the general case where ¢ need not be disjointed
and, accordingly, the ‘“‘chosen’ elements may be the same for
different elements of ¢. Then, using the concept of a function which
can be defined in Z (cf. No. 6), we obtain the following generalized
principle:

For every non-empty set ¢ for which O £¢, there exists at least
one single-valued function f(r) whose argument 7 runs over the
elements of ¢, such that f(z) e 7 3).

As shown in Zermelo [1908a], this generalized form can be
derived from Axiom VI by means of the Axioms I-V %),

The Axiom of Choice (together with the continuum-hypo-
thesis, cf. p. 25) is probably the most interesting and most discussed
axiom in mathematics after Kuclid’s axiom of parallels.

Fundamental problems regarding the Axiom of Choice are,
a) is it tndependent of Axioms I-V (and possibly of the axioms
of No. 5)? b) is it compatible with these axioms ? The latter question
was answered in the affirmative by (Gédel [1938] and [1940], both
within a modification of Bernays’ axiom system (cf. No. 7) and
within other systems such as Z or a modified form of Principia
Mathematica. However —notwithstanding partial results specified
below —it is unknown as yet whether the axiom is independent
or whether it can be proved within the system Z or similar systems.

of the statement of VI in von Neumann’s system.

2)  Zermelo [1908a]; it was used earlier, in particular cases, in Zermelo
[1904] and [1908]. The idea occurs already in B. Levi [1902]. The existence
of selection-sets had been used before, inadvertently and without a proper
argument, by Cantor and others.

3) A further generalization is given in Skolem [1929]. Cf. the main
part of the present monograph.

1) Cf. below p. 28, also the final chapter of Church [1944].
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In particular, one has not succeeded in solving this problem, for
instance, for sets ¢ whose elements are arbitrary sets of real numbers.1)
(Independence would mean that no selection-set of ¢ can be provided
by means of the Axiom of Subsets.) Nevertheless, and though
we do not even know in what direction an ultimate independence
proof might be looked for 2), there are strong indications of the
independence of the axiom, notably the wide use of the axiom
in important proofs without a visible alternative and, on the
other hand, the proofs of independence reached under weaker as-
sumptions; for instance, within Zermelo’s original system (see below).

The most obvious specializations %) of Axiom VI are obtained by
adding particular assumptions about the cardinality of the set ¢
andjor of its elements.

If t is finite the axiom becomes redundant, viz. provable by
means of the other axioms; it then expresses a distributive law
connecting logical conjunction and disjunction. In fact, if ¢ contains
a single non-empty set, the existence of a selection-set follows
from the existence of the unit-set (Theorem 1, p. 14) by some
simple steps in predicate calculus %); this result is transferred to
any finite ¢ by mathematical induction.

On the other hand, the finiteness of the elements of ¢t does not
trivialize the existence of a selection-set; hence the weakest form
of the axiom refers to the case where every element of ¢ is a pair
or, more generally, a finite set with a cardinal > 1 5).] Furthermore,

1) Already Lebesgue [1907] had shown that in such cases no “analytically
representable’’ funetion can define a selection-set. In Gonseth [1941] (p. 117)
Lebesgue showed by a concrete example that the distinction between
construction and existence may, through the Axiom of Choice, affect
elementary (geometrical) problems.

%)  Whether Gandy [1956] is apt to yield such a proof remains to be seen.

3) Specializations restricted to the theory of sets of points are Beppo
Levi’s principio di approssimazione (Levi [1923] and [1934]) and Knaster’s
hypothesis referring to linear perfect sets (ef. Kondd [1937]).

*) Erroneously several distinguished scholars, in particular A. Denjoy,
maintained that ¢={z} (z %£0) was the crucial case of the axiom of choice,
form which the general case might be easily inferred.

5)  Fraenkel [1922].
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if ¢ is denumerable, we speak of the restricted axiom of choicel),
no matter what the cardinals of the elements of ¢ may be.
Regarding the independence of the Axiom of Choice in its various
forms, i.e. the impossibility of proving its statement within a
suitable system, quite a number of interesting and profound
results have been obtained under the assumption that the system
may contain infinitely many, or even more-than-denumerably many,
different objects which contain no element, called Urelemente by
Zermelo. This assumption, which is necessary for the construction
of suitable models showing the independence, is incompatible
with the axioms of our system Z because of the Axiom of Exten-
sionality (nor is it consistent within the systems described below
in No. 7); hence, as stated before, in such systems the independence
of the axiom is an open problem. The assumption is consistent in
Zermelo [1908] and [1930]; however, it seems neither useful nor
justified from a general point of view but is an ad hoc resource 2%).
Quite recently the use of Urelemente in these independence proofs
has been replaced by the use of ensembles extraordinaires (p. 24) 3).
While this in a certain sense is a progress, the main problem
(e.g., for a set of sets of real numbers) remains unsolved as before.
The most important independence problems in question are the
following :
1) Can the weakest form of the axiom be proved, at least for
denumerable ¢?
2) What interdependence exists between various kinds of the
weakest form with respect to the cardinals of the finite sets which
are the elements of ¢?
3) Can every infinite set be ordered within the system? (Order
can be defined by means of the membership relation, see No. 6.)
1) Tarski [1948]. In the same paper and before in Bernays [1942] (p. 86,
axiom IV*), more closely in Mostowski [1948], another weakened form is
considered, the “principle of dependent choices” (see below p. 19).
) It is characteristic that this assumption is also required for Essenin—
Volpin’s [1954] proof that Souslin’s problem cannot be answered in the
affirmative without the Axiom of Choice.

3) Mendelson [1956a]. Cf. Bernays [1954] (p. 84), Shoenfield [1955],
Specker [1957].
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4) Does the assumption that every infinite set can be ordered,
imply the well-ordering theorem (which is known to be equipollent
to the Axiom of Choice)?
5) Does the assumption of the weakest form imply the general
statement of the axiom? (This question admits of various cases
according to the cardinality of ¢.)
6) Can the general statement be proved by means of the following
axiom of dependent choices (which certainly implies the restricted
form, while the converse still seems to be an open question):
if B is a non-empty set and ¢ a binary relation such that for every
x¢ B there is a y&¢ B with z ¢y, then there exists a sequence
(%1, Xy, .., Xy, ...) of elements of B such that z, ¢ 2,4, for every k.
Negative answers ') to the problems 1), and 3) to 6), have been
obtained only within systems in which the assumption of p. 18 can
be fulfilled, while problem 2) is investigated to a great extent in
Mostowski [1945] and Szmielew [1947], both in a group-theoretic
and a number-theoretic direction. Some well-known consequences
of the Axiom of Choice, for instance that every infinite (i.e., non-
inductive) set includes a denumerably infinite subset, or that the
sum-set of every disjointed infinite set ¢ includes a subset which
is equivalent to ¢, were proved to be independent in the same sense
and with similar methods by Lindenbaum and Mostowski.
Finally, there is the problem of classifying the various definitions
of finiteness into different categories such that the transition from
the definitions of one category to those of another involves the
Axiom of Choice in one but not in the converse direction. A
review of particular cases of this problem was already given in
the Annexe of Tarski [1925] and quite a number of them were
solved by Lindenbaum and Mostowski (see the footnote) in a
negative sense as mentioned.

1)  Fraenkel [1922], [1928a], [1937] (see, however, Lindenbaum-—
Mostowski [1938]), Mostowski [1938], [1939], [1948]. Fraenkel’s group-
theoretic method of proof, while adopted by Mostowski and Lindenbaum,
was based by them upon a stricter logico-mathematical foundation and
supplemented with the method of “relativization of quantifiers’ in the
sense of Tarski [1935a] and Lindenbaum—Tarski [1936].
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The numerous applications of the Axiom of Choice in most
branches of mathematics, particularly in analysis, topology, and
set theory !), are well-known 2). In abstract set theory the most
important statements equipollent to the axiom are the well-
ordering theorem (Zermelo [1904] and [1908]) and the comparability
of cardinal numbers (Hartogs [1915]). In arithmetic the axiom
appears in connection with the notion of finite set or number
(cf. above). The application of the axiom in algebra, particularly
abstract algebra, dates from Steinitz [1909]; however, for the
last twenty years the use of the axiom in algebra (through the
well-ordering theorem and transfinite induction) has more and
more been replaced by an equipollent mazimum principle, either
in the form of Zorn’s lemma (Zorn [1935]) or otherwise. These
principles, which originate from Hausdorff [1914] (pp. 140f.)
and have been rediscovered several times independently, are
discussed in detail in the main part of the present monograph;
cf. also, for instance, Birkhoff [1948].

Finally it should be stressed that to-day, after more than fifty
years, there is still a lot of controversy regarding the Axiom of
Choice %), not only among mathematicians in general but in
particular among those working in set theory. (Intuitionists, of
course, reject the axiom because of its purely existential character —
except for Poincaré who was ready to admit it.) The chief contro-
versial points up to 1938 may be gathered from Zermelo [1908],
Borel [1914] (note IV), and Gonseth [1941]. Some authors, e.g.
Borel and Denjoy, think the axiom rather acceptable if ¢ is a
denumerable set, while the scepticism of Lebegue and others
makes no distinction between denumerable and non-denumer-
able ¢. The opposition to the axiom is partly based on certain

1) For the connection between the axiom and the generalized continuum-
hypothesis, we refer to Specker [1954]; ef. already Lindenbaum-Tarski
[1926].

2) The earliest survey is given in Sierpifski [1919].

3) Hilbert [1923] maintains dass der wesentliche dem Auswahlprinzip
2ugrunde liegende Gedanke ein allgemeines logisches Prinzip ist, das schon
Jar die ersten Anfangsgriinde des mathematischen Schliessens notwendig und
unentbelirlich ist.
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paradoxes following {rom it, such as Banach-Tarski’s theorem.
There exist also inquiries into the possible consequences of asser-
tions negating the Axiom of Choice!), in some external analogy
to non-Euclidean geometries.

5. AXIOMS OF INFINITY AND OF RESTRICTION

Set-theory as derived from Axioms I-VI does not enable us to
prove the existence of an infinite set. (On the other hand, as long
as finite sets alone are considered, part of the axioms are redundant,
notably V and VI, and essentially also IV.) Bolzano’s and Dede-
kind’s alleged proofs of the existence of infinite sets are known
to be illusory. Therefore Zermelo [1908a] introduced the following 2)

Axziom VII of Infinity. There exists at least one set W with
the properties

a) OeW

b) if xz e W, then {z}e W.

If W is an arbitrary set with these properties and U the set of
those subsets of W which have the same properties, clearly the
intersection (\U= W also has them. W  proves independent of
the particular set W; it is the least set that contains the elements
0, {0}, {{0}}, ... and may be considered to be the set of non-negative
integers. In particular, W, is an “infinite” set, viz. equivalent
(cf. No. 6) to a proper subset in the sense that the mapping required
can be constructed in Z.

More extensive infinite sets can then be obtained by means of
the axioms of No. 3, in particular the Axiom of Power-Set.

1)  Church [1927] investigates the influence of such negation upon the
theory of the second number-class. For various alternatives to the axiom,
ef. Bachmann [1955], § 39, and Specker [1957].

%) A more general, though equipollent, formulation is given in Wang
[1949], p. 151. A far stronger form, introduced in Fraenkel [1927] (p. 114,
Axiom VIIg), is utilized by R. M. Robinson [1937] (Axiom 8.3) and Bernays
[1942] (Axiom VI*). This stronger form where, instead of {x}, more general
functions of « are admitted, proves independent of the system of Axioms
I-VII (Rosser-Wang [1950], p. 128).
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A similar way of ensuring the existence of infinite sets is the
following axiom !) which, though less simple in its formulation,
yields a more lucid and useful alternative to W,.

Axiom VII*. There exists at least one set W* with the properties
a*y Oe W*
b*) if 2 ¢ W*, then (x U {}) e W*.

In a way corresponding to that used above, we infer the existence
of a minimal set W} with the properties a*) and b*), which contains
the elements

0,{0}, {0, {03}, {0, {0}, {0, O}}}, -

The set W, can as well be considered to be the infinite set of non-
negative integers. Of any two different elements of W, one is
both an element and a proper subset of the other, and hereby a
natural order is established in Wj;.

In 1921 it turned out that Axioms I-VII, which approximately
correspond to Zermelo’s original seven axioms, were not sufficient
for the legitimate needs of set theory; the simplest instance of a
set which cannot be obtained by those axioms is a set P which,
in addition to an arbitrary infinite set (e.g., W,), contains the
power-set of each set contained in P. To fill this gap in a way
which yields particular sets such as just mentioned as well as the
general theory of ordinal numbers and of transfinite induction,
an axiom of the following type is required: %)

Auxiom VIII of Substitution (or Replacement). For every set s
and every single-valued function f of one argument which is
defined for the elements of s, there exists the set that contains
all f(x) with z es.

In short, if the domain of a single-valued function is a set, its
counter-domain is also a set.

1) It eonceives the integers as ordinals in the sense of von Neumann
[1923].

2)  Fraenkel [1921/22] and [1927], Skolem [1922/23] and [1929], von
Neumann [1923] and [1928a]; cf. Lindenbaum-Tarski [1926]. For the
independence of VIII of the system I-VII, cf. the literature given below
on p. 35.
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An alternative formulation 1), preferable in some respects,
reads: If s is a set and ¢ a binary relation between sets such
that for every xes there is just one y satisfying ¢(z, y), then
there is a set ¢ such that yet is equipollent to the existence
of an z e s that satisfies p(z, y).

The function-concept entering into VIII is closely related to the
predicate concept of Axiom V. Like V, also VIII is not a single
axiom but an axiom schema.

VIII yields both the stronger form of Axiom VII (footnote 2 on
p- 21) and the Axiom of Subsets (V). Yet it would not be practical
to drop V, for I-VII are sufficient for the bulk of set theory while
VIII is required for certain purposes only.

Whereas Axiom VII and VIII extend our system by warranting
comprehensive sets of certain types, some way of restricting the
system is desirable as well. It is more than doubtful whether this
purpose can be reached by a general postulate 2) —a kind of counter-
part of Hilbert’s Vollstindigkeitsaxziom — which restricts the system
to the minimal extent compatible with I-VIII, similar to the task
of Peano’s axiom of mathematical induction with respect to his
other axioms.

However, there are a few problems which suggest the intro-
duction of more particular restrictive axioms. The chief problems
are (a) inaccessible numbers, (b) “‘extraordinary” sets, (¢) the
(generalized) continuum problem.

The first problem concerns the exigtence of regular initial
(ordinal) numbers w, with a limit-index «, and the corresponding
cardinals, called tnaccessible numbers. Within Z the question reads
whether sets. with such ordinals or cardinals exist. The question
was broached by Hausdorff in 1908 (see, in particular, Hausdorff
[1914], p. 131) and by Mahlo in 1911 while more profound in-
vestigations started with Sierpinski-Tarski [1930] and, particularly,

1) Cf. Skolem [1929], Church [1942] (p. 181). A weakened form of the
axiom is given in Tarski [1948], p. 80.

2) Suggested in Fraenkel [1921/22], rejected in von Neumann [1925],
vindicated in Suszko [1951] and Carnap [1954] (p. 154).
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Tarski [1938]. Moreover, inaccessible numbers meanwhile turned
out to have significance for certain concrete problems (for instance,
of the theory of measure) and not only for the foundations of set
theory. For manifold recent investigations on inaccessible numbers
and, particularly, for the distinction between ‘‘inaccessible’’ in a
narrower !) and a wider sense, the reader is referred to the compre-
hensive exposition in Bachmann [1955] (§§ 40-42) and [1956].

In contrast with the situation at the time of Hausdorff, we no
longer expect a proof that inaccessible numbers cannot exist. On
the other hand, within suitable systems of axioms it has been
shown that, provided the system is consistent, it remains consistent
after the addition of an axiom stating that all its cardinal numbers
are accessible (cf. Kuratowski [1925], Baer [1929], Firestone—
Rosser [1949]). Thus the existence of inaccessible numbers seems
to be independent of the other axioms. A special far-reaching
axiom, postulating the existence of inaccessible sets (in the narrow
sense), was formulated by Tarski [1938] and [1939]. The axiom
is strong enough to make the Axioms of Power-Set and of Choice
redundant.

As observed above, the formulation of a general postulate of
restriction (which would entail the non-existence of inaccessible
numbers) seems rather problematic. However, a particular restric-
tive axiom was introduced by von Neumann [1925] (p. 239) and
[1929] (p. 231; cf. Zermelo [1930]) and has proved useful far
beyond its original purpose.

Mirimanoff [1917] and [1917/20] was the first to raise the
possibility of ensembles extraordinaires s, with an infinite descending
sequence of elements s, of elements such that

e ES 1] ESLE ... ESy ES] €8,

In particular, s;;; may be the only element of s, and possibly
s;=8,; for some different k, I, including the extreme case of s,
containing itself as its only element. This means that primary

1) The respective ordinals were called Grenzzahlen by Zermelo [1930].
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constituents (Urelemente in Zermelo’s terminology, including the
null-set) need not exist for every set. The existence of such sets s, is
consistent with the Axioms I-VIII of Z, yet it cannot be inferred
from them.

Trying to exclude such sets!), von Neumann introduced the

Aziom IX of Foundation ?). Every non-empty set s contains
an element ¢ such that s and ¢{ have no common element.

In other words, sets s#0 such that each element of s has an
element which is also contained in s, shall not exist. Hence a
descending sequence in the sense mentioned above is always
“finite” and “ends” in a primary constituent, which in the case of
Z is necessarily the null-set. In particular, no set s contains itself
as an element; for if s ¢ 5, {s} would contradict Axiom IX. However,
the efficacy of this axiom still needs further examination.

Finally, the (generalized) continuum problem bears upon the
question of a maximal limitation, or else a maximal extension, of
the domain of set theory. As is well-known, Cantor’s efforts of
the 1880’s, and Hilbert’s of the 1920’s, to solve the continuum
problem have remained unsuccessful. Only in the late 1930°s did
Godel ([1938] and [1940]) attain an actual progress by showing
that the generalized continuum-hypothesis cannot be disproved: it
turns out to be consistent with certain axiom systems of set-
theory, in particular with Godel’s modification of Bernays’ system
(cf. below, No. 7). This result, however, raises the question whether
the negation of the continuum-hypothesis is consistent as well,
which would mean that it were independent of the other axioms.
Set-theory and analysis would then bifurcate at the continuum-
hypothesis in a sense similar to the bifurcation of absolute geometry
at the axiom of parallels. Yet, if one conceives the axioms of set-

1) As pointed out by Gédel [1944], this exclusion bears upon recon-
ciling axiomatic set theory with a simplified theory of types; ecf. Quine
[1940], §§ 24 and 28.

2y  Awiom der Fundierung (Zermelo [1930]); “restrictive axiom” (Bernays
[1941]); also “axiom of grounding”.
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theory as ‘‘describing some well-determined reality”’, as does
Godel [1947], the hypothesis ought to be either true or false and
not independent. Its indecidability on account of known axiom
systems might mean that those systems “do not contain a complete
description” of that reality, and that there may exist “other
(hitherto unknown) axioms of set-theory which a more profound
understanding of the concepts underlying logic and mathematics
would enable us to recognize as implied by these concepts”. Thus
the addition of new axioms might be necessary to yield a solution
of the continuum problem within the system.

In particular, since the continuum is virtually the set of all
subsets of a denumerable set, solving the continuum problem
possibly requires a more far-reaching characterization of the
concept, of subset than obtained above by the Axioms of Subsets
and of Choice. What these two axioms furnish, may be separated
by a deep abyss from what Cantor had in mind when speaking of
subsets of s, viz. arbitrary multitudes of clements of s. One cannot
expect to determine the number of the subsets of s before it is
unambiguously settled what they are.

Thus the question of adding further axioms seems to be not
only meaningful but even imperative. However, no direction is as
yet visible in which such axioms might be sought.

6. DEVELOPMENT OF SET-1HEORY FROM THE AXIOMS OF Z

The main features of set-theory were deduced, from axioms
not much different from those of Z, by Zermelo [1908a] (cf.
Fraenkel [1925]) as far as the theory of equivalence is concerned,
and by Fraenkel [1926] and [1932] for the theory of ordered and
well-ordered sets. The concept of order, i.e. the method of reducing
the order relation to the membership relation, used in this deduction
is that of Kuratowski [1921] (cf. already Hessenberg [1906],
ch. 28).

It will be sufficient to give the definitions of equivalence and
of (well-) order and to point out a few general and fundamental
thcorems, which constitute the basis upon which then classical
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set-theory can be developed along lines which do not essentially
differ from the traditional ones.

The equivalence relation can be reduced to the membership
relation through the following

Definition of Equivalence. IfSand7 are mutually exclus-
ive sets, S is called equivalent to 7' (S8 ~ T') if the Cartesian product
SxT (p. 14) has at least one subset ¢ such that every element of
S U T belongs to a single element of ¢. Every such ¢ is called a
(one-to-one) mapping between S and T

The null-set is called equivalent to itself. Clearly the equivalence
relation ~ is symmetrical.

The definition derives from the fact that a mapping between
S and 7T can be regarded as a set of pairs {s, ¢} of elements of S
and 7' such that {s;, ¢,}+ {s,, t,} implies s,5s, and #; #¢,, and that
every element of 8 U T appears in (just) one pair.

Naturally, the same way may be taken to reduce the concept
of a single-valued function f(s)=t, with the domain § and the
counter-domain 7', to the membership relation. Since then the
correlation need not be one-to-one, the last condition of the above
definition will be weakened correspondingly.

The set of all mappings between mutually exclusive sets 4 and
B exists within Z. For according to Theorem 3 (p. 14) and Axiom
IV the power-set II(AxB) exists, and mappings between A
and B, if any, are certain elements of this power-set. Therefore,
taking the condition on ¢ expressed in the above definition as the
predicate appearing in the Axiom of Subsets (p. 11), this axiom
yields a set each of whose elements ¢ is a mapping as desired.
Hence 4 ~ B if and only if this set is not empty.

The concept “image in 7' of a given s £¢.8 with respect to a given
mapping’’ iseasily obtained. We get rid of the restriction to mutually
exclusive sets by means of the following theorem 1), which is proven
without the Axiom of Choice: T'o every given set D there corresponds
a disjointed set D' such that D' ~ D and that, d' denoting the image
in D' of d ¢ D with respect to a suitably chosen mapping between D and

1y This theorem is much stronger than required for the present purpose,
but necessary for proving the general principle of choice (see p. 28).
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D', one has d' ~ d for every d ¢ D. Moreover, D’ can be chosen such
that |_JD and { D' are mutually exclusive. Accordingly, the equival-
ence between sets S and 7' which are not mutually exclusive can be
defined by means of a set U which has no common element with
S or T and is equivalernt to both sets.

It follows that Zermelo’s general principle of choice (p. 16) can be
deduced from Axiom VI (p. 15). For starting from any set S of
non-empty sets, we can form an equivalent disjointed set s whose
elements are respectively equivalent to the elements of 8 in the
sense just specified. A selection-set ¢ of s exists on account of
Axiom VI, and from the elements of ¢ we pass on to corresponding
elements of the elements of § by simultaneous mappings between
the elements of § and those of s. Thus to each element of S one
of its elements is assigned.

Cantor’s, Schréder-Bernstein’s, and Kdénig-Zermelo’s theorems
are now proven in the usual way, the latter by means of the
Axiom of Choice. The necessity of avoiding cardinal numbers
presents no actual difficulty though it makes certain proofs some-
what tedious.

The order relation may be reduced to the membership relation
by the following

Definition of Order (ordered set)!). A set S is called
orderable if a maximal chain M of subsets of S exists, i.e. if the
power-set II(S) has at least one subset M with the following
properties

a) if m and m' are different elements of M, either m C m’
or m' Cm;

b) if M is a subset of IT(S) with the property a) and if M C Jf,
then M =M.

M is called an order of S.

This definition is based on considering M to be the set of all
tmitrals (or all remainders) of an ordered set S. In fact, the set I
of all initials has the “‘chain’’-property that, of two different initials,

1) We are only dealing with “total” or ‘“complete’” order, not with
partially ordered sets.
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one is a proper initial—a fortiori, a proper subset—of the other.
Moreover, given two elements of S, there is at least one initial
that contains just one of these elements, and for every subset
I, of I, also | JI, and (I, are initials. Finally, O and S are initials
of 8.

These properties together prove characteristic of I (or of the set
of all remainders), among all sets of subsets of 8. Kuratowski
[1921] now proved the remarkable fact that, besides the chain-
condition, the conjunction of these properties is equipollent to
the property b) which demands I to be a maximal chain.

An order M in the above sense turns out to be an order of 8
in the traditional sense, if s; 3 s, is understood to mean that there
exists an element of M (i.e., an initial) which contains s; but
not s,. The chain-condition involves the asymmetry and the
transitivity of .

To decide whether a given set 8 can be ordered, we form the set
of all orders M of 8, which exists on account of Axioms I-V.
To prove this, we start from the power-set II(ZI(S))=K, whose
elements z are sets of subsets of 8. Then those x which satisfy the
condition of being a maximal chain form a subset K, of K on
account of the Axiom of Subsets, and the elements of K, are all
possible orders of S. Hence 8 is orderable or not, according as
Kyis 0 or =0.

By means of the Axiom of Choice, to be sure, it can be shown
that every set is orderable; for instance, through the well-ordering
theorem, whose second proof in Zermelo [1908] can easily be
imbedded in Z, or through the theorem of Szpilrajn [1930]according to
which every partial order of a set can be extended to a complete order.

Another method of reducing the order relation to the member-
ship relation is that of Hausdorff [1914], pp. 70f. Here an order
of 8 is considered to be the set of all those ordered pairs (s, s,)
with s, 8, s, &8, for which s; 3 s,. The ordered pair (a, b) is, as
usual, defined as the (unordered) pair {{a, b}, {a}}.

Starting from the definition of order, we may develop the theory
of ordered sets along traditional lines. As in the theory of equival-
ence, the set of all similar mappings between two ordered sets
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can be shown to exist on account of Axioms I-V; if this set is
not empty, the sets are called simalar.

To establish the theory of well-ordered sets one need not go
back to the general concept of order. On account of the Definition
of Order, for any subset M, of an order M of S we have (M, e M
(cf. p. 29). Sharpening this to the condition (M, ¢ M,, we obtain
the additional characteristic property of well-ordering; for
(M, e M, means that M, has a minimal element.

By also using the Axiom of Substitution (p. 22) we can develop
in Z von Neumann’s [1923] theory of ordinal numbers, where the
ordinals appear as special sets defined by transfinite induction
(cf. von Neumann [1928a]). Then the ordinals o prove to be the
well-ordered sets with the property that every x o is also the
section (segment, Abschnitt) of o determined by x. It follows that,
of two different ordinals, one is both an element and a proper sub-
set of the other, which property yields the natural order of ordinals
“according to their magnitude”. It can be shown that to every
well-ordered set w corresponds just one ordinal similar to w; “i

2

1ts
ordinal. Therefore also the cardinal numbers (Alefs) can be intro-
duced explicitly, namely as the initial numbers of the various
number-classes; in other words, a cardinal is an ordinal ¢ no element
of which is equivalent to c.

The existence of an order to any given set was established
above through the Axiom of Choice or the (equipollent) well-
ordering theorem. This, however, is more than desired, inasmuch
as well-ordering means imposing an order of a special structure.
Hence if, instead of Axiom VI on p. 15, we postulate the ordering
theorem, viz. that every set can be ordered, it seems that we
obtain a weaker system. One easily proves that the ordering
theorem cannot be proved by Axioms I-V (at least if infinitely
many individuals may be admitted to the system); for the theorem
implies (Fraeunkel [1928a]) the weakest axiom of choice, which
itself is independent (cf. above pp. 18/9). However, whether this
implication holds also in the converse sense is as yet unknown.
On the other hand, Mostowski [1939] (cf. Doss [1945]) proved
that the ordering theorem is indeed weaker than the well-ordering
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theorem (above p. 19). Hence, by adding the ordering theorem to
Axioms I-V, VII, VIII, we obtain a system less strong than Z.

The theories of finite and of denumerable sets are easily obtained
by specialization. As to finite sets, which for instance may be
considered to be “doubly well-ordered sets’, one can dispense
with the Axiom of Infinity, while the Axiom of Choice is required
for certain problems (p.19). Denumerable sets are the sets equivalent
to the set W, of p. 21; their fundamental properties are derived
from the axioms of Z in Zermelo [1908a].

While Z thus turns out to be sufficient for developing classical
set theory, the antinomies known hitherto cannot appear in Z, as
hinted on p. 8 and p. 11

7. REMARKS ON THE AXIOM SYSTEMS OF VON NEUMANN,
BERNAYS, GODEL

The double purpose of establishing classical set-theory and of
avoiding the antinomies which show Cantor’s attitude to be
impracticable, has been answered by the system Z, and to a great
extent already by Zermelo’s [1908a] original set of axioms. The
rather arbitrary character of the processes which are chosen in
the axioms of Z as the basis of the theory, is justified by the
historical development of set-theory rather than by logical argu-
ments. The far-reaching aim of proving the consistency of Z,
which would exclude contradictions of types as yet unknown, is
not likely to be attained at the present stage, and in a well-defined
sense cannot be attained at all, in accordance with Gédel’s incom-
pletability theorem.

While therefore satisfactory in many respects, Z has nevertheless
an essential disadvantage. Certain sets, among them virtually all
that are required for the classical theory, can be proved to exist,
and others (e.g., those which yield the well-known antinomies)
are easily proved not to exist within Z. However, between these
domains of existence and of non-existence a vast field of uncer-
tainty still remains; and what is more important, the bulk of this



32 HISTORICAL INTRODUCTION

field consists of concepts—notably, very comprehensive sets such
as the set of all sets, the set of all ordinals, etc— which are apt
to lead to contradiction not through their being conceived as
sets (classes) but through operations with them, in particular
through their being taken as elements of sets. For themselves these
concepts prove quite harmless. Thus it turns out that the demar-
cation line drawn in Z between the sets whose existence can be
proved and other sets is rather arbitrary.

A further weakness of Z is that the Axiom of Subsets (No. 3)
constitutes not a proper axiom but an axiom schema (p. 12/13),
and the same applies to the Axiom of Substitution (No. 5). It
would be preferable to get rid of axiom schemata, and hereby to
render the system “elementary’ in the sense that all axioms can
be formulated within the predicate calculus of first order whose
bound variables are restricted to individuals (in the logical sense,
excluding predicates).

All these tasks are accomplished in von Neuwmann’s foundation
of set theory ([1925, 1928, 1929], simplified in R. M. Robinson [1937]).
Very considerable improvements and additions to this foundation,
together with a fundamental simplification, are due to Bernays
[1937-54]. Finally, a modification of Bernays’ system is given in
Godel [1940], chiefly for the purpose of proving the consistency
of the generalized continuum-hypothesis.

Exhibiting the main features of these systems would require
a lengthy exposition. This is superfluous at this juncture since
the main part of the present monograph is just a modified and
improved elaboration of ideas which are found in Bernays’ papers
mentioned above. Therefore the only purpose of the present
section is to point out the principles and tendencies of von Neumann,
Bernays, Godel in comparison with the system Z exhibited thus far.
We shall, however, ignore von Neumann’s peculiar terminology.

Since “over-comprehensive sets’” do only harm by being taken
as elements of other sets, a distinction is made between collections
that can also serve as elements, henceforth called sets, and collections
excluded from elementhood, called classes. While to every set
corresponds a definite class, namely that which contains the same
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elements 1), the converse does not hold; in general no set cor-
responds to a given class. Strictly we have therefore to distinguish
between two primitive membership relations ¢ and #; z £ s applies
to a set s, z  C to a class C. (Gddel dropped the distinction between
¢ and n for the sake of simplicity.) Classes may be “over-com-
prehensive’; there exists, for instance, the universal class V,
defined by the identical predicate x=2x, and the complement
V —s of a given set (or class) s. Therefore the main limitation
contained in the Axiom of Subsets (p. 11), viz. the selection of
elements from a set already secured according to a given predicate,
is dropped; every well-formed formula (predicate) defines a class,
which contains all objects (sets) that satisfy the predicate. Moreover,
the distinction between sets and classes can be expressed exactly
by the over-comprehensiveness of the latter. In fact, von Neumann
introduced an axiom —his IV2, most characteristic of his system —
which roughly excludes from elementhood (i.e., admits as classes
but not as sets) just those collections which can be mapped on
the universe V ; for instance, the class of all ordinal (or cardinal)
numbers.

However, while for von Neumann this axiom also includes the
Axioms of Subsets, of Choice, and of Substitution, Bernays took
an essential step forward by distinguishing between these different
purposes. The Axiom of Choice is retained without an essential
change. Yet with respect to the Axiom of Subsets, an ingenious
device enables Bernays to dispense with the general concept of
predicate or function in his class aziom, which correspondingly to
Axiom V of Z would read: For every predicate F' which contains
no bound class-variables, there exists the class of those sets which
satisfy F. This seems to be an axiom schema, but is (in Bernays’
axiom group III) reduced to a small number of single axioms for
the construction of classes. Hereby also the Axiom of Substitution
can be transformed to a single axiom. (In von Neumann’s system
the same purpose is attained in a different way.)

1) In Godel’s system, the class is even identified with the set to which
it corresponds.
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A secondary, but practically important feature is that the
ordinal numbers are explicitly introduced at an early stage.

As to Godel’s system, its significance consists less in various
innovations and simplifications of the formal system than in the
construction, within his axiomatic system, of a certain model 4,
which shows the consistency of the Axiom of Choice and of the
generalized continuum-hypothesis. The sets of 4 are the elements
of the class L of values of a certain function whose domain is the
class of all ordinals; L satisfies a postulate of constructibility which
is not incorporated in the axiom system itself, though it proves
compatible with the axioms (cf. Gddel [1947]). The term “con-
structible” is here taken in a loose sense, roughly meaning that,
starting with the null-set, we may iterate the application of the
operations of the system any transfinite number of times. In
particular, every ordinal proves constructible.

While the domain of sets existing in view of Z is limited in a
somewhat arbitrary way, the domain of von Neumann-Bernays—
Godel - which comprehends the sets ensured in Z as a small portion
~is as oxtensive as seems possible in view of the antinomies, if
inaccessible numbers (sets) are disregarded. Therefore it is re-
markable that, on the assumption that Z is consistent, also the
system of Bernays—Godel can be proven to be consistentl). In an
essential point these relative consistency proofs rest upon the
fact that classes are defined in a predicative way, as against the
impredicative procedure of Axiom V of p. 11; the proof of Rosser
and Wang uses the well-known theorem of Lowenheim and Skolem
which guarantees the existence of a model in the domain of positive
integers. According to Mostowski, in particular every theorem
of Gddel’s system which involves sef-variables only, is also a
theorem of Z 2),

Finally it should be stressed that, if Z denotes the system of our
Axioms I-VII, Axiom VIII is independent of Z, and Z is a weaker

1)  Shown independently and by different methods in Novak [1948/51]
(ef. Mostowski [1951] and MeNaughton [1953]) and Rosser—Wang [1950];
improved in Shoenfield [1954].

%) (f. Rosser-Wang [1950], pp. 125-128.
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system in a strong sense than that of Axioms I-VIII ). (While by
I-VII only the existence of denumerably many transfinite cardinals
is ensured, by means of VIII all up to the first inaccessible number
are added. Informally one may say that through the classes only
a single “cardinal”, viz. that of the universal class, enters into
the system.) One may conclude that the system of Bernays and
Z prove to have somehow comparable strength, as in contrast
with Z and Z.

1y Cf. Wang-McNaughton [1953], p. 18; Montague [1956].
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INTRODUCTION

Axiomatic set theory has first been set up by Ernst Zermelo in
order to deal with the set-theoretic antinomies. The discussion of
these antinomies has still not lost its actuality; even there is in
the discussions often the tendency to exaggerate the consequences
of them. Of course the importance of these antinomies is beyond
any doubt. But what may be regarded as an exaggeration, is to infer
from them a requirement of restricting our usual methods of
mathematical procedure. In particular no cogent argument can
be drawn from them that mathematics have to be built up in a
strictly predicative way,—if one is not a priori convinced of the
necessity of a predicative procedure.

What really is excluded by the antinomies is only that inter-
pretation (easily suggested at first) of set theory which finds its
formal expression in the calculus called newly Idealkalkiil by
Hermes and Scholz [1952], whose domain of individuals contains
for every predicate ¥ an assigned individual p such that

@)z € p & B(z)).

The impossibility of this interpretation shows that the interrelation
between logic and mathematics cannot be characterized in a too
simple way, but a nearer delimitation is required. This delimitation
however can be given in such a way that our usual mathematical
procedures of formation and inference are not restricted, and to
do this by the axiomatic method in a way as suitable as possible
is the task of axiomatic set theory.

For a similar purpose the systems of mathematical logic have
been edified, first the famous Principia Mathematica [Whitehead
and Russell 1925/27] and in our times the systems of W. V. Quine
1937, 1951]. There is a development from the one to the others,
leading over the simple theory of types.

In the P. M. there is a manifold of tendencies which partly
conflict with one another. In fact the formalism is first constructed
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according to a device of predicativity which however in the
following is not maintained, so that on the whole the same result
can also be attained by the easier simple theory of types, with the
axiom of infinity included. Still the distinction of types here
present amounts to a complication which is somewhat cumber-
some for the mathematician.

In particular W. V. Quine has pursued the design of removing
the type distinction. In his system of mathematical logic, to which
B. Rosser and H. Wang contributed, only a residual of this
distinetion, the condition of ‘“‘stratification”, figures as a directive
device for regulating the connection between predicate formation
and set formation. By this way the arrangement comes very near
to that of axiomatic set theory. This appears the more if in set
theory the extensions of the predicates are introduced as a second
kind of individuals, as first von Neumann has done. In fact also
in Quine’s system those individuals which are elements are distin-
guished from the others.

The use of the criterium of stratification has a clearly experimental
character. There are also some strange features of the system
induced by it. Thus here the existence of sets or classes having
themselves as elements is not only not excluded (as in other forms
of set theory) but even provable. Further it can here be inferred
that the class of all individuals is not in a one-to-one correspondence
with the class of unit sets. Other anomalies have appeared by a
recent publication of E. Specker [1953].

The system here presented follows nearer the line of Zermelo’s
axiomatics. From the development of axiomatic set theory in the
meantime it adopts some devices. The modifications thus arising
can be characterized by the following steps:

1) The Zermelo concept of “definite Eigenschaft™ is precised
by the Skolem method, i.e. using the formal language of logic.
By this way it becomes possible to formalize the system in the
frame of the predicate calculus of first order with admitting besides
formal axioms also axiom schemata.

2) We adopt the generating process afforded by the Fraenkel
Ersetzungsaxiom. This axiom was originally stated by Fraenkel
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[1922] with a certain reserve, but it is a natural supplement to
Zermelo’s axiomatics. In fact, in combination with the Ersetzungs-
axiom Zermelo’s sum axiom yields Cantor’s summation process in
its full generality. Indeed for the Cantor summation it is not
essential that the sets to be summed are the elements of a set, but
only that the summation index ranges over a set. As to the concept
of function which occurs in the premise of the Ersetzungsaxiom,
its precising is already supplied by that one of definite Eigenschaft,
in connection with the definition of an ordered pair, which we adopt
in the form of Kuratowski {1921].

3) From von Neumann’s axiomatics [1925, 1928] we adopt
first the idea of embodying in the system a part of formalization
of the metamathematics —however keeping nearer to the former
systems by retaining the original binary element relation instead
of von Neumann’s ternary relation “‘the function f has for the
argument x the value y’’; secondly we follow von Neumann in
separating the role of the potency axiom, as one of the stronger
axioms, from the conceptual set formation, which can be made
with the aid of those axioms which are directly related to the
concept of definite Eigenschaft.

In the axiomatization given in the Journ. of Symb. Log. [Bernays
1937-1954] still the further von Neumann device was adopted of
setting up the system as a Sortenkalkul of first order with two kinds
of individuals called here sets and classes. By this method it becomes
possible to avoid the use of axiom schemata so that a system with
only finitely many formal axioms results. The two kinds of indi-
viduals, as well known, can on principle be reduced to only one
kind, so that we come back to a one-sorted system. Here in
particular this can be done in a special simple way, namely by
taking as sets those classes which satisfy the condition to be an
element of a class. This method was applied by Tarski, Mostowski
and Godel; it occurs also in Quine’s mathematical logic.

However it might be asked if we have here really to go so far
in the formal analogy with usual axiomatics. Let us regard the
question with respect to the connection between set theory and
extensional logic. As well known, it was the idea of Frege to identify



42 INTRODUCTION

sets with extensions (Wertverliufe) of predicates and to treat
these extensions on the same level as individuals. That this idea
cannot be maintained was shown by the Russell paradox.

Now one way to escape the difficulty is to distinguish different
kinds of individuals and thus to abandon Freges second assumption;
that is the method of type theory. But another way is to give up
Frege’s first assumption, that is to distinguish classes as extensions
from sets as individuals ). Then we have the advantage that the
operation of forming a class {z | A(z)} from a predicate A(c) can
be taken as an unrestricted logical operation, not depending on a
specifying comprehension axiom. But from this then we have to
separate the mathematical processes of set formation which in
the way of Cantor are performed as generalizations of our intuitive
operations on finite collections.

The task of axiomatic set theory then consists in showing that
the method of this generalization can be precised in such a way
that on one hand we have the full freedom of set-theoretic forma-
tions and a sufficient frame for classical mathematics and on the
other hand do not fall into the antinomies. From this point of
view we shall not tend to bring formally together classes and sets
in one domain of individuals and even we might refrain at all
from handling with a domain of classes to which bound variables
refer. We might remind here of the criticism which Quine [1941a]
applied to the use of bound variables relating to predicates in
P. M., pointing to the distinction between propositional functions
and attributes. We want to have the classes related to propositional
functions, —though not in a way of contextual definition but by
a general rule of conversion which we regard as belonging to the
logical grammar. Thus we are induced to employ class variables
only as free variables, what in fact is sufficient for giving our

1) An other proposal for overcoming the difficulty of the antinomies
was made by Heinrich Behmann [1931], which consists in admitting the
possibility that the logical functions for some arguments yield a senseless
value. Here senseless expressions are formally allowed, what makes modi-
fications of elementary logic being required. The program of a formal
system according to this deviee is till now not yet accomplished.
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formal language a suitable flexibility, so that we are not obliged
to employ continually syntactical variables in the formulations.

At the same time this formally stronger separation of the
classes from sets conforms to the view that the universe of mathe-
matical objects (sets) is not itself a mathematical object. A further
circumstance by which the restriction of class variables to free
variables is suggested, is that in [Bernays 1937-1954] each of the
axiomatic statements of class existence— with exception of that
in the axiom of choice—is equivalent to an explicit introduction
of a class formation, and the axiom of choice, as there stated, can
for the usual mathematical purposes be replaced by an assertion
of mere set existence.

Besides it might be noted that in [Bernays 1937-1954] the bound
class variables never explicitly occur in symbolic notations but
only verbally in statements by language. In the present monograph
the formalization is carried out to a higher degree. So set-theory
is here presented as a formal system, and also a basic logical frame
is delimited so that formal derivations can be described. This
stronger formalization is for the purpose to conform to the want
to-day often existing of having formalizations at hand in axiomatic
theories and at the same time to facilitate the comparison with
the comprehensive systems of mathematical logic.

There are some further differences against [Bernays 1937-1954].
In stating the axioms we avoid the existential form by using primi-
tive symbols. (The axiom of choice will be the only axiom stated in
existential form.) The succession of steps in the edification of the
theory is somewhat different. In particular we here begin the
proper set-theoretic development with three axioms parallel to the
generating processes of Cantor’s ordinal arithmetic; these already
are sufficient for obtaining the general ordinal theory, including
the full recursion procedures.

In this monograph we shall give the axiomatic edification with
discussions of the axioms and with their applications yielding classical
mathematics, especially ordinal theory, number theory, analysis and
cardinal theory. The further axiomatical questions on eliminability,
relative consistency and independence are left to a second volume.
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Remark on the indication of formulas and definitions : The mono-
graph is divided in chapters and sections. To these the numeration
of formulas and definitions refers in the way that signed formulas
and definitions have three numbers, the first (a roman number)
referring to the chapter, the second (an arabic number) to the
section in that chapter and the third (also arabic) to the succession
within this section. In quotations referring to the same chapter
the roman number will be omitted.



CHAPTER I
THE FRAME OF LOGIC AND CLASS THEORY

I, § 1. PREDICATE CALCULUS; CLASS TERMS AND DESCRIPTIONS,
EXPLICIT DEFINITIONS

Our logical frame is an extension of that elementary logical
calculus which is called the Pradikatenkalkul or quantification
theory. This extension consists in adding descriptions and besides
a formalism of classes. Both these extensions are on principle
eliminable, as we shall show in the second volume.

Let us now enumerate our rules of formation and derivation.
We have free and bound set variables and free class variables.
For the set variables we take small latin letters, for the class
variables capital italics. For bound set variables we reserve the
letters z,¥,2, u,v,w, in distinction from free set variables.
From the variables belonging to the formal system we have to
distinguish the syntactical variables denoting formulas or parts
of formulas. As syntactical variables we employ small and capital
german letters; small german letters stand for set terms, the
capital german letters U, B, €, ® for formulas and F, &, H, &,
g, M, N for class terms. In all cases the letters can have with
them one or more arguments. The letters ¢, 9, 3, u, v, 1w will be
reserved for the syntactical notation of bound set variables,

Our logical symbols are:
1) The propositional connectives

conjunction & «and»?)

negation —  «not»

alternative VvV «or», in the sense of “or else”
implication — «f ... so»

biimplication?) e «if and only if»
1y  Formulations between “«”” and “»” are meant to explain the inter-
pretation of symbols or formulas, in a more or less free way.
2) We take this word in order to avoid the terminus ‘“‘equivalence’
which indeed is used mostly in other senses.
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2) The quantifiers
the general quantifier (r)(r) «for all g, A(x)»,
the existential quantifier (Eyt)(z) «for some g, A(x)»,

3) The class operator {¢ | (x)} 1) «the class of the ¢ such that A(g)»,

4) The description operator (:-symbol) ¢, (UA(x), @) «the set ¢ such
that A(x), or else a».

In all these cases ¢ is a bound variable and (x) is the expression

resulting from a formula (a) with a free variable a, wherein g

does not occur, by replacing everywhere a by r.

By means of the propositional connectives and the quantifiers
formulas are built up in the familiar way out of prime formulas.
A prime formula consists of a predicate symbol (predicator) with
terms as arguments. Among the terms we distinguish set terms
and class terms; of both kinds of terms we have the following
possible cases:

1) a free set- or class variable,

) an individual symbol (set- or class- symbol) %),

3) a function symbol (functor) with terms as arguments,
)

an expression formed by the application of an operation
symbol (operator) to an arbitrary formula or term, of
which one or more occurring free variables are bound by
the operation symbol.

By the occurrence of formulas as constituents of terms the
definition of the concepts of term and formula become somewhat
involved, in the way that they have to be defined in common,
what however can precisely be done in a recursive manner.

In order to indicate the scopes of connectives, quantifiers,
functors and operators within a formula, we are employing brackets

1) This symbol (used in some newer papers) is here taken, for the sake
of easier print, instead of Russell’s class symbol §%(x), whose adoption
was first intended.

%) The word ‘“‘individual symbol”-—used for set- or class symbols—is
here taken for denoting a syntactical category. It is not meant by this
that classes in the interpretation have to be regarded as individuals. The
way of interpreting the class formalismm will be nearer discussed in I, § 3.
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and parentheses as usual in mathematics, and also dots for sparing
parentheses. Further for avoiding parentheses or dots we agree
that the symbols — and <> have the preference before & and v
as to the separation of expressions.

Now we come to the rules of derivation. The formal derivative
development of a theory goes by formal inferences starting from
initial formulas. It could seem that the rdle of these two parts
of the derivation process should be so that by the initial formulas
the axioms of the theory and by the rules of inference the logical
reasonings have to be formalized. However the separation of the
two parts is not so strict since in the formal arrangement it is
often suitable to express logical rules by means of formula schemata.

It is not essential for our purpose to distinguish one way of
performing the formalizing of logical reasonings. In fact there
are various elegant ways of shaping the predicate calculus. Only
for fixing our procedure we adopt here a definite form of this
calculus, which is mainly that of [Hilbert and Bernays 1934/39].

We take as initial formulas:

1) The propositional identities, i.e. formulas composed out of
partial formulas by means of the propositional connectives in
such a way that for any assignment of arbitrary truth values to
the partial formulas we obtain by the truth table method the
value “true”.

2) Formulas conforming to one of the schemata

@A) = At),  At) > (E)U{),

where t is a term and A(t) results from A(x) by replacing every-
where ¢ by .

As rules of inference we take:
1) The modus ponens

A, A —B
-—_——% ’

2) The schemata for the quantifiers

A — B(a) , Bla)—> A i
A — (£)B(zr) (Er)B(x) - A
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with the condition that the free variable a does not occur in
and neither in B(z), and that ¢ does not occur in B(a).

The application of syntactical letters for bound variables is to
the effect to make dispensable a special rule of Umbenennung for
the bound variables as fundamental rule. The same remark refers
also to the like application of syntactical letters in further schemata
and definitions of operators.

From these rules in connection with the initial formulas all
the schemata of inferences of the predicate calculus are obtainable
as derivable schemata. We note in particular:

A—>YB, B—->C A & B — € isreplaceable by
A—C¢ ’ A — (B — €) and inversely,
«Kettenschluss» «exportation and importation»
QQIIL(C:; ’ W(a)
(®A )

«rule of substitution»

We are now to extend the predicate calculus by the rules on
the class- and t-operators. In these rules the predicators “="" and
“e” are occurring which are the only primitive predicators of
our system. The primitive prime formulas formed with them are

exclusively the following:

1) a=Db, «a equal b», with a and b being set terms,

2) a e b, «aelement of b» or «ain b», with a and b being set terms,

3) aef, «a element of §» or «a belongs to §», with a being a

set term and ® a class term.

In our handling with equality and the element relation the

assumption is implicitly formalized that for any sets a, b and for

any set a and any class & it is uniquely determined if a = b or

not and if a is an element of b, resp. of &, or not. — We write

a#b, a¢b, a¢® for the negations of the said prime formulas.
The rules concerning the class terms are: the formula schema

(“Church schema’)

ce{z | AR} < Ale),

cxpressing a conversion law, in the sense of A. Church [1932],
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and the substitution rule (parallel to that one for set variables)

W)

AR
where § is a class term. Of course it is meant that here C is replaced
by & at all places of its occurrence in 9.

With regard to the formal handling with descriptions there are
the well known difficulties, which recently again have been dis-
cussed by Carnap [1947]. Following usual language one would be
inclined to admit an expression ¢,(x) as a term only if the unicity
formulas (Ex)A(x) and (£)(n)(A(r) & A(y) = r=19) are proved, as
it has been done in [Hilbert and Bernays 1934/39]. To this measure
there has been objected that the concept of term is complicated
by it in a way that in general there is no decision procedure for
what expressions are terms. There is even something further to
be objected to this restrictive measure —not yet mentioned, as it
seems, in the literature —namely that it gives a difficulty in the
case that the unicity formulas are derivable only upon a condition,
to be introduced as an antecedent. On the other hand, if for every
formula A(c) the expression ¢ A(xr) is admitted as a term, then it
is desirable to have the i-terms formally determined by the rules
and axioms in a way that no trivially undecidable formulas
arise. The normation required for this determination is performable
using an extralogical individual symbol. The extralogical reference
can be avoided by introducing a parameter in the :-term, which
in the application to any special theory can be replaced by a
definite individual symbol. Conforming to this device we come to
the following two formula schemata for the :-operator, yielding a
set term ¢(A(x), @) from any formula A(c):

Ac) & () (UE) = r=¢) = c=u(UAk), a),
() (U(x) & () (AWM) = z=1)) -v- 4A(X), a)=a.

By the schemata for class terms and descriptions our repertory
of initial formulas is enlarged. A further enrichment is effected by
the rule of setting up explicit definitions.

By explicit definitions predicators, functors or operators can
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be introduced. The definition is given by an initial formula or
formula schema, consisting of a left side expression, a right side
expression and a connecting symbol. The left and the right side
are always either both formulas or both set terms or both class
terms. The free variables are the same on the left and on the right.
The left side consists only of a symbol with its arguments, of
which however some can be syntactical variables having again
arguments, which then are bound variables on which the symbol
operates and which are marked as indices of the symbol.

The connecting symbol could be a common separate symbol for
definitory equality. We then should have a general rule of replacing
the definiendum by the defining expression. In order that this rule
be not too complicate we should have to make use of Church’s
A-notation.

Here we proceed in the way to make the replacement going
automatically by rules already adopted: we take as connecting
symbol the biimplication <, or the equality symbol =, or a
predicate symbol, itself still to be defined, of class equality =,
according as the both sides of the definition are formulas or set
terms or class terms. This procedure has the advantage that by
the connecting sign in a definition the character of the defined
symbol is made directly to appear.

There is still one characteristic of an explicite definition, which
includes a reference to a definite order of the definitions in a
system, namely that the symbols occurring on the right side are
either primitive symbols of the system or already introduced by
former definitions. This condition in particular implies that the
symbol on the left side does not occur on the right side1).

We shall mark definitions by the sign Df connected with the
number of the definition. — Let us state at once the definition

1) There would be the possibility of making the order of definitions
explicit by using as defined symbols exclusively numbered symbols, but
the advantage of this procedure is not so high for the direct handling in
the formal system as for its metamathematical investigation. However
for this purpose we have at all events the method of Gddel numbering at
our disposal.



§1] PREDICATE CALCULUS 51

of class equality
A=B & (2) (xc A e xecB).

Formally an explicit definition in our system has the character
of an axiom or axiom schema but with the property that by its
special form an easy way of eliminating the defined symbol is
available, so that no proper assumption is formalized by it.

For the embodying of particular mathematical theories, as the
theory of real numbers or of ordinal numbers, in our set theory, it
will be advisable to apply the method of using specialized
variables. Such a new kind of free and bound variables —let us
denote them by a;, by, ¢; ... ¥, Y1, 31 respectively—is associated
with a class {r ] D(x)} over which the variables are ranging.

The rules for introducing these variables are:

1) Every new free variable is a term.

2) If €(a) is a formula with the free variable a, wherein the bound
variable r; does not occur, then (x;)&(z;), as also (Hr,)€(x;) is a
formula and {x; ] €(x;)} is a class term and ¢ (€(z), a) is a
set term.

3) From a formula D(a) = €(a) we can pass to &(a;) and inversely.

4) The formula schemata:

(1) (D) = €(1)) « (30€G), (Er) (D) & E(r) « (E3)C(5).
5 {t 1 U@)} = {r | %) & D)} and
6 (U(T1), @) = 6x((A(x) & D(1)), ).
By the rule 3) the substitution rule yields the schema

A(ay) A(ay)
—@(t)em as also th)’

and likewise every term for which ®(t) is provable can be sub-
stituted for a new free variable. Further in virtue of 3) and 4)
the inference schemata for the quantifiers with respect to the
new variables and the modified formula schemata become derivable
using the original schemata and the propositional calculus.
Moreover every formula or part of a formula (£)(®(r) = €(x))
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or (Ex)(D(r) & €(r)) are replaceable by (3)€(3) or (£3)C(3)
respectively, and inversely. The schemata for the class operator
and the ¢-operator with the variable ¢ and the bound variables
L, 1), replaced by corresponding new variables become provable.

I, § 2. EQUALITY AND EXTENSIONALITY. APPLICATION TO
DESCRIPTIONS

In set theory it is natural to treat together the equality and
extensionality axioms. Indeed sets are regarded here as individuals
which, like concrete collections, are determined by their elements.

Conforming to this idea we adopt the two axioms:

E1l a=b- = -acA—->bcA,
K2 (xxea e xeb) - a=b.

From E 1 we immediately get, by substituting for 4 a class
term {z | A(x)} and then applying the Church schema, the equality
schema

2.1 a=b.- — Y(a)— AD).

By specializations of 2.1 we get

2.2 a=b- - -a=c—>b=¢
2.3 a=b &b=c—>a=c
2.4 a=b—>b=a.

The last formula results by first deriving a=b: — «a=b— b=a.
As an immediate consequence of E 2 we have

2.5 a=a,

so that we need not state it here separately as an axiom.
By application of 2.1 we further obtain

2.6 a=b-—> -acc—>bec

2.7 a=b-— -ceca—>ceb.
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From the last formula in connection with 2.4 we can derive
2.8 a=b —> (x)(x ea e xeb)

which together with E 2 gives

2.9 a=b & (x)(rca & xeb).

As in the derivation of these formulas the application of E 1 in
most cases is by means of 2.1 in connection eventually with 2.5.
Derivations of this kind will in the following be indicated briefly
as “by the equality axioms”.

We could have taken, as A. Fraenkel did [1926], the formula
2.9 as defining equality. Then E 2 would become derivable.

There would also be the possibility of defining equality by the
equivalence

2* a=b & (x)aczr obcx)

what would be in the line of the definition given in Principia
Mathematica. But the difference here is that this equivalenve, as
already the implication

2%* (x)a €ex & becx) > a=b,

is not derivable from E 1 and E 2 alone, as can be seen by simple
models.

We do not introduce here equality by an explicit definition,
because we want to suggest the interpretation of equality as
individual identity, whereas by 2.9 or 2* taken as definiton,
equality is introduced only as an equivalence relation. Besides
by employing an explicit definition of equality the axioms which
include equality become more complicate, if expressed with the
primitive symbols.

With regard to the axiom of extensionality E 2 it is to be observed
that by the unrestricted form of its statement the possibility of
different ‘““Urelemente” in the sense of Zermelo, i.e. of different
individuals, which have no elements, is excluded. Thus our axiom
of extensionality implies the assumption that all elements in our
system are themselves sets. This —at the first glance astonishing —
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feature, common to most newer axiomatic systems of set theory,
can be understood as a result of an extension of Dedekind’s method
of introducing the real numbers, which indeed have the réle of
elements in analysis, as sets. In view of the program of embracing
all classical mathematics in the system of set theory, we are
induced to strengthen the said Dedekind procedure to the effect
that all mathematical objects become sets, and in fact from this
device considerable simplifications are arising.

One of our first applications of the equality axioms is in con-
nection with descriptions. We have the description schemata for
the symbol ¢,(A(x),a). For the handling with them it will be useful
to introduce, but here still without an axiom, the individual symbol
0, which we shall have in our system as a primitive symbol. With
this we can define

Df 2.1 L A(L) = ¢, (A(x), 0).

Using it we obtain from our (-schemata by applying substitution
and 2.3, 2.4, the simplified (-schemata

2.10 Ale) & (R)A) > r=¢) = c=4A(x)

2.11 (Er)(Alx) & (9)A(h) = r=1))- v -(A()=0.
From 2.11 we get by logical derivation and 2.2

2.12 (Er)A(x) = A(x)=0

2.13 W(a) & AD) &a#b = A(x)=0.

From 2.10 together with 2.2, 2.4 and 2.1 we derive
2.14 W(c) & (£)(U(x) > r=0¢) = b= A(x) = Ab).

«If there is a unique y such that A(r) and b is identical with
1t A(x), then A holds for b.»

One might ask why we take here 2.14 instead of
A(e) & (@) Ax) = x=c)- = -A(LA(x))-

This is partly in order to avoid the notational complication which
arises from the circumstance that in any case where a in (a)
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stands in the scope of a bound variable, we have to make some
alphabetic change of bound variables in order that A(;,A(r))
becomes a formula according to our conventions. Besides 2.14 for
the applications is handy in so far as the (-terms occur mostly as
defining expressions for functors or individual symbols.

Let us still note as easy consequences of 2.10 and 2.11 and
2.2, 2.4, 2.5 the formulas

2.15 t{r=a)=a
2.16 @A) « B(x)) = A(x)=4B().

Descriptions will have a main réle for the introduction of
functors by explicit definitions. In this form of definition con-
ditioned definitions are practically included without a special
convention. For instance from a definition

f(@)=¢(B(a) & C(a, x))
we can derive by means of the (-schemata
Bla) = f(a)=1L(a, z).

Still it might be remarked that the passage from ¢ ((z), a) to
1, A(x) goes likewise with a specialized bound variable y; instead
of g.

Finally we introduce here at once the subset and the proper
subset relation which are definable purely logically from the pri-
mitive predicate e,

Df2.2 alh & (2)(xca—>zch)

«a is a subset of b.»
Df2.3 aCh e aCb&bCa.

The following formulas are immediately resulting:

2.17 aCa, aCb&bCc —>aClc

2.18 aCa,aCb&bCc—>aCc,aCb—->bCa.
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Further by 2.9 we have
2.19 a=b & aCb&bCa,
from which we also obtain

2.20 aCh & aCbva=b.

I, §3. Crass rorMarisM. CLASS OPERATIONS

Operating with classes in axiomatic set theory is not indispensable
but essentially contributes to the handiness of the formalism;
moreover it makes more explicit the situation which consists with
regard to the rdle of the logical conceptions in mathematics. At
the same time by the class formalism one way of dealing with
the set-theoretic paradoxes becomes more explicit.

Let us compare this method with that of type theory. In
type theory, as well known, we start from a domain of individuals,
of these we consider predicates which then are regarded as con-
stituting again a domain of individuals to which free and bound
variables apply. This process then is iterated. And further from
the language of predicates one passes to the language of classes.
By this way a strict separation of different levels of classes comes
about which causes some complications for the edifying of mathe-
matics, as has been stressed especially by W. V. Quine.

In our system the sets are not separated as a kind of other
things from the individuals, but “a €b” is a relation between
individuals. On the other hand something of the idea of type
theory is retained in order that we are not obliged to refrain from
forming assemblages which are conceptually natural as for instance
that of all sets or all ordinals. Indeed, the concept of the set of
all sets—provided we are allowed to apply to such a set the usual
formation processes—would give a contradiction, but we can
instead operate with the class of all sets.

This distinction between sets and classes is not a mere artifice
but has its interpretation by the distinction between a set as a
collection, which is a mathematical thing, and a class as an
extension of a predicate, which in comparison with the mathematical
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things has the character of an ideal object. This point of view
suggests also to regard the realm of classes not as a fixed domain
of individuals but as an open universe, and the rules we shall give
for class formation need not to be regarded as limiting the possible
formations but as fixing a minimum of admitted processes for
class formation.

In our system we bring to appear this conception of an open
universe of classes, in distinction from the fixed domain of sets,
by shaping the formalism of classes in a constructive way, even
to the extent of avoiding at all bound class variables, whereas
with regard to sets we apply the usual predicate calculus. So in
our system the existential axiomatic method is joined with a
constructive formalism.

By avoiding bound class variables we have also the effect
that the class formation {x | A(z)} is automatically predicative,
i.e. not including a reference by a quantifier to the realm of
classes, so that the—so to speak—type-theoretic separation of
sets and classes is preserved even in the sense of the ramified type
theory.

Further the conception of classes as ideal objects in distinction
from the sets as proper individuals comes to appear in our system
by the failing of a primitive equality relation between classes.
In fact by our already mentioned definition

Df 3.1 A=B & (z)(rcd & xzeB)

class equality is only an expression for equal extensionality.
A special axiom of extensionality for classes is therefore not
needed.

Neither do we need a special axiom expressing the substitutivity
of equal classes. For, every special case of the schema

3.1 A= B-— -A4)— A(B)

is derivable from Df 3.1, with the help of the predicate calculus,
using also 2.16 and the explicit definitions of defined symbols
eventually occurring in % and 8. The procedure is here quite the
same as that one by which the general equality schema can be
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reduced to special equality axioms {Hilbert and Bernays 1934,
I, p. 375].

The circumstance that we do not attribute a proper individuality
to classes shall not hinder us to use for explanatory language the
article by the familiar way in the form of description for classes.

As already observed Df 3.1 of class equality comes in particular
to be applied for the definitions of class symbols. Such a definition
by a formula

& ={r |2}
passes over, by Df 3.1 and the Church schema, to
() € & © Ax)).

This equivalence, but written with a free variable
ae f o Aa),

can be regarded as an alternative form of the definition of K.

Among the formations which are afforded by the comprehension
operator {z | A(x)} there are in particular the well known formations
of extensional logic. We have here first the familiar formations
of Boolean algebra:

Df 3.2 ACB & (x)ired—>ze B)
«A is a subclass of B»

Df 3.3 A={z}z¢ A} «the complement of A»
Df34 AuB={x]|reAvzeB} «the union of A4 and B»
Df3s AnB={x]rcAd &xecB}

«the intersection of 4 and B»
Df 3.6 V={x]z=x} «the universal class»
Df 3.7 A= {x|x+x} «the empty class»

By means of 4 we can express that two classes 4, B are mutually
exclusive, with the formula A N B = A.
From the here stated definitions the familiar laws of Boolean
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algebra result as derivable formulas by means of the predicate
calculus.

Also the extended Boolean operations can be defined, even in
the following strong form

U(A f1) = HlExed &ie &)},
n(A R “{3I Nz ed —35e K@)}

and their formal laws are derivable by means of the predicate
calculus. It will not be necessary here to enter in their nearer
discussion. In fact we shall need only the following more special
forms of extended Boolean operations:

Df 3.8 UA ={z] (Ex)(xc A &z ex)}
«the union (sum) of the elements of Ay,
Df 3.9 NA=§{z]@)(xecd—>ze)}

«the intersection of the elements of A».

Extensional logic transgresses essentially Boolean algebra by
the inclusion of the ‘relations” which constitute the extensions
of predicates with more than one argument. Relations can be
reduced to classes by means of the concept of the ordered pair.
We shall later on introduce the ordered pair {(a, b> by an explicit
definition, which comes out to a kind of normation, which will
be at hand by the elementary set axioms.

Here it will be sufficient to postulate the following property
of the ordered pair

{a,by={c,d) = a=c &b=d

«Every ordered pair (a, b) uniquely determines its first mem-
ber ¢ and its second member b.»

Note that the inverse implication expressing that an ordered pair
is uniquely determined by its members follows from the equality
axioms (upon any explicit definition of {a, b}).

Essential concepts for the theory of relations are

Df3.10 {zy | A 9} = {3 | E)Ey)=<x, v & Az, v))}
«the class of pairs (g, 1) such that (g, n)»,
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Df3.11 Ps(4d) o (z)(x € 4 — (Bu)(Ev)(x={u, v)))
«4 is a pairclass».

Df 3.12 M4 = {z |(By)(<z,y) € A)},

Df 3.13 2,4 = {y | (Ex)(<z, y) € A)}
If A4 is a pairclass, then 4,4 (4,4) is its «domain» («converse
domain»).

Df 3.14 A = {ay |y, x> e A}

If A is a pairclass, then A4 is the «converse class of A».

We obviously have

~—
~

3.2 A=A4
Df 3.15 4| B = {ay | (E2)(x,z) € 4 & {z, y)> € B)}

If A and B are pairclasses, then 4 | B is the «composition
of A and B».

The composition 4 | B is associative. Indeed we have

3.3 A|B)|C=4|(B|0)
so that we shall write simply 4 | B | C.
Df 3.16 Ax B ={azylrecA &yeB}

A x B is the «cross product of 4 and B».
By the cross product we can express I’s(4), since we have

3.4 Ps(d) & ACVxV.

Concerning the combination of the operations U, N, — and x
we have the following formal laws which are derivable by the
predicate calculus:

3.5 BxA = Ax B,
S’ ~— ~—
3.6 ANB = AN B,
S’ ~— ~—
3.7 AuB = AuUB,
3.8 Ax(BNnC)y = (A xByn(4 x0C),
3.9 Ax (Bul) = AxBudx0)
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I, §4. FUNCTIONALITY AND MAPPINGS

The theory of pairclasses contains as an essential part the
theory of functionality. In fact a function, considered from the
extensional point of view, i.e. as a Wertverlauf in the sense of
Frege, is a pairclass satisfying the condition, that every element
of its domain occurs in just one pair as first member. The formal
definition is:

Df 4.1 Ft(F)y & Ps(F) & ()y)r)Kz, > eF &
&z, 2>el — y=2)1).

From this definition by applying the :-schema we get
4.1 Ft(F) & ae A F- — -{a,b) e F & 1({a, x) € F)=b.
Hence defining

Df4.2 Fla=(la, x> e F)
we have
4.2 Ft(Fy&aedF- — {a,b) ¢ F & b=Fla.

Thus for a function F the relation {(a, b) ¢ F' (i.e. the relation
whose extension is F'), can be resolved with respect to b. The
interpretation of Df 4.2 is that for a function F and an element a
of its domain, F*a is the value of F for the argument a. For the
case that a is not in the domain of F or different ordered pairs
with first member a are in F, F'a is by Df 4.2 and 2.11 equal to 0.

Generally whenever a set in dependence on certain arguments
is defined by a (-term, the definition can be practically restricted
to values of the arguments of certain kinds in the sense that for
other values of the arguments the i-term is equal to 0.

In near connection with the concept of a function is that of a
one-to-one correspondence

Df 4.3 Crs(K) o Ft(K) & Ft(K).

1) As variables for functions we mostly shall use the letters F, G, H,
K, L, M.
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Ve also define

Dfd44 AFBeoCs(K)&A(KN(AxB)=A4&
& A,(K N (4 x B)) = B.

«4 is in a one-to-one correspondence with B by means of
the mapping class K.»

Note that the defining conditions on X in Df 4.4 are obviously
satisfied, if Crs(K) & 4K = 4 & 4,K = B.

For the sake of convenience we have allowed in Df 4.4 the
class K to be more extensive then the one-to-one correspondence
between A and B itself. That this measure is not obligatory appears
by the immediate provability of

1.3 A'}‘B > AIKn(AxB)IB

Definition 4.4 enables us to state and derive the laws of one-
to-one correspondence between classes without applying an
existential quantifier for classes. This goes by explicitly indicating
the mapping pairclass; by this way also the constructive character
of these laws comes explicitly to appear.

We first obviously have

4.4 A I{mulz=u}|A
4.5 A®¥ B—> B%A
4.6 ATB&BTC —» AgpC.

For the proofs we have to use the formulas

47 Crs({zy |z =y}), Crs(K)—> Ors(K), Crs(K) & Crs(L) —>
— Crs(K|L).

The last formula expresses the composibility of one-to-one cor-
rezpondences.

Next we state laws which amount to a property of substitutivity
of one-to-one correspondence:

4.8 ATC& BT D&ANB=A&CND=4-—.
= AU BECuUD,
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with € being (K N (4 x CY) U (L N (B x D)),

4.9 AZC&B7TD - AXx B g 0xD,

with € being {xy | (Bu)(BEv)(x=(u,v) & y={(K'u, L' v))}.

Concerning the converse class we have

4.10 Ps(d) > AT A
and for the cross product
4.11 AxB g BxA,

with € both times being {zy | (Eu)(Ev)(x = (u, v) & y = v, u))},
as also

4.12 AX(BxC) g (4dxB)yxC,

with € being {zy |(Eu)(Ev)(Ew)(x = (u,{v,w)) &y ={(u,v),w))}.

Still the concepts concerning the relation between classes and
sets have to be considered. We say that a set represents a class
if both have the same elements, formally

Df4.5 Rp4,a) & (x)(red oz ca)

«4 is represented by a».
As provable formulas concerning the relation Rp we have
4.13 Rp({z | x €a}, a), Rp(4, a) & Rp(4,b) - a=b;
thus every set represents a class, and a class can be represented
only by one set. But it does not result that every class is represented
by a set. We even later on in our system shall state on some classes,

(in particular on V), that they are not represented.
The property of a class to be represented is defined by

Df 4.6 Rp(4) & (Ex)(Rp(4, z)) «4 is represented».
We also often use the notion
Df4.7 a* ={x|rea}
«a* is the class represented by a».
Obviously we have
4.14 Rp(4) & (Ex)(x* = A).
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Using Df 4.7 we can express the relation “a is a subset of the
class B” by a* C B and likewise the relation ‘A4 is a subclass of
the set b7 by 4 Cb*.

Finally still here the following class formation may be mentioned

Df4.8 Z = {u | (Ex)(Ey)(Ez)(u={{x, ), z) & {z,{y, D) € A)}.
«Z is the class of triplets {{(z, ¥), 2) such that {z, {y, z>> € A».

We call this operation “‘coupling to the left”. With using this
operation and also the class symbol E for {xy | * € y} we have on
principle the possibility of composing all class terms {r | A(x)}
out of a small number of primary constituents. In fact it can
be shown that there is a general procedure of expressing every
class term out of the free variables occurring in it and the symbol E,

- - =
by means of the operations a*, 4, A N B, AxB, 4,4, 4, A.
In order to give an instance we consider the process for the
case of the class term

{xy | (Ez)({x, 2y €a & {z, y) € B)}

which by Df3.15 is a* | B.

The following preparatory steps are useful:
[1] The class V = {zx ] x=2} is expressible by E N E
2] The class of triplets

{v | (Ex)(Ey)(Ez)(u=<{z, y), z) &z, y) ea & (y, z) € B)}

isexpressible by (V x V) x V)N (a* x V))N({(V x(V xV))N(V x B))
Denoting this class by €(a, B) we obtain the class to be expressed
<

in the form 4,(€(a, B)).

The general proof of the stated theorem, as it results from the
proof of the class theorem given in [Bernays 1937, I] and a
sharpening remark in [Bernays 1954, VII], is here left for the
second volume ; we shall in the following not have to make use of it.




CHAPTER II
THE START OF GENERAL SET THEORY

II, § 1. THE AXIOMS OF GENERAL SET THEORY

In the formal frame described in chapt. I we now are setting
up a system of general set theory—in a certain specific sense.
The leading idea for it is the following: In ordinary arithmetic
we have one starting element and one procedure of progressing —
the successor function. In Cantor’s theory of transfinite numbers
we have moreover the limit process.

Now in a parallelism to these three fundamental notions we
introduce three constants which we axiomatically characterize
with respect to the element relation : The symbols of these constants
are the individual symbol “0”” —used already before without an
axiomatic characterization —the binary functor “a;b” and the
operator “3(m, t(r))” 1).

T

As to the last one, its formal réle is such that for any given term
t(c) and a bound variable g it yields a term. The characterizing
axioms, more exactly two axioms and one axiom schema, for the
three constants are

Al ag¢o

A2 aebic & aebva=c

A3 aed(m, () o (Er)(zem &act(y).
T

«0 is an empty set, b; ¢ is a set whose elements are the elements
of b and the sct ¢, and Y (m, t(r)) is a set whose elements are

T
those sets which are in at least one set t(c) for a ¢ which is

}) Instead of ““J(m, t(x))” we could write in a more familiar way

T
“ > t(x)”; only this form of expression—with ‘“rem” as a symbolic
Tem

constituent—though well suiting for communicative indication, is not fully
syntactically correct for an operator in a formal system.
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in m, or briefly, a set which is the union of the sets t(c) such
that ¢ € m.»

From the extensionality axiom it follows that 0, b;c¢ and
S(m t(x)) for given arguments are uniquely determined by the

T

properties expressed by A1, A2, A 3. Indeed we have
1.1 (x)(x ¢ c) —>c=0,

1.2 (x)xec & zeavar=b) — c=a;b,

L3 (@ec & (Enhem&ret(y)) — c=30m, ).

T
Immediately connected with 1.2 and 1.3 are the following equality
formulas, also resulting from A 2, A 3 by applying the axioms of
equality and extensionality:

1.4 a=c&b=d — a;b=c; d,
1.5a m=n —» %(77%, Q(E))=Zz(n, 3(1)),
Lsb  (x)(xem—3(x)=t(x) > Zz(m, 3(x)) = g(m, £(x)).

From the primitive notions 0 and a; b we immediately come to
the concepts of the wunit set and the wnordered and ordered pair:

Df1.1 [a]=0;a,
Df1.2 [a,b]=]a]; b,
Df 1.3 (a, b)=[[a], [a, b]].

By Df1.1 we have

i.6 cela] ©c=aqa,

and from this formula we also get

] (xaexeobex) & a=b

which is the forementioned formula I, 2**.
Further we have, using A 2, 1.6 and E 2, T, 2.1,

1.8 cela,b] & c=avc=b,
1.9 [a, b]=1]b, a].
1.10 [a, a]=]a].
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1.11 (Ex)(cex &xela, b)) & c=avec=b,

1.12 (x)xela,b) >cex) & c=a

and from the last two formulas we get, using I, 2.1

1.13 {a,by={c,d) > a=c &b=d.

Thus the binary functor {a,b), defined by Df 1.3, satisfies
the property of the ordered pair postulated in I, § 3. Out of
ordered pairs also ¢riplets can be formed: {a, b, c)={a, (b, c)).
In the same way quadruplets, quintuplets ... and generally
k-tuplets can be defined.

Now we come to state the immediate consequences of A 3.
But before we want to show that the schema A 3 can be replaced,
using a class variable in connection with a description, by a proper
axiom. Namely from A 3 we get by taking F'c for t(c):

aed(m, Fir) o (Ex)(xem &a e F'z)

and defining

Df1.4 S(m, Fy=73(m, F'z)
we have
1.14 acd(m, F) & (Ex)(xem &a e F).

On the other hand, if we take > (m, F') as a primitive symbol
and 1.14 as an axiom and then define

2., (z)) = Z(m, {uw |t(u)=ro})

b4

we can derive every formula which is a special case of the schema
A 3. Indeed substituting {uw Jt(u)=1w} for F in 1.14 we get by
the above definition

D] eeSm i) < (BrEem &acfun |t =}y,
Further by DfI, 4.2 and DfI, 3.10 we have
fuw Jt(u) =1} = u({c,h) {3 ] (Eu)(Ew)(z=<u,w) &t(u)=1)})
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and by the Church schema, 1.13 and the equality axioms

{uw Jtuw)=w}c = uBu)(Ew)({c 9> =<u, 1) &t(u)=1))
= (Bu)(Ew)(c=u & = & t(u)=1)
= u(tlc)=1)

which gives by I, 2.15

1.15 {fuw Jtu)=mw}c = t(c),

and combining this with [1] we come back to A 3.

Note that by 1.15 every term t(c) is expressible in the form
Qtc, with Ft(R) being provable. Indeed we have for every term
t(e): Ft({uro | (t(w) =w)}).

It may further be observed that formally 1.14 applies to an
arbitrary class F and Y(m, F) is to be interpreted as the sum of
those sets b for which there exists an a in m such that b is the
only set such that {a, b) belongs to F. The circumstance that this
dependence of >(m, F) on F is more complicate then that of
>(m, t(x)) on t is the reason why we have taken A 3 and not 1.14
T

as axiom.
As a simple specialization of A 3 we have

1.16 aed(m,z) & (Ex)(xem &aczx).

We still define
Df1.5 Sm=3(m, x).

o
>m is the sum of the elements of m, and 1.16 is the assertion:
of Zermelo’s sum axiom.
Defining in particular

Df1.6 a Vb= >a,b]
we get by 1.8 and Df 1.5
1.17 ceaUb & ccavcecebd.

«a U b is the union (set sum) of a and b».

The formula 1.17 comes out to state that the class a* U b* is
represented by a set, what amounts to the same as

1.18 Rp(4) & Rp(B) — Rp(4 U B).



§ 2] AUSSONDERUNGSTHEOREM. INTERSEOTION 69

In connection with 1.18 the question arises if not a corresponding
statement holds for the intersection 4 N B. We shall prove even
more, namely that it is sufficient for 4 N B to be represented
that only one of the classes A, B is represented, so that we generally
have the intersection of a set a and a class B as a set. This statement
comes out nearly to the assertion of Zermelo’s Aussonderungs-
axiom.

IT, § 2. AUSSONDERUNGSTHEOREM. INTERSECTION

The idea of Zermelo’s Aussonderungsaxiom is to admit com-
prehending into a set all individuals having a certain property
(definite Kigenschaft) upon the condition that the individuals
in question all are elements of a certain fixed set. For precising
the concept of definite Figenschaft several devices have been given.
W. V. Quine [1936] observed that when the axiom system of
set theory is presented as a formal system, then so to speak auto-
matically a way of precising is given, in particular when the
Aussonderungsaxiom is expressed by a schema. In our system the
assertion corresponding to Zermelo’s Aussonderungsaxiom does
not figure as an axiom but as a provable theorem (Aussonderungs-
theorem). Besides by the class formalism we are able to express
this theorem by a proper formula,

2.1 A C B & Rp(B) = Rp(4).
For the proof we first eliminate the concept Rp by I, 4.14
A C B & (Ex)(2* = B) —» (Ey)(y* = 4).
By the predicate calculus this formula follows from
ACB&b*=B — (By)ly* = A)
and since by DfI, 3.2, DfT, 3.1 and DfI, 3.5 we have
ACB&bV*=B > A=b*NA,
it is sufficient to prove

(Ey)y* =b* N 4),
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or what by DfI, 4.7 comes out to the same:
2.2 (Ey)(u)(uecy & uecb &uecAd).

[en. 11

This goes in the following way: Let €(c, d) be the expression

{1] ced—>d=[c]-&c¢Ad—>d=0.
By the propositional calculus we have
ced.-—-C, d) & d=]c]
and by the ¢-schema I, 2.10
[2] ced — &, z)=[c].
Likewise we have
c¢gd-—-Cc,d) &d=0
cdd — €, 2)=

Thus
acilc,z) >ced
— ,8(c, z)={c]
[3] —a e [c]
—>a=c
—>acA.
From [2] we get
4] acb&aecA - (Ex)(xeb &aci8(z,2)),

and from [3]
ceb&aecfc,z) >acb&acAd

and thus also

5] (Ex)(xreb &aectC(r,z) > achb &acA.

4] and [5] together give

(Ex)xeb &acil(x,2) & ach &a e A.

Therefore by A 3 we have
aec b, 8, z2) & achb&acd,

which gives immediately formula 2.2.

by [2]
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At the same time we obtain
Rp(d* N A, Zb 1, &(x, z)).
Thus defining
Df21 bnAdA= Eb t(red—->z=[z] &x¢ d—>2=0))
we have
2.3 acebNAd & acb&acA,
24 Rpd* N A4, bn A)

«For any set b and any class 4, b N 4 is a set which is the
intersection of b and 4.»

For the sake of handiness we define also A Nb=b N A.

Of 2.3 there are several direct applications. Substituting
{x ] A(x)} for A we have by the Church schema
2.5 aebN {r] A7)} < acb & Ala).

This is the Aussonderungsschema. Namely by 2.5 for any set b
and any predicate (c) the intersection b M {r | A(x)} is the set
of all elements a of b satisfying (a). Further defining

Df 2.2 bNne=bnc*
we have by 2.3
2.6 aebNnc & acb&ace;

thus b N ¢ is the ordinary set intersection.
We also now can define the set difference

Df 2.3 b=c=b N c*,
so that we have
2.7 achc e achb&ad¢c, bcCbhb, ¢ N bc=0,
bCc—abc=0, bCc—>cb#0.
By 2.6, 2.7, and 1.17 the boolean algebra for sets is available.
Moreover the binary intersection of sets can be generalized to
the intersection ranging over the elements of a class. Here only

we have to regard the circumstance that by DfI, 3.9 the inter-
section (N4 in the case that A = A becomes V. This is to the
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effcct that we can prove the class ()4 to be represented only if
A is not empty. We have by DfI, 3.9

ceAd - (aec(N4d > acc),

therefore

ced - (aeANnceoeacNd)
and so
2.8 ce A— Rp(N4).
Hencee, if we define
Df 2.4 Q?I(z):ta(s* = Mz 1A®)),
we have
2.9 Ale) = Rp(M{x | A@} NA[X)
as also :

2.10 ae Q‘Jl(z) o (EpU(x) & (x)UX) —>acy).

With respect to the generalization of the binary union of sets
it is to be observed that there is no general representation of {_jA4.
A particular statement on representation of classes | J4 consists
by the axiom A 3, as will appear in the next considerations.

IT, §3. SuM THEOREM. THEOREM OF REPLACEMENT

We have obtained among the consequences of our axioms
several statements on representation of classes by sets. That is
not at all astonishing. In fact, the axioms A 1-A 3 themselves
are each equivalent to a statement on representation of a class.
Indeed we have by using the definitions of A and Rp

3.1 (®)(x ¢ 0) & Rp(4, 0)
3.2 (@)zeb;ceorebvr=c) © Rp{x]rebvr=c} b;c)

3.3 () e 1EZ(m, t(r) © (Er)(rem &zet(y)) -o-
- Rp({3 | (Er)(rem &3 et(x)}, g(m, t(x))).
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We therefore could state our axioms as existential assertions on
representation :

34 (Ex)(Rp(A4, z) i.e. Rp(A)
3.5 Rp{{z |rebve=c})
3.6a Rp({3 | (Ex)(x e m & 5 €t(x))}),
or else, corresponding to 1.14,

3.6b Rp({z | (Ex)(x e m & z € F'x)})

and then introduce the symbols 0, ;, > by explicit definitions.
The statement 3.6b can still be brought in a more handy form.
Namely from 3.6b we first get by E 1

A4, F =m* - Rp({z | (Ex)(x € 4,F & z € F'x)})

and from this, since here m does not occur on the right side, by
1, 4.14

1] Rp(4,F) — Rp({z | (Ex)(x € 4, F & z € F'x)}).
Further by I, 4.2 and DfJ, 3.12, DfI, 3.13 we have
Ft(Fy.— - (Ex)(x € 4, F & b=F'z) & bec A,F,
and from this we get by the predicate calculus
Ft(Fy-— - (Ex)(Eu)(x e, F & ceu &u=F'z) &
o (Bu)ceu & ued,F).

Transforming the left side of the biimplication by the equality
axioms and its right side by using DfI, 3.8 we obtain

[2] Ft(F)-—-(Ex)(x e A, F & c e I'z) & c e | JA,F.
1] and [2] together yield
3.7 Fo(F) & Rp(4,F) — Rp(J4,F).

«If the domain of a function is represented then the sum of
its values is also represented.» (Sum theorem).

From the sum theorem we can go back to 3.6b and hence also
to A 3. Namely denoting by & the class expression

{fzy |x em & y=F'x}
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we have
[3] Ft(&t), 4.8 = m*, (2)(xem—-> fa=Fux).
From the first two formulas we get by 3.7: Rp(|_4,%) and from
this by [2], what was derived without using A 3,
Rp({z | (Ez)(x € 4,8 & z € R'x)}).
But, by the second and the third of the formulas [3], this yields
Rp({z | (Ez)(x e m & z € F'z)}).

From the sum theorem we pass to the theorem of replacement.
Indeed denoting by ® the class term

{zy | (Bw)(Kz, wy € F &y=[u])})
we have
Ft(Fy — Ft(®), 4,8 = 4, F, 4,8 = A, F.
Therefore by 3.7 we have
3.8 Ft(F) & Rp(4,F) — Rp(4,F).
«If the domain of a function is represented then also the
class of its values.»
The content of 3.8 is the assertion of Fraenkel’s axiom of replace-
ment.
Concerning the proof of 3.8 we observe that the class |4,%
there occurring is nothing else than the class represented by

2.(m, [F'z])

with m* = 4, F. And indeed the proof of 3.8 can also be given by
stating the formula

FH(F) & A, F = m* — Rp(4,F, 3(m, [Fix]).

For the application of the replacement theorem it will be some-
times useful to have at hand the following replacement operator:

Df 3.1 |:'(mt( = 3, 1))

We have

3.9 a el;I (m, 4(2)) © (B € m & a=1t(x)).
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Let us consider the next consequences of 3.8. We have first
3.10 Ft(F) & Rp(4,F) — Rp(F).
For, denoting by & the class term
Loy | (o)<, 2) € F &y=(z,2))})

we have

Ft(F) - Ft(R), 4,Q = A, F, 4,8 = F,

what by 3.8 gives 3.10.
A further application of 3.8 is to arbitrary pairclasses. If 4 is
any pairclass then the class

{zy | (B)(z=y,2) &z e A)})

is a function whose domain is 4 und whose converse domain is
A A. Therefore by 3.8 we have

3.11 Ps(4) & Rp(4) — Rp(4,4).
In quite a corresponding way we obtain
3.12 Ps(4) & Rp(4) — Rp(4,4).

By our definitions of 4,4 and 4,4 it would even be possible to
omit the premise Ps(4) in 3.11 and 3.12. For, if 4 is an arbitrary
class which is represented, then by the Aussonderungstheorem the
class of pairs belonging to A is also represented.

In order to prove the inverse of 3.11 and 3.12 i.e.

3.13 Ps(4) & Rp(4,4) & Rp(4,4) — Rp(4)
it will be sufficient in virtue of the Aussonderungstheorem to prove
3.14 Rp(4) & Rp(B) — Rp(4 x B).

Indeed we have
Ps(4) & A4 C 4,4 x A,A.

Now the proof of 3.14 goes by defining

Df 3.2 a x b= [1®, &, ).
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This immediately gives, using A 3 and 3.9,
3.15 Rp(4, a) & Rp(B, b) — Rp(4 x B,a x b),

from which 3.14 directly results. At the same time 3.15 immediately
yields

3.16 a* x b* = (a x b)*.

11, §4. FuncrioNarn sETS. ONE-TO-ONE CORRESPONDENCES

By the stated facts of representation there is the possibility
of carrying over many class concepts to set concepts. To make the
parallelism more explicit, we shall take the liberty of using in the
case where a set predicate or set function is defined by the cor-
responding predicate or function of the class represented by the
set, the same predicate or function symbol, what indeed gives no
confusion, since the symbols in question have occurred before
only with class arguments.

Df4.1 Ps(a) & Ps(a*),
«a is a pairset.»
Df4.2 Ft(f) & Ft(f*),
«f is a functional set», or briefly «a function».
Df4.3 Crs(f) « Crs(f*)
Df4.4 fla=f*'a.

Whenever f is a functional set and e an element of its domain,
then f'a is the value of f for a, otherwise it is 0.

Df 4.5a Aja=(z* = Ai(a*)),
Df 4.5b Ay =1,(x* = Ay(a*)),
Df 4.6 a | b=t (z* = a* | b*),
Df 4.7 =1 (z* = a*).

Note that we have

4.1a cedia o (Ey)({e, y) €a)

4.1b ceda o (Hx)({x, ¢ €a)
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42 cea|b o (Ex)(Ey)(Ez)c=<x,y) &{x,z) ca & {(z, y) €b),
4.3 c€d o (Ex)(Ey)(c=<{x, v> & {y, x> €a).

Concerning the operations X , ~— composed with another and with
U and N the laws stated for classes I, 3.5-I, 3.9 pass immediately
over to the corresponding laws for sets. Indeed each of the said
operations commutes with the * operation.

An essential application of 3.16 is to the theory of one-to-one
correspondences between sets. We define it in the familiar way by

Df4.8 a~b o (Ex)(Crs(z) & Az =a & Ayx=b).
In virtue of DfI, 4.4 we have the formula
4.4 a~b e (Ex)(a*zb*).

For a fully satisfactory connection between the concepts A% B
and a ~ b it is still be required that the following formula hold

4.5 a* g b* — (Ex)(a* 7 b*),
so that
4.6 a* 7 b* —>a~5>b.

4.5 can be proved as follows. We first have by I, 4.3 and 3.16

*oat
a* g b* ea*lp v ntb*

*[ 1 p*
«a Knax b)* b .

Now by the Aussonderungstheorem 2.4
Rp(K N (a x b)*, K N (a x b))

and so 4.5 results.

By means of 4.5 and 4.6 we are now able to derive the laws
of one-to-one correspondences between sets from the corresponding
laws about the class relation 4.7 B. Indeed in this way from
I,44,1, 4.5 and 1, 4.6 we get the formal laws of a ~ b:

4.7 a~a, a~b—->b~a, a~b&b~c¢c—>a~c,
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and from 1, 4.8, 1, 4.9 the laws of substitutivity
48 a~c &b~d &anb=0 & cNd=0 —» aUb~cUJd

4.9 a~c&b~d—>axb~cxd.

Concerning & we have from I, 4.10
4.10 Ps(a) »>a ~d
and for the crossproduct from I, 4.11 and I, 4.12
4.11 axb ~bxa,
4,12 ax(bxc) ~(axb)xec.

We still here have to consider the concept of the Belegungsklasse,
in Cantor’s sense of Belegung, wherein class concepts and set
concepts occur combined.

Df 4.9 Ac = {z | Ft(z) & diz=c & (4,;2)* C A)}.

«A¢ is the class of functional sets whose domain is ¢ and
whose converse domain is a subset of A, thus it is the class
of mappings (by functional sets) of ¢ into A.x»

Concerning one-to-one correspondences between Belegungs-
klassen we have first

4.13 AT B &c*7d* —» Acg B,
with € being
fuv Ju € A¢ & Ft(v) & Av=d & (2)(x €d — vir= K{ut( L))},

and further the formulas which are analogous to the computation
laws for the numeral power function:

4.14 Ae x Beg' (4 x B)e

with € being {wz | (Bu)(Ev)(Ft(u) & Ft(v) & dyu=c & dv=c &
& w=_u,v) &z* = {ay |r € c & y={u'z, v'z)})},

4.15 bNc=0— Ab x Acg AbYe
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with € being {zy | (Eu)(Ev)(Ft(u) & Ft(v) & dju=b & Apw=c &
&x=<{u,v) &y=u U )},

4.16 (Ab)2 5 AbXe
with € being {uv | Ft(u) & (2)(z ec — Ft(u'z) &4y(u'z) =) & Ft(v) &
&Av=>bxc&@)y)reb &y cc - Wz, y)=(u'y)x)}.

The corresponding set formulas, using a ~ b and 4.5. 4.6, are
not yet available, since we are not able to prove in general

Rp((a*)D).



CHAPTER III
ORDINALS; NATURAL NUMBERS; FINITE SETS

I1I, § 1. FUNDAMENTS OF THE THEORY OF ORDINALS

For the edification of classical mathematics in our set theoretic
and class theoretic frame it is advantageous to begin with the
theory of ordinal numbers (ordinals). This theory, as was discovered
independently by Zermelo and von Neumann [1923], can be set
up without introducing before the concept of order type. We
can define ordinals even without referring to order at all. The
possibility of such a definition is given by Cantor’s theorem that
the set of the ordinals lower than an ordinal [ has by the natural
order the order type l. Our procedure now will come out to identify
the ordinal ! with the set of the lower ordinals, so that the ordinals
become wellordered 1) by the relation e.

We begin with introducing three auxiliary concepts:

Df 1.1 Trans(d) < (@) y)(zcy &yed - z ed).
«d is transitive».

We immediately get by DfI, 2.2
1.1 Trans(d) < (y)(y ed— y Cd).
Df1.2 Alt(d) & (@)(y)xed &yecd &xr#y > xcyvyecx)
Df1.3 Fund(d) © () Cd &zx#0 - (Ey)lyecz &
&y N x=0))2).
Now we define the concept of an ordinal as follows 3)

Df1.4 0Od(d) <« Trans(d) & Alt(d) & Fund(d)

1) We are speaking of wellorder in this chapter only in the familiar
intuitive sense. Later on we shall state a formal definition of wellorder
(chapt. V).

2) Fund(d) says that d is “wohlfundiert’’ by the relation e in the sense
of Zermelo [1935].

3) The method of starting from this definition of ordinal is due to
R. M. Robinson [1937].
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Our first task now is to show that the elements of an ordinal
are wellordered by the e-relation. For this it will suffice to show
that the following formulas hold:

1] Od(d) &acd — a¢a,

[2] Od(d) &acd&bed&cecd-—-acb&bec - cda &c=a,

[3] Od(d) —» @)(zCd&zxz#0 — (Ey)yezx&(z)(zcx—>
—> y=2VYyez))).

Namely [1] and [2] together with Od(d) — Alt(d) express, that the

elements of an ordinal are ordered by the relation €, and [3] says

that by this order every non empty subset of an ordinal has a
first element.

In fact we shall prove the following stronger formulas:
1.2 Fund(d) &aed - ada
1.3 Fund(d) & acd &bed &ced-—-achb &bec - c¢a&ca
1.4 Fund(d) & Alt(d)-— - (z)(z Cd & z#0—> (By)ly ez &
& (zMzex—>y=zVvycz)).

These formulas together yield the statement that every set satis-
fying only the conditions Fund and Alt, is wellordered by the
e-relation. This fact was observed by Zermelo [1935]. The proof
of 1.2 goes by applying the definition of Fund to the non empty
subset [a] of d, so that we get
Fund(d) & a ed - (Ey)(y € [a] &y N [a] =0)
—an[a]=0
—>ad¢a.
By the same method we prove

[1] Fund(d) &acd &bed &achb —» bda
[2] Fund(d) &aecd &bcd &ced &acb&bec - cé¢a.

For the first we have to consider the subset [a, b] of d. for the
second the subset [a, b]; ¢, for which we have

kela,b]; ¢ &> k=avik=bvik=c.
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From [1], [2] we obtain 1.3, and by Df 1.2 and Df 1.3 follows
directly 1.4.

The next is to prove that each element of an ordinal is itself
an ordinal.

1.5 0d(d) & c ed — Od(c).

The proof goes by combining 1.3 with Df 1.1 and Df 1.4, what
gives
Od(d) &ced &bec&aecb - acc
and thus
0d(d) & c e d — Trans(c),

as also with 1.1
1} Od(d) & ¢ ed — Trans(c) & ¢ Cd.
Further using the obvious formulas

Alt(d) & c Cd — Alt(c)

Fund(d) & ¢ Cd — Fund(c)
we get

[2] 0Od(d) & ¢ C d & Trans(c) — Od(c).

[1] and [2] together give 1.5.
The formula [1] can be sharpened, using 1.2 and Df 1.4 to

1.6 Od(d) & c e d — Trans(c) & ¢ Cd.
Of formula 1.6 also the inverse holds:
1.7 Od(d) & ¢ Cd & Trans(c) — ¢ ed.

«Every transitive proper subset of an ordinal is an element
of it.»

The proof goes by applying essentially the Aussonderungstheorem.
By II, 2.7 and Df 1.3 we have

1] Fund(d) & cCd — (Ey)lyed—c &y N d<c=0).
Further we have

Trans(c) &a¢c &bec > a#b &ad¢bd
and therefore

Alt(d) & ¢ Cd & Trans(c) &acd<c &bec —» bea,
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what gives by the predicate calculus and DfT, 2.2
Alt(d) & ¢ Cd & Trans(c) &aesd¢c — ¢ Ca.
On the other hand we have, using 1.1,
Trans(d) &acdc &anNndc=0 — aCc;
80 we get

(2] Trans(d) & Alt(d) & ¢ Cd & Trans(c) & a cd—¢c &
&andc=0—>c=a&ced.

1] and [2] together yield by the predicate calculus and Df 1.4
the formula 1.7.
By 1.5, 1.6 and 1.7 we obtain

1.8 Odp) — (aeb e O0d(a) &a Ch).

«The elements of an ordinal b are those ordinals which are
proper subsets of b.»

Now we are to show that of any two ordinals a, b one is a subset
of the other.

1.9 Od(a) & Od(b) = aCbvb Ca.
By II, Df 2.2, the proof of 1.9 comes out to derive
(1] Od(a) & Od(b) = anb=avanb=b.
From Df1.1 we immediately get

Trans(a) & Trans(b) — Trans(a N b).
Therefore we have

Od(e) & Od(d) &anNb#a — Trans(@Nb) &anbCa
and by 1.7

2] Od(a) & Od(d) &anNb#a —- anbea.
In the same way we get

[3] Od(a) & Od(p) &anNb#b - anbch.
On the other hand we have

(4] anbea&anbeb »>anbeand
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and by 1.2
[5] Od(a) &anbea > anbdéanb.
From [2]-[5] we get by the propositional calculus the formula [1].

Now 1.9 immediately gives
1.10 Od(a) & Od(b) & ab —> aCTbvb Ca.

Thus in virtue of I, 2.18 the ordinals are ordered by the relation C.
But by 1.8, for ordinals a, b the proper subset relation is equivalent
with the element relation. Therefore the ordinals are also ordered
by the relation €, and we have

Od(a) & Od(b)-—>-a=bvacbvbea
1.11 Od(a) & Od(d) & Od(c)-—>-acb &becc > acc

Od(a) & Od(d) &acb — b ¢a.

We can now speak as usual of “higher” and ‘“lower” ordinals
in the sense that an ordinal a is lower than an ordinal b, and b
higher than a if @ € b or if @ Cb. At the same time by 1.8 it results
that an ordinal @ is just the set of the ordinals lower than a.

Moreover we now also show that the order constituted for

ordinals by the relation € is a wellorder. In fact we have the
provable formula

1.12 Od(c) &ced — (Ex)(Od(z) &z e d & (z)(0d(z) &
&zeAd - z=zvzer)).

«Among the ordinals which are elements of a class A there
is a lowest one—or what comes out to the same: every non
empty class of ordinals has a lowest element.»

This is the principle of the least ordinal number. The proof goes
as follows. By 1.4 we have

Cdc) —=>-aCc &a#0 > (By)yca & (z)(zea = y=2Vvycz).
Substituting here ¢ N 4 for a we get

1 Odle) &8c N A+#0 — (Ex)(recc&rxcAd &
&()Nzec&zed—>r=2Vvre2)).

On the other hand we have by 1.11
2] Od(c) = @)=)(rec&z¢c&O0d(z) —» x e2).
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1] and [2] together give by the predicate calculus, with 1.5,

Od(c) & c N A#0 — (Ez)(Od(x) &axcd &
& (z)(0d(z) &ze A —» z=z vz ez)).

Now in order to get 1.12 it is sufficient to derive

Od(c) &ce A &cNA=0 —» (Ex)(Od(z) &z c A &
& (z)(0d(z) &ze A —» z=zvzcz)).

But this results from the formula
Od(c) &c N A=0 — (2)(0d(z) &zecd = c=2VceE?)

which we get by 1.11.

The formula 1.12 expresses the wellorder property of the relation
€ between ordinals by a generality on classes (not merely on sets),
what is in conformity with the intuitive concept of wellorder.
In the formulation 1.4 of the property of an ordinal that its elements
are wellordered by e, a generality on classes was not needed,
since every class of elements of an ordinal, by the Aussonderungs-
theorem, is represented by a set.

We have proved 1.12 from the property Fund of ordinals. On
the other hand from 1.12 we easily obtain the consequence

(x)(x € m = Od(x)) = Fund(m).

Since further we directly infer from 1.11 that every set of ordinals
has the property Alt, we get by Df 1.4 the theorem

1.13 (x)(x e m — Od(x)) & Trans(m) —> Od(m).

«Every transitive set of ordinals is itself an ordinal».

For most of the applications of 1.12 it is useful to have at hand
the notion of the least ordinal belonging to A. We define

Df1.5 pd=0(0d(z) &z cd & (2)(0d(z) &2zed-—>-x=2Vzxez).
The characterizing properties of uA4 are

1.14 Od(c) &ced = Od(ud) & ud e A

1.15 Od(c) &ced - pd=cvud ec

1.16 (x)(Od(x) >z ¢ 4) = uA=0.



86 ORDINALS; NATURAL NUMBERS; FINITE SETS [oH. 11X

For the proof of these formulas which of course is by the ¢-schema,
we have mainly to use 1.12, but besides also the unicity formula

Od(a) &ac A & (z)(0d(z) &zed - a=zvacz) &
&Od(b) &bed & (2)(0d(z) &z d - b=zvbez) = a=b,

which results from 1.11 by the predicate calculus and the equality
axioms. For a handy notation we still define

Df1.6 () = pfx | ()}

From the principle of the least ordinal number we can pass
to the principle of transfinite induction in the following way:
Applying 1.12 to a class {gr ] A(x)} and using

Od(a) & (c=avcea) > adc,
which gives
(3)(0d(3) & A(z) —> c=3Vvecez) = (3)0dG) &jec — Al)),
we obtain by the predicate calculus, using also 1.5,
0d(e) & A(e) — (Br)(0d(x) & A(x) & (3)(3 € T — A(R))),

and from this by contraposition the formula schema of transfinite
induction results:

LIT (£)(0d(x) & (3)(3 € x = A3)) — A(x))-—- Od(c) — A(c).

«If, for every ordinal z, % holds provided that it holds for
every ordinal lower than 1, then U holds for every ordinal».

From 1.17 we can also go back to 1.12 by taking for (c) in
1.17 ¢ ¢ A and using 1.11.

111, § 2. EXISTENTIAL STATEMENTS ON ORDINALS.
LiMIT NUMBERS

To the proved hypothetical laws concerning ordinal numbers
now have to be added the existential theorems. These are in strict
relatedness to our three fundamental notions 0, ; , ¥ and to the
corresponding axioms A1, A2, A3.
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Namely we have

2.1 0d(0)
2.2 Od(c) = Od(c; ¢)
2.3 (x)(x € m — Od(t(x))) —> Od(3(m, t(r)))-

t

Indeed the properties Trans, Alt and Fund can be proved to
hold for 0. Upon Od(c) we obviously have Trans(c; ¢) and Alt(c; ¢);
Fund(c; ¢) follows from 1.11 and 1.5. As to 2.3 we have upon the
condition (r)(z € m — Od(t(z))) first directly Trans(3(m, t(z))) and

T
from this and our premise follows Od(>(m, t(¢))) by 1.5 and 1.13.
2.3 gives in particular '

2.4 (x)(z € m = Od(x)) — Od(>m)
«The sum of the elements of a set of ordinals is again an
ordinal».
Defining
Df2.1 ¢'=c;c
we immediately have
2.5 aeca’, a’'#0, Od(a) = Od(a’)
and by 1.11
2.6 Od(a) & Od(b) & a'=b" — a=Db.
A nearer characterization of 0, ¢’ and Ym is given by the formulas
2.7 Od(c) = 0=cVvO0 € ¢,

«0 is the lowest ordinal».
2.8 Od(c) &aec = a'=cva' eec.

2.8 together with 2.5 says that &’ is for every ordinal a the next

higher ordinal; we call it the successor of a.

2.9 @)xem—>0d@) —=>-@)(zem = z=3mVre Im)

2.10 Od(c) & (z)(xem — Od(z) &xCc) = Sm=cVv Imec.
«For every set of ordinals m, 3m is as least as high an ordinal

as any element of m, and it is the lowest one having that
property».
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The proofs of the formulas 2.7-2.10 go with 1.5, 1.8, 1.11 and
2.1-2.4,
From 2.8 we also directly derive

2.11 Od(c) & (z)(z'#¢c) = () x ec—> 2" €c).
Thus defining
Df2.2 Suc(c) e (Ezx)(Od(x) & z’'=c¢)
«c¢ is a successor number».
and
Df 2.3 Lim(c) e Od(c) & c#0 & (x)(xec—> 2’ €c¢)
« is a limit number»

we have

2.12 Od(c) = ¢=0 v Sue(c) v Lim(c)
and also

2,13 Lim(c) = ¢#0 & c#a'.

Note that an ordinal ¢ is a successor if and only if it has a highest
elcment.

The difference between successors and limit numbers appears
pregnantly in conncction with the sum operator. Indeed we easily
get

2.14 Od(c) = >¢'=¢, Lim(c) = dec=c.

Ag a consequence of 2.4 and 2.9 we have that for every set of
ordinals m with no highest element, >m is a higher ordinal than
every element of m.

From this we can infer that there does not exist a set of all
ordinals, or in other words, that {x | Od(z)} is not represented.
For, if m were the set of all ordinals then, since to every ordinal
exists a higher one, >m would be an ordinal higher than every
element of m, what obviously is contradictory. Thus here already
the necessity of distinguishing classes and sets comes to appear.

We further note here, that according to 2.7, 2.8 and 2.10 we
have the following properties of any ordinal ¢: 1) 0 is either equal
to ¢ or an element of ¢; 2) if ¢ is an element of ¢, then a’ is either
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equal to ¢ or an element of ¢; 3) if m is a subset of ¢, then >m is
either equal to ¢ or an element of c.

It can be proved on the other hand that every set having the
said three properties is an ordinal. Zermelo in his mentioned
unpublished theory of ordinals, which makes no use of the concept
of order, defined ordinals by these properties.

Let us note that we have till now no means for proving the
existence of a limit number. This will only be possible when we
shall have introduced the axiom of infinity.

II1I, § 3. FUNDAMENTS OF NUMBER THEORY

From the laws of ordinal theory, derived in the last sections,
we can obtain by the way of specialization the fundaments of
number theory. We observe that for this purpose not our full
axiomatic basis is required. Indeed surveying the last two sections
we see that in all occurring proofs except those of formulas con-
taining Y (m, t(x)), d(m,z), dm, the axiom A 3 was used only in

P

z
the form of the Aussonderungstheorem, so that it would be

sufficient for them to have instead of A 3 the weaker axiomatical
agsumption of the existence of the set a N A with its characterizing
property 11, 2.3. The frame thus delimited, which we may call the
weakened general set theory, allows already to derive number theory.
In fact we shall use for this only those theorems of the last sections
which are proved in the said frame.

Natural numbers can be defined as special ordinals, according
to the following definition:

Df3.1 Nu(n) - e-0d(n) & (n=0v Suc(n)) & (z)xen —>
— =0 v Suc(x)).
«A natural number is an ordinal such that itself and every

element of it is either O or a successor.»

From this definition we immediately get, by the formulas 2.1,
2.5 and 2.6

31 Nu(0), Nu(a) > Nu(a'), Nu(a) & Nu(p) & a'=d" —
—> a=b, a'#0
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as also

3.2 Nu(a) &b €a — Nu(b)

and with this

3.3 Nu(a) = a=0v (Ey)(Nu(y) & y'=a).

With 3.1 we have already all Peano axioms up to that of
(complete) numeral induction :

34 0ed & (@)(Nu@x) &zrecAd - 2’ ¢ A)-—--Nu(a) >a e 4.
We derive this from 1.17. Substituting here Nu(c) >ce 4 for
A(c) and using Nu(c) = Od(c) and 3.2, we get

(@) Nu(x) & 2)(zex—>zec d)—>x e d)-—-(Nulc) >c e d).
Hence for deriving 3.4 it is sufficient to prove

(1] 0c A & @) Nux) &zxed = 2’ ¢ 4)-—-
~—>-Nu(c) = ()} (z ec—>ze d)—>ce A).

For this proof we use the formula 3.3; from this, with the predicate
calculus and the equality axioms, we get the schema

3.5 €(0) & (y)(Nu(y) = €(y"))- — -Nu(c) = €(c).
Applying this to the case of €(c) being (z)(zr ec—>2ze€d) > ce 4

we first observe that we have 0e A — §(0), and so the proof
of [1] comes back to that of

() Nu(x) &z ec A = 2" € A)-—-(y)(Nu(y) = €(y")
and thus also to the proof of

(2] (x)(Nu(r) &xred = 2’ € 4)-—-Nu(c) & z)(z ec’" —
—>zcd) > c' €A,

Now [2] results as follows: We have by the predicate calculus
() zec—>2ze€ed) = (cec"—>cecd)

—>ced by 2.5,
and therefore

Nu(c) &ce A = ¢'c A)-—-Nu(c) & (z)(zec’ >z A) = ¢'c4,
and this obviously gives [2].



§ 31 FUNDAMENTS OF NUMBER THEORY 91

From 3.4, by the Church schema, we have the immediate passage
to the formula schema

3.6 A0) & (r)(Nu(r) & A(x) = Ax"))-—>- (Nu(a) = A(a)).

We have derived 3.4 from 1.17 which itself was obtained from
the principle of least ordinal number 1.12. From this we have
drawn the formulas for the u-operator 1.14-1.16, which gave an
explicit formulation of that principle. These formulas can now
also directly be applied to number theory by means of the definition

Df 3.2 A =pu(A O {z | Nu(z)}).

By this way we come to the formulas expressing the principle
of least natural number

3.7 Nu(c) &ce 4 - Nu(ud) &pd e A
3.8 Nui) &ced - pA=cvudec
3.9 (z)Nu(z) >z ¢ 4) = pd=0.

By the Church schema we obviously can pass from these
formulas to the corresponding formula schemata for a predicate
A instead of the class variable A4 1),

The main thing still required for developing number theory
is the method of introducing functions by primitive recursion.
As is well known this requirement, which was first explicitly
noticed by Dedekind, in most formalizations of number theory
gives rise to some complications, if not the recursive definition is
taken as a primitive rule. Here we can use the Dedekind method
with the simplification that the relation < between numbers is
directly expressible by a eb va=5b. At the same time we make
use of the fact that primitive recursion can be reduced — whenever
ordered pairs are available as individuals—to iteration 2%).

1) The operator u,A(x) in [Hilbert and Bernays 1934/39]—in distinction
from our present more general u-symbol for ordinals—is here to be defined
by the expression u{z | Alz)}.

2) This was first observed, as it seems, by S. C. Kleene [1933] and has
been employed in several newer publications, in particular of Quine’s school,
for the reduction of primitive recursion to the ancestral.
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In fact we shall derive the theorem justifying primitive recursion
from an iteration theoremi, which we now come to discuss.

IIT, §4. ITERATION. PRIMITIVE RECURSION

For formulating the iteration theorem we need the concept of
a sequence which in the following will occur in many contexts. By
a sequence we understand a functional set whose domain is an
ordinal:

Df4.1 Sq(s) < Fi(s) & Od(4s).

The elements of the converse domain 4,s of a sequence s are called
the members of s. (Thus we have to distinguish between the mem-
bers and the elements of a sequence.) Note that the empty set
by Df 4.1 is also a sequence.

We now further define the concept of an iteration sequence for
F, starting from a:

Df4.2 It(s, a, F) « Sq(s) & Nu(4,s) & s0=0a &
& (x)(x' € A5 —> (s'x, sx") e F)

and by means of this the numeral iterator of F on a:
Df4.3 WF, a) = {xy | (E2)(It(z, a, F) & (z, y) €2)}.

Intuitively the iterator of /' on a can be characterized as the
class of pairs {(n, b> with n being a natural number and b being
the final member «, of some sequence g, a,,d,, ..., a, Where
ag=a and {a,_,, a;> belongs to F for i=1,2, ..., n.

Now the iteration theorem says that, if 4 is a class of which a
is an element and F is a function mapping A into A4, then the
iterator J(F, a) is a function H with the domain {x | Nu(x)} which
satisfies the equations

H'0=a, Nu(n) = H'n' = F'(H'n)
and whose values belong to 4; formally
41 acA&FUF) &AM F =A&AFCA &H=)(F,a)—-

-— Ft(H) & 4, = {o | Nu(z)} & 4,HC A & HO0=a &
& (@) (Nu(x) = H2' = FY{H%)).
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For the indication of the proof let us denote briefly the expression
acA&FUF)&AF=A&A,FCA by GF, a, A). We then
are to prove
[1] &(F,a, A) & Nu(n)-—-(Ez)(1t(z, a, F') & d;z=n" & z'n € A),
(2] G(F,a, A) &It(s, a, F) & It(t, a, F) & Nu(n)-—-

= (X)), 2> €es & (n,y)> et > x=y).
For both formulas the derivation goes by numeral induction with
respect to n; to the first one we use the formula
It(s, a, F) & Ais=n' & (s'n, b) € F-—-Tt((s; {(»', bD), a, F).
With the help of {1] and [2], using Df 4.2 and Df 4.3, we get the
formula 4.1 to be proved.

Concerning the iterator we note the following formula sometimes
to be applied
4.2 Crs(F) & a ¢ 4,17 — Crs(J(F, a)).

The proof goes by deriving with numeral induction
Crs(F)&a¢ A, F-—-Nu(c) &bec— (BEx) ({b, x> el (F,a) &
& (¢, x> el (F,a)).

By application of the iterator we are able to define the elementary
arithmetic functions: Indeed defining

Df44 m+n=){ry Jy=2"}, m)'n,
Did.5 m-n=1({ry |y=2+m}, O)n,
Df4.6 m*  =J{zy ly=x-m}, 0')n,

we obtain by 4.1, with substituting {= ] Nu(z)} for 4, the formulas
constituting the ordinary recursive definitions of these functions:

4.3 Nu(m) & Nu(r) — Nu(m-+n) & Nu(m-n) & Nu(m?)
4.4 Nu(m) & Nu(rn) = m+0=m & m+n'=(m+n)

4.5 Nu(m) & Nu(rn) = m-0=0 & m-n'=(m-n)+m

4.6 Nu(m) & Nu(n) = m®=0" & m» =m"-n.

From the iteration theorem we now pass to the schema of primsi-
tive recursion. Let us consider the schema for the case of one para-
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meter; the corresponding schema with more parameters can
immediately be reduced to the former by comprehending para-
meters into one f-tuplet. We need not restrict the schema to the
definition of functions with number values but can state it in
the following more general form:

Upon the condition that we have for some formulas A(c),
G(c) and some terms t(c), b(a, b, c)

a A(a) = C(t(a))
© e & 6b) & Nu@m) = Spim, b, @),

4.7 ( a function symbol f{(a, m) can be introduced, with the
formulas

(1] A(a) = f(a, 0)=1(a)
2] A(a) & Nu(m) —> f(a, m’)=p(m, {(a, m), a)

\ taken as its recursive definition.

For justifying this procedure we show that we can set up an
explicit definition for {(a, m) in such a way that [1] and [2] are
provable under the condition (C). To this end we apply the iteration
theorem 4.1 with substituting

for a : (0, t(a))

for A: {ry | Nu(z) & €(y)}

for F: {uv | (E3)(Ew)(Nu(3) & €(w) &

&u=C3 1) & v=_3", p(3, W, a))}-

Denoting the two class terms by & and $(a) we have by (C)

M) = (0, t(a)) € & & Fi(F(a)) & 4,F(a) = & & 4,F(a) C K.
Thos by 4.1 we obtain

W(a) & H = J(F(a), €0, t(a))) — Ft(H) & 4,H = {r | Nu(p)} &
& A,H C & & H0={0, t(a)) & (x)(Nu(z) =
— H't' =F(a)(H'Y)).

The elements of the iterator J(F(a), €0, t(a))) are triplets of the



§ 4] ITERATION. PRIMITIVE REOURSION 95

form {n, (1, £>, with a natural number n. Indeed by numeral
induction we can prove

Nu(m) — (E3)(J(F(@), 0, ta))m = (m, 37).
Now defining

(3] f(a, m)=g((m, ) = (F(a), <0, t(a)))'m)
we get
(@) = <0, f(a, 0)> =0, {(a)),
= (m/,jla, m)) = J(Fa), 0, ta)))m'
- <m,: T(a: m'’ > = %(a)‘(](%(a), <0: t(a)>)Lm
= (m', jla, m')) = Fa) {m, fla, m))
= (', fla, m')y = <m’, p(m, jla, m), a)),
what by II,1.13 gives [1] and [2].—
The concept of an iteration sequence can in particular be used
to define the transitive closure of a class

Df 4.7  [Al = {e | (Bu)(Bv)It(u, v, {ry |y c 2}) &ve A &zeAu)}

«z belongs to [A1if it is a member of a sequence ay, ay, @, ..., a,,
where gy 4 and a,€q,_, (k=1,2, ..., n)».

W(a) & Nu(m)

By the transitive closure of a set ¢ we understand that one of a*,
ie. [a*].

For formulating the characteristic properties of the transitive
closure, we define Trans(4) by extending our former Df 1.1 to
classes. Now using Df 4.2 we can prove

4.8 A C[4]l, Trans(Al
4.9 Trans(C) & A CC — [4]lCc.

{4l is transitive, and A is a subclass of [4] as also of every
transitive class of which 4 is a subclass, i.e. briefly [4] is the
smallest transitive class containing A4 as a subclass.»

The proof of 4.9 goes by deriving

Trans(C) & ¢ € C & Nu(n) = (2)((Eu) (It(w, ¢, {zy | ye x}) &
& (n,2) e uy—>2zel)

with numeral induction.
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Our way of defining the transitive closure is adapted to the
frame of weakened general set theory. With employing the sum
operator another method of introducing the transitive closure can
be used, by which we have first to define the transitive closure
of a set. )

This possibility is due to the circumstance that _IE“] is the
union of the sets a, Da, >(3a), ... which are the values of the
iterator of the function {zy |y =37} on a, so that we have

4.10 lo*l = U4,)§zy |y =32}, a).

For the proof of this class equality it is in virtue of 4.8 and
4.9 sufficient to show that the class (J4,)({ay | y= Dz}, a)—let us
write instead briefly £(a)—has the characterizing properties of
the transitive closure:

(1] a* C R(a), Trans(f(a))
2] Trans(B) & a* C B —» f(a) C B.

For deriving these formulas we have of course to use 4.1. Sub-
stituting here V for 4 and {xy |y =Dz} for F and the class-term
J{xy Jy=2x}, a)—which we briefly denote by %B(a)—for H,
we get
(3] Tt(B(a)) & 4,B(a) = {x [ Nu(z)} & B(a)0=a &

& (2)(Nu(z) = B(a)z' = DB(a)).
Further by Df1, 3.8 we have
(4] U4,8(a) = {u ]| (Ev)(Nu(v) & u € B(a)*v)}.
From (3] and [4] we first get the formulas [1], using DfII, 1.5,
and {2] is obtained by deriving

Trans(B) & a* C B-—-Nu(n) = (B(at2)* C B

with numeral induction on n.
Moreover the transitive closure of an arbitrary class is expressible
by the closure of a represented class, since we have

4.11 4] = {yf(Ex)red &y=2vy e|x—*|))}.
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In fact the characterizing properties of [4] can be shown to hold
for the class

WlE)wed&@y=2vyel=h},
using that they hold for any class [¢*].

I1I, § 5. FINITE SETS AND CLASSES

The concept of finiteness in set theory 1is subject to certain
complications, because there are many different ways of defining
it, all intuitively motived, which however can be shown to be
equivalent only with the help of the axiom of choice. Interesting
results in this respect have been attained by A. Tarski, A. Mostowski
and A. Lindenbaum [1925a, 1938, 1938, 1945].

In particular we have the possibility of either defining finity
or else infinity in a positive sense. Infinity is for instance positively
defined by Dedekind’s well known definition according to which
a set is infinite if there exists a one-to-one correspondence of it
with a proper subset. We shall later on come back to these questions.

Here in the theory of finite sets we define the concept of finiteness
in a positive and relatively elementary way:

Dfs5.1 Fin(a) & (Ex)(Nu(x) & x ~ a).

«A set is finite if there exists a ome-to-one correspondence

between it and a natural number».

Df5.2 Fin(4) e (Ex)(Fin(r) & z* = A).

«A class is finite if it is represented by a finite set».
That no unnecessary restriction is included in the last definition
appears from the provability of the formula
5.1 Nu(n) & n* o 4 — Fin(4)

which consists in virtue of II, 4.5. (Cf. the remark on p. 99.)

In order to derive the familiar properties of finite sets and in
particular those connected with the concept of the number of
elements —let us briefly say the “multitude”” —of a finite set, we
need two preliminary theorems. The first one is

5.2 Nu(n) &sCn — (Ez)(Nu(z) &z en &z ~ s).
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The proof goes by applying numeral induction to the predicate of »:
(w)(u Cn— (Ex)(Nu(x) &z en &z ~u))
and using the formulas
Nu(n) &aen — 0cn,
tCn" — t=nviCav(i=0E¢nn)U[r] & (tNn)Cn),
Nu(m) & Nu(n) = (men—>m' en').
The other preliminary theorem is
5.3 Nu(k) & Od(n) &k ~n — k=mn.

This follows by applying the principle of least natural number to
the class
{z | Nu(z) & (Ey)(0d(y) &z ~y & z+#y)},
using 5.2 and 1.10.
As consequences of 5.2 and 5.3 we have

a Cb & Fin(b) — Fin(a)

5.4

? A C B & Fin(B) = Fin(4)
5.5 Od(n)-—- Fin(n) < Nu(n)

5.6 a Cb & (Fin(a) v Fin(h))-—>-a ~b.

Thus there is no one-to-one correspondence between a finite set
and a proper subset of it. Defining
Df 5.3 mlt(a) = (Nu(z) & 2 ~ a)

«the multitude of as»

we have

5.7 Fin(a)-—- (z)(Nu(z) & z ~a < z=mlt(a)),
what of course entails

5.8 Fin(a)-—-Nu(mlt(a)) & a ~ mit(a)).

Further we have the following theorems of the theory of multi-
tudes which we state here without indication of the proofs, that
go by formalizing the familiar intuitive arguments:

5.9 a Cb & Fin(h)-—-mlt(a) e mlt(b)
5.10 Fin(a) & Fin(b)-—-Fin(a U b) & (a N b=0 — mlt(a U b)=
=mlt(a) + mlt(b)),
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5.11 Fin(a) & Fin(b) = Fin(e x b) & mlt(a x b)=mlt(a) - mlt(b),
5.12 Fin(a) & Fin(b) — Fin(a*?) & (Ex)(z* = a*2 &

& mlt(z) = mlt(a)=t®)
where mlt(a)™*® is the value of the arithmetical function m®
defined by Df 4.6.

We also obtain
5.13 Fin(a) & (z)(x € @ = Fin(r)) = Fin(Ja).

«The union of finitely many finite sets is again finite».
The derivation is by numeral induction with respect to the multi-
tude of a, ie. by deriving the formula (obviously equivalent
with 5.13)

Nu(n)-—>-(2)(z ~n) & (x)(x € z = Fin(z)) — Fin(32))
by numeral induction with respect to », using 5.10.
Thus the usual theory of multitudes can here be obtained,
without employing the Anzahldefinition of Frege.
Finally we note the theorem that in every (non empty) finite
set of ordinals there is a highest ordinal:
5.14 ¢c#0 & Fin(c) & (x)(x e c = Od(x))-—>- (Ey)y ec &

& @) (xec—x2LCy)).
The proof goes by means of numeral induction with respect to the
multitude of ¢.

Remark: The proof of 5.1, which goes quickly with using II, 3.8,
can be given also in the frame of weakened general set theory, as
follows: by numeral induction with respect to n we get
Ft(F) & Nu(n) & n* C A F — Rp({y | (Ex)(x e n & {x, y)> € F)}).
By application of this formula we obtain successively
Nu(n) & n* 5 A— A = {y | (Ex)(xen & {z, y) € ()} & Rp(4)
— (Bz)(n* g z* &z¥ = A4)

— (E2)(Bu)(n* or 2* & 2* = 4), by 1I, 4.5
— (B2)(n ~z & 2* = A)

— Fin(4), by Df 5.2 and Df 5.1,



CHAPTER 1V
TRANSFINITE RECURSION

IV, § 1. THE GENERAL RECURSION THEOREM

The method of recursive definition is not restricted to number
theory, but can be established as a general procedure of ordinal
theory. In this extended form, we call it transfinite recursion.
This again can be based on a still more general theorem which
we call the general recursion theorem. This theorem was first stated
and proved exactly by von Neumann [1928a], who at once stressed
that besides the original Zermelo axioms also the assertion of the
axiom of replacement has here to be used. Owing to this circum-
stance we have to deal now, in considering general recursion and
its application, again with our full axiom system A 1-A 3 of general
set theory.

For the statement of the general recursion theorem some
concepts have to be defined. We first extend our concept of
sequence to classes, calling a function 8 whose domain is either
an ordinal or {z ] Od(z)} a sequential class:

Df1.1 Sq(S) < Ft(S) & ((Ex)(0d(x) & 4,8 =x*) v 4,8 = {z] 0d(x)}).

According to this definition indeed every sequence as defined by
IIT, Df 4.1 represents a sequential class, so that we have

1.1 Sq(s) e Sq(s*).

A sequence ¢ which is a subset of a sequential class S will be
called a subsequence of 8. If 8 is a sequential class and » an element
of its domain, then there is a unique subsequence of 8 whose
domain is »; we call it the n-segment of S. The formal definition
can be given, using II, Df 3.1, by
Df1.2 sg(S, n)=[ 1, x, S42).

The m-segment of a sequence is defined by

Df1.3 sg(s, n) =sg(s*, n).
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Note that by Df 1.2 sg(S, ») is also defined for the case 4,8 C n*;
namely for k en, k ¢ 4,8 we have sg(8S, n)’k=0. The same applies
to Df 1.3.

Concerning these concepts we note for later use the formulas

1.2 Sq(S) & Od(k) & n ek — sg(S, n)=sg(sg(S, k), »)
«When 7 is a lower ordinal than the ordinal %k, then the n-

segment of a sequential class S is also the n-segment of the k-
segment of S»,

1.3 Od(c) & Sq(s) & Sq(t) & (x)(x € c —> s'x=t'x) —>
— sg(s, ¢)=sg(¢, ¢)
which result by Df 1.3, II, Df 3.1.

We shall call a sequence whose members belong to a class C
briefly a C-sequence. Further a function F will be said to progress
in C if it assigns to every (-sequence an element of C. The formal
definition is:

Df1.4  Prog(F,C) & Ft(F) & 4, F = {x | Sq(x) & 4,2* CC} &

& 4,8 CC.
Note that Prog(F,() entails that F £ 4 &C £ 4 since the
null set, being at all events a C-sequence, is by Prog(F, C) in
the domain of F.

Moreover a sequential class 8 or a sequence s will be called
adapted to F if, for each element n of its domain, S% or stn is
assigned by F to the n-segment of S or s:

Df1.5  Adp(S, F) & Sq(S) & (w)(w e 4,8-—>-sg(S, u) e 4, F &
& Stu = F'sg(8S, u),
Df1.6 Adp(s, F') & Adp(s*, F).

For this concept we have the following unicity formula
1.4 Adp(s, F) & Adp(¢, F) & cedis N At — se=te.

The proof goes by means of transfinite induction III, 1.17, using
the formula 1.3. We also have

1.4a Adp(S, F) & c € 4,8 = Adp(sg(S, ¢), F).
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In connection with the concept Adp(s, F') we define
Df1i.7 Adpla, b, F) & (Ez)(Adp(z. F) & {a,b) €2)

«b is the value assigned to a by some sequence adapted to F».
By 1.4 we immediately have, using also Adp(a, b, F)— Od(a)
1.5 Adp(a, b, F) & Adpla, ¢, F) = b=c.

Finally the class of those ordered pairs, which are in some
sequence adapted to F will be called the adapior of F, formally

Df1.8 AF = {xy | Adp(z, y, F)}.
Now the general recursion theorem can be stated by the formula

1.6a  Prog(F, () — AAF = {z | 0d(2)} & 4,AF CC &

& Adp(AF, F),
or in an equivalent more handy form

1.6b Prog(F, () — Sq(AF) & 4,AF = {x | Od(z)} & 4,AF CC&
& (2)(Od(x) = (AFYx= Fisg(AF, x)).

The interpretation of 1.6b gives the general recursion theorem: For
any function F which assigns to every sequence of elements of a
class (' again an element of (, we can define a function G, whose
domain is {x | Od(x)} and whose value for an ordinal k is that
element of C, which is assigned by F to the k-segment of G. Our
proof of this theorem consists in showing that the adaptor of F
is such a function G.
We first observe that by Df 1.5 and Df 1.4

(11 Prog(F, Cy-—-Adp(S, F) > 4,8CC
and by Df 1.7 and Df 1.6
(2] Prog(F,C)y— A,AF CC.

Next we use the following auxiliary formula

1.7 Sq(s) & (x)(x € 48 = (Ez)(Adp(z, F) & x 4,2 &
& stz =z'z))-—- Adp(s, F).

For the proof of 1.7 let us denote by (s, 1, b) the expression
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Adp(t, F) &b e At & s'b=i'h, then we have upon our premise
Sq(s) & (x)(x € 4ys = (Ez)A(s, 2, ), and in virtue of the formula
Sqs)&beds&keb—keds:
@)y xrecds &yecxr = (Bu)d(s, u, y)

and by the predicate calculus

(x)(x € A8 = (E2)U(s, 2, ) & (y)(y € x = (Bu)AU(s, v, ¥)))-
Now using 1.4 and the transitivity of equality (with respect to
sy, uty, zty) we get

(@)@ € A5 — (E2) (U, 2, 2) & (y)(y € z — s'y=2"y)))
and thus by 1.3
(x)x e Ais — (E=)(Uls, z, ) & sgls, x) =sg(z, x))),

hence by the defining expression for (s, ¢, b) and Df 1.6, Df 1.5
(x)rxeds = (Ez)(sglz, x) e A & zlwv=F'sgz, z) & slr=2z &

& sg(s, x) =sg(2, 2))),
and from this by the premise Sq(s) and the equality axioms
Adp(s, F) results.

Using Df 1.7, the formula 1.7 can be transformed into
1.8 Sq(s) & (x)(x € 4;8 = Adp(z, s'z, F)) — Adp(s, F).
A further step is to derive
1.9 Prog(F, C)-—-0d(c) = (Ev)Adp(c, v, F).

The proof is by transfinite induction with respect to ¢: Upon the
premise Prog(F,C) and Od(c) &b ec — (Ev)Adp(b, v, F) let s
be the set representing the class {xy |z € ¢ & Adp(x,y, F)}. Then
we have first by 1.5 and Od(c): Sq(s) and 4;s=c and therefore, by
1.8, Adp(s, F) and thus also by Prog(F, ) and [1]: 4,5 CC, hence,
by Df 1.4, s €A, F. Now let ¢ be s;{c, F*s), then directly results
Sq(t), Ai¢=c', Adp(¢, F)
and hence
(Ev)Adp(c, v, ).
The formula 1.9 gives
(3] Prog(F,C) — A, AF = {x ] Od(x)}.
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In virtue of [2] and [3] we only still have to prove, for getting
1.6, the formula
Prog(F, () — Adp(AF, F).

By 1.5 and 3] we have Sq(AF). From this and [2] we draw
Prog(F, C)-—-0d(c) = Sq(sg(AF, c)) &sg(AF,c) e A, F

hence by Df1.5 it only remains to prove, upon the premise
Prog(F, C),

(4] Od(c) = (AF)c= F'sg(AF, c).

This goes by means of 1.8. Its application is enabled bythe
formula
Od(c)-—>- (u)(u e ¢’ = sg(AF, Yu=(AF)u
which together with
(@) (Od(u) = Adp(u,(AF)u, F)
gives
Od(c)-—>- (u)(u e ¢’ = Adp(u, sg(AF, ¢'Yu, F).
1.8 then gives
Od(c) — Adp(sg(AF, ¢), F),
hence

Od(c) — sg(AF,c')c Fsg(sg(AF, ¢'), ¢)
= F'sg(AF,c) by 1.2,
so that [4] results. So our proof of 1.6a is completed. Moreover
it is arranged in such a way that the equivalence of 1.6a and
1.6b directly appears.
At the same time 1.5 together with 1.4a yield the formula

1.10 Prog(F,C)—>Sq(4)&A,4 ={z |0d(x)} &Adp(4, F)—> A = AF

expressing that under the condition Prog(F, () there is only one
sequential class with the domain {x | Od(x)} which is adapted to F.

IV, § 2. THE SCHEMA OF TRANSFINITE RECURSION

The general recursion theorem is a principle means for proving
in higher set theory the existence of functions with the domain
{x ] Od(x)}. In particular in ordinal and cardinal arithmetic it yields
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the method of introducing ordinal functions, i.e. functions with
ordinals as arguments and values, by means of transfinite recursion.
This method here comes out to a transfinite iteration and we can
formalize it by extending the iterator of III, § 4 to a transfinite
tlerator. We define this iterator by means of the adaptor:

Df21 I(G,a) = A{uv | Sq(u) & d,u* CA,G & (u=0—>v=0a) &
& (y)(Ayu=7y' — v=G"u'y)) & (Lim(4u) = v= ;(Alu, u'z))}.

To this operator I(@, a) the general recursion theorem can
directly be applied. Namely denoting the argument of A by
%(G, a), we have upon the premise

aeC &FHQ) & 4,0 =C & 4,6 CC & (2)(z CC —> Sz 0

the formula

Prog((@, a), C)
and therefore by 1.6b

Sq(I(@, a)) & 4,(I(G, @) = {x | 0d(x)} & A,(1(G, @) C C &
& ()(0d(z) = I(G, a)'vr=F(G, a)'sg(1(G, a), z)).

Thus we obtain

21 acC&FHA) &M, =C&AACC&()(zCC—>32eC) &
& H=1(G,a)-—-Sq(H) & 4,H = {x | Od(x)} & 4,HCC &
& HO0=q & (x)(0d(z) = H%' =G (H')) & (x)(Lim(x) —
— Hx= 2 z, H'z))

The comparison of this formula with III, 4.1 shows that the
operator I is indeed an extension of the operator J.

For the ordinal theory we have to apply the iterator I(G,a) to
functions G with the domain {x ] Od(z)}. In these applications
we need not verify in 2.1 the premise on C

)z CC =3z e0)

since it is clearly satisfied for C' being {x ] Od(x)}.
We now can define the ordinal arithmetic functions swn, product
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and exponentiation by means of I as we did it for the corresponding
numeral functions by means of the operator J in III, Df 4.4-Df 4.6,

In order not to deviate from the familiar notations we employ
here the same function signs for the ordinal functions as we used
for the corresponding numeral functions. This is here to be under-
stood in the way that in the frame of full ordinal theory (in
distinction from number theory) the three function signs are to
be used according to the now following definitions:

Df 2.2 a+b=Izy Jy=2'}, a)'b
Df 2.3 a-b =I({xy Jy=x+a}, 0)'b
Df 2.4 ab® =I({zy Jy==-a}, 0')%.

From these definitions by 2.1 we get
2.2 Od(a) & Od(b) — Od(a+b) & Od(a-b) & Od(a?),
as also the recursive laws?)
Od(a) > a+0=a
2.3 Od(a) & Od(d) — a+b' =(a+bY
Od(a) & Lim(b) — a+b=(b, a +x)

Od(a) > a-0=0
2.4 Od(a) & Od(b) = a-b'=a-b+a

Od(a) = a®=0’
2.5 0d(a) & Od(b) — a* =at-a
Od(a) & Lim(b) — ab= (b, a®).

From these formulas evidently follows that the ordinal functions
a+b,a-b,a®, have for numeral arguments the same values as the
corresponding numeral functions, so that the ordinal functions
can figure in the domain of natural numbers instead of the numeral
functions.

1) TFor the ordinal arithmetic functions we use the familar conventions
for sparing parentheses.
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By means of 2.3-2.5 we can derive by transfinite induction
the formulas expressing the computation laws of the ordinal
arithmetic functions:

Od(a) & Od(p) & Od(c) = a+(b+c)=(a+b)+e
— a-(b-c)=(a-b)-c
2.6 —> a-(b+c)y=a-b+ta-c
— attt=qb.qc
— abe=(a®).
The other computation laws of ordinary arithmetic are not
generally valable for ordinals.
From 2.1 we also can pass to the schema of ordinal recursion,
which applies in the following form:

Let t(c) and p(a,b) be terms (where the indicated arguments
need not all occur) and A(c) some formula, and the following
conditions be satisfied

W(a) = Od(t(a))

Od(n) & A(a) — Od(p(n, a)),

9.7 then a function symbol {(a, n), can be introduced with the
) formulas

(11 Aa) = j(a, 0)=1t(a)
(2] We) & Od(n) = j(a, n")=p({(a, n), a)

[3] Ale) &Lim((d) — f(a, b)=2(b, j(a, 1))
L
constituting its recursive definition.

()

Our schema in particular includes the case where 2(c) is Od(c),
which gives the recursive definition of ordinal functions with two
arguments, one of which has the role of a parameter. But also the
case of more parameters is included by taking for 2(a) the predicate
of a being a pair, or more generally a f-tuplet of ordinals.

The derivability of the schema 2.7 is with the help of the trans-
finite iterator. Namely defining

(4] fla, e)=1({zy | Od(r) & y)=1p(z, a)}), t(a))'c,
we get upon the condition (C') by 2.1 the formulas [1], [2], and [3].



108 TRANSFINITE RECURSION [cH. IV

A case often present in the applications of the transfinite iterator
or of the schema, 2.7 is that of introduction of Normalfunktionen, i.e.
of ordinal functions which are strictly monotonic and continuous.

An ordinal function F is called strictly monotonic if

Od(b)y &aecb — Flac ',
and it is called continuous, if
Lim(b) = F'b= (b, F'z).
Thus the formal definition of a Normalfunktion is

Df 2.5 Nft(F) o Sq(F) & 4, F={z]0d(2)} & 4,F C{x]0d(»)} &
& (2)(y)(Od(y) &z € y = F'x € F'y) & (2)(Lim(z) = F'z= > (z, F'z)).

In a wider sense the terminus ‘““Normalfunktion” is applied in set
theory also for segments of Normalfunktionen in the defined sense.

Normalfunktionen are obtained from 2.7 in the case that besides
the conditions (C) also the condition

(C) Od(n) & A(a) = = € p(n, a)

is fulfilled. Indeed then the function j(a,c) defined by [4] is
with respect to ¢ for any a satisfying A(z) a Normalfunktion.
Namecly the property of continuity holds already by [3] and that
of strict monotonity can be proved to hold from (C)) using trans-
finite induction.

By this way we immediately recognize that
S Od(a) — Nft({ry | Od(z) & a+zx=1y}),
2.3 ¢ Od(e) & 0 e a — Nft({zy | Od(z) & a-x=y}),
( Od(a) & 0’ € a — Nft({zy | Od(z) & a®=y}).

By specializing the application of 2.7 to the case where t(a) is a,
A is Od and p has only one argument, so that instead of (C), (C;)
we simply have Od(n) — Od(p(n)) & » € p(r), we obtain
2.9 Od(a) & (z) Od(x) — (Od(p(x)) & ¢ € p(z)) =

—> Nft(I({xy [ 0d(z) & y=p(1)}, ).
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Of the general properties of Normalfunktionen there are in
particular those following from strict monotonity. Indeed every
strict monotonic ordinal function is a one-to-one correspondence
and its converse function is again monotonic; further every value
of such a function is at least as high as the argument. The first
statement results from III, 1.11, the second by using the principle of
least ordinal number in connection with III, 2.12, 2.8 and 2.14.
Applying these statements in particular to Normalfunktionen, we
have

2.10 Nft(F) — Crs(F) & (z)(y)(Od(x) & Od(y)-—>- Flec F'y—>zcy)
2.11 Nft(F)-—- (2)(0d(z) = zxeFtrvr= Fi).

The ordinals n such that n= F'n are called criitcal points of F.
The existence of critical points for any Normalfunktion will be
provable only when we shall have the axiom of infinity available.

IV, § 3. GENERATED NUMERATION

A particular noticeable application of the general recursion
theorem is to numerations of sets. By a numeration of a set ¢ we
understand a one-to-one correspondence between an ordinal
and c¢. In a numeration of ¢ the elements of ¢ follow one another
like the elements of an ordinal in their order given by the &-
relation 1).

The formal definition is:

Df3.1 Num(s, ¢) < Sq(s) & Crs(s) & d,s=c.
Concerning this concept we draw from the general recursion
theorem a theorem of generated numeration. We generally call a

sequence s generated by a function @ if sz is the value assigned
by G to the converse domain of the xz-segment of s; formally

Df3.2 Gen(s, @) & Sq(s) & (x)(x € 4158 = str =G*A,8g(s, x)).

Now the assertion of the said theorem is that for any function

1) The order of the elements of a set which comes about by a numeration
will be explicitly discussed in the next chapter, § 2.
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G which assigns to every proper subset p of ¢ an element of ¢—p
there exists a numeration of ¢ generated by G:
3.1 Ft() & )z Cc—>2ze4,0 &Gzecz) -
— (Ex)(Num(z, ¢) & Gen(z, G).
For the proof 1) we first state that for any function ¢ satisfying
the premise of 3.1 the function defined by the expression

(11 {2y |Sq(r) & (4pxCc &y=G'4,x-v-Ayx=c & y=G'0)}
--let us denote it by ¥(@, ¢) —has the property Prog(F(G, ¢), ¢*).
Thus we can apply to it 1.6; substituting ¢* for C and $(G, ¢) for
F. So we obtain—still indicating briefly the class expression
A(G,¢) by ©
(2] Adp(9, F(@, ¢)) & 4,9 = {x | Od(x)} & 4,5 C c*
and by the definitions Df 1.5, Df 1.6, Df 1.8 and by [1]
[3] Od(n)— Aysg(H,n) Cc & D'n=G"A,sg(H,n)-V-Ay58(H,n)=c &
& Hn=G10).
Now this function $ cannot be a one-to-one correspondence; for
its converse domain is a subclass of ¢ and thus represented by a
set, and so by application of II, 3.8 to § it would follow that the
class {x ] Od(x)} is represented by a set what, as we know, does
not hold.
Therefore by the principle of the least ordinal number there

must exist a least ordinal ! such that for some ordinal m el we
have H4=9H'm. Hence denoting by [ the term

(4] 1,(0d(z) & (Bz)(z e v & H'z=Hx))
we have
(5] Crs(sg(D, 1) & Crs(sg(9, "))

Now at all events, by [2], 4,8g(9,[) Cc. But we cannot have
A,58(9H, 1) Ce; for then it would follow by [3]

HU=G"4,58(9, 1)
and by the premise of 3.1

~ G'A,5g(9, 1) € c~4,8g(H, 1),

1) In the following it is assumed ¢ % 0; in the other case 3.1 is obvious.
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which entails
Crs(sg(D, 1); <, HD),
ie. Crs(sg(9, ), whereas by [5] m(sg(@, [')). Thus A,5g(9H, [)=c,

and denoting sg(9, I) by 8 we have according to Df 3.1 and Df 3.2,
using also [3] and 1.2,

Num(3, ¢) & Gen(3, ().

Hence it results that upon the premise of the theorem of generated
numeration 3.1 its existential assertion is fulfilled by the term
sg(AF(G, ¢), 1), where F(G, ¢) is the class term [1] and [ the set
term [4].

There is no difficulty to prove also by means of the principle of
the least ordinal number the formula

(6] Num(s, ¢) & Gen(s, G) = s=sg(AF(G, ¢), ),

which expresses that for a given ¢ and ' the numeration of ¢
generated by G is uniquely determined.

In order to infer from the theorem 3.1 the existence of a
numeration of a set the only thing required is that we can prove
for any set ¢ the existence of a function ¢ with the property

(7] () zCec —> 2 4,G &Gz ecz).

This will become possible later on, when we shall have available
the axiom of choice.

The proof of 3.1 can also be given by the method of Zermelo’s
first demonstration of the wellorder theorem ([1904], without
applying the general recursion theorem. This goes as follows:

We consider the class N of numerations of subsets of ¢ generated
by @. Of course there exist such numerations. Let s and ¢ be
elements of N; then for every ordinal k which is in the domain
of both we have stk=t‘k. For, otherwise there would be among
the ordinals % such that s'k#i'%k a lowest one /. But then we
should have sg(s, 1) =sg(¢, [) and this would yield a contradiction
between the defining property Df 3.2 of a numeration generated by
G and our assumption about /.

Therefore the class | N is a function; and further, if {m, b) is an
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element of this function, then for every element r of N such that
m & Ay we have r'm=>b. From this in particular follows that | N
is a one-to-one correspondence, since every element of N is a one-
to-one correspondence. Moreover A, JN Cc*, hence Rp(4,|_N)
and therefore Rp(4,| JN) and Rp(|JN). Thus we have proved

3.2 Rp(U{z | (Ey)y Cc & Num(z, y) & Gen(z, G))}).

Let now d be the set representing { JIV, then A,d is a transitive
set of ordinals and thus by III, 1.14 itself an ordinal. So d is a
numeration of a subset of ¢. Besides it is generated by G. For,
if m € A,d then m is in the domain of some element r of N and for
every ordinal % not higher than m we have d'k=r'k.

The only thing still to be proved is that A,d=c. But in the
other case the set d; (Ad,G'4,d> would be an element of | N,
hence {Ad, G*'4,d> ¢ d, and we should have A,d € 4,d. —

Still by means of the adaptor we can set up, for any class of
ordinals C' such that there is for every ordinal a higher one in C,
a monotonic one-to-one mapping of {x ] Od(z)} onto C.

For this we take the function & given by the expression

1] {zy | Sq(x) & Apx* CC & y=p,iz €C & z ¢ 4,7)}.
& fulfils the condition Prog(, C'). Namely for every C-sequence s
there is by our assumption on C' an element in C, higher than

>4y and hence not in A,s. By this also follows that for every
C-sequence s we have

(2] B's ¢ Ags

(3] LeC&k¢ds —> FsCh.
Taking now the adaptor AF we have by 1.6b

[4] Ft(AF)

(5] M4 AT = {z [Od(x)}

{61 A,ALF C C

(7] Od(a) — (AF)a=F"(sg(AF, a)),

and besides by [2], [3] and [7]
(81  Od(a) —= (AF)a ¢ Aysg(AF, a)
[9] Od(a)-—-keC &k ¢ Ase(AF, a) = (AF)a CL.
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Our statement will be proved if we show first
Od(p) &a cb — (AF)a e (AF)D,
and secondly
C CA4,A%.
The first formula results from
0d(d) & a b — Asg(AF, a) C Asg(AF, b)
— (AB)'D ¢ 4558(AT, a) by [8]
= (AF)a C (AF)D, by [6] and [9],

and
Od(d) &aeb — (AF)a € Ad,sg(AF, b)

— (AF)D ¢ 4,38(AF, b) by [8]
— (AF)a# (AF)D.

The second formula can be strengthened to

[10] belC — (Ex)(Od(x) &2 Cb & (AF)x=>).

This we prove by transfinite induction with respect to b after adding
the redundant premise Od(d). By the induction premise we have
Od(b) & aeb &aeclC — ac Asg(AF, b)

and thus by contraposition
[11] 0d(b) & a eC & a ¢ Ad,5g(AF, b) — b Ca.
Now
b € Asg(AF, b) = (Ex)(x b & (AF)'x=D)
beC &b ¢ Asg(AF, b) = b=yp,(z ¢ C &z ¢ A,5g(AF, b))
- b=(AF)®, by [7] and [1]
so that [10] results.
On the whole we have obtained the theorem
3.3 O C{x |0d(x)} & (2)(0d(z) = (By)y €C &z ey)-—>-
c={z JOd(x)} 51 C &
& (0d(b) & acb — (AF)'a e (AF)'D),

with §§ being the class term [1].



CHAPTER V
POWER; ORDER; WELLORDER

V, § 1. COMPARISON OF POWERS

The statements about the equivalence of sets constitute the
starting point for the comparison of powers to which we are lead
by the following definitions. A set a is called of equal power as b
if a ~ b, of at most equal power as b if a is equivalent to a subset
of b, of lower power than b (or b of higher power than a) if a is of
at most equal power as b but not of equal power as b.

Formally we express the last two definitions by

Df1.1 a<b o (Ex)(zCb &a~2x)
Df1.2 a-<b<->a-_<_b&a~b.
Of course we have
1.1 a_-<_ a, a<a,
and

ajc&a~b—>b_—<_c, a_—<_c&c~b—>a_—§_b,
a<Lc&a~b—>b<eg, a<c&ec~b—=>a<b.

1.2

The three formulas 1.2 are inferred from the composibility of
one-to-one correspondences. Likewise by using this composibility
the proof of the equivalence theorem

1.3 a_—<_b&b;<_a—>a~b

is reduced to that of the Bernstein-Schroder theorem
1.4 aCb&bCc&a~c = b~c.

This theorem follows from a corresponding statement on classes.
Namely we can set up a class term ® (with the three variables
B. C, P) such that the formula

1.5 ACB&BCC&CTHA ->Cg¢B
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is provable. Indeed if 9(c) is the predicate expression
(Ez)(zeC N B &c e 4,)(P, 2))

and § the class term

{zy | Wz) &y=Pz-v-Ax) &y=2 &z cC}
then first from the expression of § we get
1] Ft(/) & 4,8 =C.
Further we have
acC—->Pacd, acCnN B—>Aa)
and thus
acC — PaecB, acC&UAa) - ach,
which together give
(2] 2,8 CB.
Moreover we have
W) &a ¢ B = (Ex)(U(x) & a=Pix),
which yields, together with the expression of §,
(3] B C A4,8.
Finally, by means of
WU(a) & b=Pla — A(D)

and

Crs(P)
we get
(4] Crs(®).

Thus we obtain, combining [1]-[4], the formula 1.5.
Moreover we get from 1.1, 1.2, 1.3

1.6 a<b&b<c —>a<c,a<b—>b<a.
As a simple consequence of 1.3 we still note
1.7 a<b—>bCa.

For a satisfactory theory of power still two things are lacking.



116 POWER; ORDER; WELLORDER [ca. Vv

First we have not the alternative
(A) a<bvb<a

which would express the comparability of sets with respect to
power.

Further it is to be observed that besides the given usual definition
of “at most equal power” there would be an other one likewise
natural by saying that a non empty set a is of at most equal power
as b if there exists a functional set mapping b onto a. In order
that this definition do not conflict with our given one (Df 1.1), we
ought to be able to derive the equivalence

(B) a<b e a=0v (Ex)(Ft(z) & Az =b & d;x=a).

Here the implication from left to right is easily seen to be derivable.
However for the inverse implication no proof is available.

This inverse implication, which it is obviously sufficient to
prove without the member a=0, so that it becomes

(C) (Bx)(Ft(r) & dxz=b & dyx=a) = a < b,
would almost directly result if we had at our disposal the formula
(D) Ft(c) & Ac=a — (Ex)(Ft(x) &z C¢ & dyx=a)

which expresses the assertion that for any functional set there
exists an inverse functional set. The passage from (D) to (C) goes
by the aid of the formulas

Aic=b&hCc— AR ChH

Ft(c) & h C¢ & Ft(h) — Crs(h).
The formula (D) however can be seen to be equivalent with the
following one, appearingly somewhat more general
(E) Ps(c) = (Ex)(x Cc & 4;5=4¢ & Ft(x))
which is one of the forms of stating the axiom of choice. We leave
the proof of this equivalence (in the sense of equal deducibility)
for the next chapter, where we shall discuss the axiom of choice.

There we shall also see that with the aid of the axiom of choice
the formula (A) becomes derivable.



§1] COMPARISON OF POWERS 117

Another feature present in Cantor’s theory of power which
does not yet result in our frame is that to every power exists a
higher one. This in Cantor’s theory follows from the theorem that
the set of the subsets of a set a is of higher power than a. For this
theorem —already in its statement —the assumption is essential
that there exists for every set a the sef of its subsets. This existential
assertion cannot be derived from our present frame—as was
shown in [Bernays 1948]. In other words we here only know
that there exists for a set a the class of its subsets {x |z Ca},
but not yet that this class is represented by a set. The assertion
of this representation is the contents of the potency axiom which
we shall introduce in the next chapter.

At all events in the present frame Cantor’s method of proof
of his just mentioned theorem can be used to prove that there
exists for a set a no function mapping a* onto {x |x Ca}, so that
a fortiori there exists no one-to-one correspondence between
{x = Ca} and a* or a subset of a*. The proof will be given in a
positive form by deriving for any function F mapping a* onto
a class C of subsets of a the existence of a subset of @ not belonging
to O. For the proof we do not even use that C C {z | = C a}; thus,
what we are to prove is

1.8 Ft(F) & A F =a* & A,F = C — (Ez)(zCa &z ¢0).

Let us for this denote the set term a N {x ]z ¢ F'z} by t.
Then we have

(1] tCa
cet eoceca&cg e
and thus also

cea&t=Fc > (cectecd¢t)
hence
cea—>t % Fle.
Therefore we have

2] F(F) & A F =a* & A, F =C — t ¢C.
From [1] and [2] results 1.8.
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On the other hand there exists a trivial mapping of a* onto a
subclass of {z |z Ca}, namely

1.9 a* ol | (B2)(z e a & z=]z]}.

So we get here the relations stated by Cantor’s mentioned
theorem roughly expressed by saying that a set has more
subsets than it has elements, —only that the comparison by our
derivation is not between a and a set of its subsets but rather
between a and the class of its subsets.

Still it is to be observed that a corresponding statement about
a class A instead of a set a, namely that there cannot be a one-to-
one correspondence between A and the class of its subsets, does
not generally hold. Indeed for the class ¥V we have

1.10 Viggen iz |z*C 7V}

since every set is an element and a subset of V. Here it appears
that Cantor’s paradox connected with the set of all sets is removed
in our system by the distinction of sets and classes. Of course it
results that the class V is not represented by a set.

V, § 2. ORDER AND PARTIAL ORDER

An order of a set or a class comes about by an ordering relation
with certain formal properties. Extensionally an order is charac-
terized by a class C' whose elements are the pairs {a, b) of elements
of the set or class in question such that either a equal b or «
precedes b in the order. Of course the class C is not an arbitrary
class of pairs but must have the formal properties corresponding
to those of an ordering relation. Let us state these for the case
of a class 4 to be ordered by defining the predicator Or(C, 4)
(«C is an order of the class A»):

Df21 Or(C,4) o Ps(C) & (x)y) z,y) eC & ved &
&yed &@=yviy 2 ¢0) & (2)y)e)(Key) eC &
&<y,z> el — (x,2) el).

The definition of Or(C, a) is quite corresponding.
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We immediately have
2.1 Or(C,4) > CCAx A&AC=A48&40=4

and

Or(C, a) « Or(C, a*),
therefore also, by II 3.16
2.2 Or(C,a) = CC(a x a)*.

By the last formula it follows that an ordering class of a set a
is always represented by a set, and so, defining

Df 2.2 Or(c, a) « Or(c*, a),

we have

2.3 Or(C, a) = (Ez)(x* = C & Or(z, a)) 1).
We also state

2.4 Or(C,A) & BCA — Or(Cn (B x B), B),

thus every order C of a class 4 determines an order of any subclass
B of 4; we call it the order C restricted to B.
Let us further define

Df 2.3 Or(C) « Or(C, 4,C)

Df 2.4 Or(c) e Or(c*)
«C (or ¢) is an ordering class (or set)» or briefly «( (or¢) is an
order».

Then we have by Df 2.1 and Df 2.2

2.5 Or(C, 4) = Or(C), Or(c) = (Ex)Or(c, x).

By means of an ordering class the predicate “‘r before s’’ relative
to elements of the class or set ordered by C is expressed by
{r,s) e C &r+s. We also speak of “the order of A (or of a) by
the class C”” when C is an ordering class of 4 (or of a).

It might be asked if it would not be simpler and more natural
to define Or(C, a) in such a way that the elements of an order C

1) At speaking in the following of orders of a set ¢ we always mean
ordering sets of a. This gives in virtue of 2.2 no restriction on the order.
In the symbolic formulations no ambiguity can arise.
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of a are the pairs {r, s) of elements of @ with r preceding s, thus
excluding the pairs {r, r>. But then we would have the disadvan-
tage that an ordering class of an unit set would have to be empty
and thus different unit sets, regarded as ordered sets, could not
be distinguished.

There is still an other way of characterizing an order of a set a
by aclass 1). Namely by an order of a are distinguished those subsets
of a which constitute an initial sectton (Anfangsstiick), i.e. which
satisfy the condition that if ¢ is an element of it and b an element
of a which precedes ¢ by the order, then b is an element of it.
In a corresponding way the concept of a terminal section (Endstiick)
can be defined. Now it is possible to characterize an order of
a set by the class of the initial sections (relative to the order),
or that of the terminal sections, or else by a suitable subclass of
one of these classes, —provided that we can (i) express the defining
property of such a class without referring to the concept of order
and (ii) define the relation “b before ¢’ in question by means of
that class.

An elegant way of doing this, due to W. Sierpinski [1921]
consists in taking the class of those initial sections relative to an
order of a set @ which have a last element. The defining property
of such a class D is expressible as follows

Df2.5 OrS(D,a) o @)y rxeD&yeD > xCyvyla) &
& @)reD—>xCla & (E)(u)(u=2zeucx &
&WlyeD&uey—2Lly)) &
& zeca »> (Ex)(xeD &zcx & (y)yeD &
&zey — 2 Cy))).

The relation “b before ¢” is expressed by the formula
(BEx)(xeD &bex &c é¢x).
An immediate consequence of Df 2.5 is

26 OrS(D,a) &K ={zx|lzecD &zcx & (y)lyecD &
_________ &zey - xCy)}. = Crs(K) &a* % D

1) This was first observed by Hessenberg [1906] and further carried
out by Kuratowski [1921].
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and therefore also by 1I, 3.8
2.7 OrS(D, a) = Rp(D).

Thus also by the order concept OrS every order of a set is
represented by a set. In this respect Or and OrS behave alike.
However there is the difference that the definition of OrS(D, a)
cannot be extended like that of Or(C, a) to the case of a class
instead of the set a to be ordered.

The interrelation between the two order concepts, applied to
the ordering of a set a is expressed by the provable formulas

28 Or(C,a) & D={x|(Ey)yca & (F)zex e {(z,y)cl))} -
— OrS(D, a) & ((b,c>eC e cca & (z)(ze D &cez—>ber)),

29 OrS(D,a) & C=fzylyca& ()zeD &yecz—>xec2)} -
—=0r(C,a) & (ceD e (Ey)ly ca & (z)(zec ez, yc())).

Going on now to the comparison of orders (of classes or sets) we
first state the theorem

2.10 Or(C, 4) & AT B — Or(K|C|K, B).
«For any order C of a class 4 and any one-to-one correspon-

dence K of A with a class B the pairclass K | C'| K is an order
of B».

The proof goes by using that we have upon our premise
K |C| K = {oy | (Bu)(Ev)((u, v) €C & u=K's & y=K*)}

and also Crs(K). Let us call the order of B by K]C]K the order
tnduced from the order C of 4 by the one-to-one mapping K; it
is that order of B by which K'a is before K' if and only if a is
before b by the order C' of 4.

For any one-to-one correspondence I between 4 and B the
connection between an order C' of 4 and the order D of B which
is induced by K from C has the character of an equivalence relation.
Indeed defining

Df2.6 C,AFD,B & Or((,4A)& AT B&D=K|C|K,
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we have
0’ 4 I{wulz=1/}|0’ 4
2.11 C,AFAD B —» D,BF?C,A
C,AFAD, B & D,BF1Q,P — C,AFRQ,P.

By means of Df 2.6 we now define similarity between orders
of sets using that any one-to-one correspondence between sets is
represented by a set. The definition is

Df 2.7 ¢ ~d e (Ex)c*, A4, c¢* F1d* A,d*%)
« and d are equal orders».

From this we first get
2,12 ¢~ d — Or(c) & Or(d)
2.13 c~d — A~ Ad.

Further the relation ¢ ~ d, as follows from 2.11, has the formal
properties of a kind of equality, so that we have

214 Or(c) &Or(d) > c~deofzr]c~r}={x]|d~z}

The class {x | ¢ ~ x} which for any order ¢ is the class of the orders
equal to ¢ can be taken as the order type of c. But we are not able
to represent order types thus defined by sets.
A simple instance of an ordering class is

{zy | Od(y) & (xeyva=y)}
by which the natural order of the class of ordinals is characterized,
which indeed is the order by “lower” and ‘“higher’” or what comes
out to the same, the order by the element-relation. This formally
results by applying the formula III, 1.5 and III, 1.11. Generally
we understand by the natural order of any class of ordinals A the
intersection of the above class with 4 X 4, and by the natural
order of a set of ordinals @ the natural order of a*, which indeed
is represented by an ordering set. In order to have a brief notation
we dcfine

Df 2.8 no(a)y=a x a N {zy [0d(y) & (xr ey v =y)}.

For any set a of ordinals, no(a) represents the natural order of a
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and we have
2.15 Or(no(a)).

We mention still that by the Sierpinski definition of order the
natural order of a set a of ordinals is the class

{z](E2)(zeca & x=anz)}

A natural generalization of the concept of order which comes
to be used in many domains of mathematics is that of partial
order. The definition which results from Df 2.1 by weakening the
conditions is

Df2.9 Po(C,4) & CCAx A & (x)(recd—=>x,x)>el) &
& @)Kz, yp eC &y, x) el —»> z=y) &
& (@)H) )z, y> eC &y, z) eC — (x,2) ().

«C is a partial order of 4.»

Quite corresponding is the definition of Po(C, a); and we also
define again

Df 2.10 Po(c, a) «» Po(c*, a).

All the properties of Or stated by the formulas 2.1-2.3 hold like-
wise for Po. In particular every partial order of a set is represented
by a set. Also the definitions Df 2.3, Df 2.4 apply likewise to
the concept Po. These definitions of Po(C), Po(c) are used later on.
Evidently every order is also a partial order, but not inversely.
Like every order of a class 4 also every partial order can be
restricted to any subclass of 4. In case that a partial order C
restricted to a certain subclass of its domain is a full order, we
call this order a chain of C. The defining condition of D being a
chain of C is

Df 2.11 Ch(D, C) < Po(C) & D CC & Or(D).

We apply the concept of chain likewise to sets which are partial
orders, defining

Df 2.12 Ch(d, ¢) « Ch(d*, ¢*).
When S is a subclass of the domain 4,C of a partial order C such
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that Or(C' N (S x 8)) and thus Ch(C N (S x 8), C), we shall say that
§ determines a chain in C. The necessary and sufficient condition
for this is that for any two elements d, ¢ of S we have

(d,e>eC v {e,d)eC.

An essential specialization of the concept of partial order still
much more general than that of full order is that of a lattice. As well
known, the restricting condition of a lattice over a partial order
is that of the existence for any two elements of a least upper bound
and a greatest lower bound. Formally the definition is

Df 2.13 La(C) & Po(C) & (x)(y)(xed,C & yed,C — (E2)({x,2>eC &
&y, z>elC & Wz, u)el &y, uyelC —»
— (z,u>el)) & (B2)({z,2>eC &{zy)eC &
& (w)(u, x> eC &<u, y> eC — (u,z) el))),

and again

Df 2.14 La(c) < La(c*).

V, §3. WELLORDER

In considering wellorder we start from the intuitive concept
of wellorder (to which we referred in Chapt III, §1). According
to it an order (' of a class 4 is a wellorder if every non empty
subclass of A has a foremost element with respect to C. (This
among the various possible characterizations of wellorder is per-
haps not the most pregnant from the structural point of view but
that one most easy to formulate and very handy for the applications.)

For a direct formalization of this condition of wellorder we
should have to use bound class variables, what we are avoiding
in our formal system.

However we first observe that in the case where the ordered
class is represented by a set a, the condition of wellorder is not
weakened by requiring only that every non empty subset of a
has a foremost element, what of course is expressible in our formal
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frame. Indeed the condition on the subsets amounts here to the
same as that one on the subclasses, since every subclass of a is
represented by a subset of a.

But even for the case that a representation of the ordered
class 4 is not available, the condition that every non empty subset
of A has a foremost element can be proved to imply the same for
every non empty subclass, but this only upon a strengthening of
our formal system, namely by adding a strong form of the axiom
of choice and the axiom of infinity. In fact with the aid of these
axioms we shall be able to prove that if 4 is a class ordered by C
and there is a subclass of 4 which is not empty and, by the order
C, has no foremost element, then there also exist a subset of 4
with the same property. (Cf. chapt. VIII, end of §1.)

Now coming back to the case of wellorder of a set, we formulate

two definitions of wellorder, corresponding to the two concepts
Or and OrS:

Df3.1 Wor(C,a) & Or(C,a) & (@) Ca &x#0 — (Bu)(uecx &
& (v)(v ex = (u, v) €()))

Df3.2 WorS(C,a) & OrS(C,a) & (x)(x* CC &r#0 —
= Nz ex)ex).

These two concepts are related to one another in quite the
corresponding way as Or and OrS are. That is to say: if in the
formulas 2.8, 2.9 we set Wor in the places of Or and WorS in the
places of OrS, the resulting formulas are again provable.

We shall however not have to make much use of either of
them. In fact we are to see now that the consideration of well-
orders of sets can fully be reduced to that of numerations of sets,
as defined in IV, § 3. This will be done by setting up explicitly a
function by which the class of numerations of a set a is mapped
in a one-to-one way onto the class of wellorders of a.

For this purpose we take the definition of wellorder by Wor.
First we note that by 2.3 we have

3.1 Wor(C, a) = Rp(C)
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and we define parallel to Df 2.2, Df 2.3

Df3.3 Wor(c, a) & Wor(c*, a) ).

Df 3.4 Wor(c) «» Wor(c, 4,c¢)

Further using 2.15 and the formula

(z)(zrea—=>0d(x)) &a#0 — (Ez)zca & (x)(xca—>z=xVzED)

which directly follows from the principle of the least ordinal
number IIT, 1.12, we get the formula

3.2 (x)(x € a = Od(x)) = Wor(no(a), a)

which expresses that the natural order of a set of ordinals is a

wellorder. From this in particular we infer

3.3 0Od(n) = Wor(no(n), n)
«The natural order of an ordinal is a wellorder».

On the other hand, by means of Df3.1 together with 2.10
we get

3.4a Wor(C,a) & a* 7 b* — Wor(ff|C|K, b).
which also entails
3.4b Wor(a) & a ~ b — Wor(b).

Applying this formula and the definition of numeration 1V, Df 3.1
we obtain

3.5 Num(s, a) & A;s=n — Wor(5|no(n)|s, a).

Thus the order of a set @ which is induced by a numeration of
a with the domain n from the natural order of » is a wellorder
of a, or in other words the function

(1] {ry | Num(z, a) & y=1x|no(dyx) |z}

—let us denote it by fi(a)—is a mapping of the class of numera-
tions of a into the class of wellorders of a.

Next we are to show that this mapping is onto the class of
wellorders of a, i.e. that every wellorder of a set @ is induced by
a numeration of a from the natural order of its domain n.

1) Our convention of the footnote in § 2 concerning order will be applied
also to wellordcers.
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Let d be a wellorder of a so that we have Wor(d, a). Then by
Df 3.1 we have

tCa —> (Bu)(uw ea-t & (v)(v eat— (u, v) ed)).
If this is briefly indicated by

tCa— (Ew)A(u, a,t)
we also have
Wc, a,t) & Nle, a,t) —> c=e.

Therefore the class {2y |z Ca & y=¢,A(u, a, 2)} is a function
which satisfies the conditions of the theorem of generated numera-
tion IV, 3.1. So by this theorem there exists a numeration of a
generated by that function, ie. a one-to-one correspondence s
between an ordinal n and the set ¢ such that

ken & Adysg(s, k)=t = stk=1U(u, a, t)
and therefore also
(2] Aysg(s, kY=t — (v)(v ea—t — (', v) €d).

Now by this one-to-one correspondence s the wellorder d of a is
induced from the natural order of = or formally expressed
d=5|no(n) | s.

For proving this, it is sufficient, in virtue of Crs(s), dys=a,
Wor(d, a), to show that

kel&len — (', s ed.
But upon the premise k €l & ! en we have
Aysg(s, k)=t — stleat

and therefore by [2] {s'k, s> ed. Thus we have
3.6 Wor(d, a) — (Ez)(Num(z, a) & d=2z | no(42) | z),
i.e. every wellorder of a set a is a value of the function §(a).

Still it remains to show that the function $(a) is a one-to-one
correspondence. This comes out to prove
3.7 Num(s,a) & Num(¢, a) & dis=n & Ajt=m-—-

-—>-3 | no(n) | s=¢ | no(m) |t —>s=t.
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The proof goes as follows. Our premises entail that

t|5|no(n)|s | £=no(m).
~—
Thus since ¢ | § =s | ¢, no(m) is induced from no(n) by the one-to-
one correspondence s | . If this one-to-one correspondence is an
identical mapping, then it follows that s=¢. So it is sufficient to
show that the natural order of an ordinal n cannot pass into the
natural order of an ordinal m by a nonidentical one-to-one corre-
spondence L. But in the other case there would be by the principle
of least ordinal number, among the elements of » a lowest one k
such that L'k is higher then k and also that L'k is higher than k;

therefore if Ltk—=1I we should have
L=k, L%=I1

keL%, keLk%
therefore
Lilel%, kel

and so the order of m induced by L from no(n) would not be the
natural order.

Thus we find that indeed §(a) is a one-to-one mapping of the
class of numerations of @ onto the class of wellorders of a ; formally

3.8 {x | Num(z, a)} ol {z | Wor(z, a)}
with $(a) being the class term [1].

Our result 3.8 includes the statement that the order type of
any wellorder d of a set a is the same as that one of the natural
order of the ordinal which is the domain of the numeration, to
which d is assigned by $(a), or formally

~—

3.9 Wor(d, a) = d ~~ no(4,(K(a)<d)).

By this way the theory of wellorders and wellorder types of
sets is fully reduced to the theory of ordinals. In particular it
results that the question if every set can be wellordered is equi-
valent to that if every set can be numerated.



§ 3] WELLORDER 129

We add here still a remark concerning the numerations of sub-
sets of ordinals. Let ¢ be a subset of an ordinal n; then to the
natural order of {, which indeed is a wellorder, corresponds a
numeration s of ¢ such that

keds&leds&kel - sk estl.

Now the ordinal A;s is not higher than n. For otherwise there
would be in 4;s a least ordinal % such that s'k e k. But then we
should have s'(s'k) € s'k what gives a contradiction. Thus we have
that for every subset of an ordinal »n there is a one-to-one cor-
respondence with an ordinal not higher than n, which besides
preserves the natural order, or formally

3.10 Od(n) &t Cn — (Ex)(Num(z, t) &4, Cn &
& no(t)=Z | no(4yx) | z).

3.10 includes the statement that for every set of ordinals ¢
there is a numeration by the natural order. Indeed we have
t C(>t) and (3t)" is an ordinal.

This statement together with IV, 3.3 yields the following alter-
native on any class C of ordinals: Either C is represented by a
set ¢ and then there is a numeration of ¢ by the natural order,
or else for every ordinal k there is a higher ordinal in ' and then
there is a one-to-one correspondence between {z ] Od(z)} and C
which preserves the natural order.



CHAPTER VI
THE COMPLETING AXIOMS

VI, § 1. THE POTENCY AXIOM

In our preceding discussions of general set theory several times
appeared for certain reasonings the need of a complementation
of our axiomatical basis. The axioms here in question are the
potency axiom, the axiom of choice and the axiom of infinity.
Now going on to the complementation of our axiomatic basis
we have to consider the contributions afforded by these axioms.
We begin with stating and discussing the axioms themselves, each
of which can be formulated in various different forms.

Let us consider the potency axiom. We take it in a form similar
to Zermelo’s Potenzmengenaxiom, but introducing the unary
function symbol n(a), with the axiom

A4 cenfa)e>cCa

«The elements of n(a) are the subsets of a.»

By this axiom it is postulated that the class {x ]z Ca} is
represented by a set. In fact we have by it

i.1 a(a)* = {x |« Ca}.

That A 4 is called potency axiom is motived by its enabling
us to introduce a? as a set representing (a*)2. In fact by A 4 we
can prove that the class (a*)2, i.e. by II, Df 4.9 the class of those
functional sets with the domain b whose converse domain is a
subset of a*, is represented by a set. For, each functional set of
the said kind is a subset of b x a, hence (a*)2 is a subclass of
(b x a) and so it is represented by =(b x a)N (a*)2. We therefore
can define

Df1.1 al = (z* = (a*)?)
and we have

1.2 (a2)* = (a*)2.
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There would also be the possibility of taking 1.2 as axiom instead
of A 4. In fact from 1.2 we can infer that for any set a the class
{z ]x Ca} is represented. Indeed this follows by the theorem of
replacement II, 3.8, since there is an obvious one-to-one cor-
respondence between that class and the class represented by 0”2,
i.e. the class of Belegungen of ¢ with values 0, 0‘. This one-to-one
correspondence is

{oy|zCa &y* ={uww]uce &v=0-viuca=z &v=0}}
At the same time it results that
i.3 n(a) ~ 0”2,

From the existence of the Potenzmenge =(a) for an arbitrary set
there further follows the existence of the Cantor Produkimenge
which is the generalization of the crossproduct ¢ x d to an arbitrary
number of factors. Indeed let the factors be given by the values
of a term t(a) for a ranging over the elements of a set m. Then
their product as a class is given by

{v 1 Ft(y) & Ay=m & (x)(x € m —> 'z € 4(x))}-
Now the elements of this class are subsets of m x Y(m, t(r)), and
t
so the class itself is a subclass of n(m x Y (m, t(r))) and therefore
T

by 1I, 2.1 represented by a set; hence we can define the Produkt-
menge by

Df12  TIm tr) = uG*={y|Fiy) &Ay=m &
* & (1) (x em — 4z € 4(z))}

and we have
1.4 a eJ](m, t(x)) « Ft(a) & dia=m & (r)(r € m —> a't € t(x)).
P
Thus the symbol T](m, t(z)) figures in full analogy to the symbol
X

>(m, t(x)). This analogy also shows that we could formalize the
£

concept of the Produktmenge with a class variable I/, thus writing
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TI(m, F) in analogy to II, Df 1.4; instead of the schema 1.4 we
then would have the formula

ae[Jim, F) & Ft(a) & dja=m & (x)(x € m —> o'z € F'z)

which indeed entails every application of 1.4 in virtue of IT, 1.15.
The concept of the Produktmenge can be regarded as a generali-
zation of that of a®. In fact we have

1.5 al =T, t(r=2 & z=a)).

From 1.5 together with the above statement on the derivability
of A 4 from 1.2 it follows that A 4 can also be derived from 1.4,
so that the assumption that the Produktmenge is represented
could be taken instead of the potency axiom.

A main effect of introducing the potency axiom is that for the
mathematical applications of our axiomatic system the handling
with classes can almost everywhere be avoided, since all occurring
classes are represented by sets.

Let us at once note some immediate applications of A 4 where
this axiom enables us to complete some former statements.

The formulas II, 4.13-II, 4.16 in combination with 1.2 and
11, 3.10 yield

1.6 a~b&c~d—>at~be
1.7 al x be ~ (a x b)2

1.8 bNc=0 — a’ x al ~ aqb¥e
1.9 (a2)e ~ abxe,

From the formulas V, 1.9 together with the obvious formula

{z] (Ez)zca &x=[]} C n(a)*
we get
(Eu)(u ~a &u C a(a))

ie. by DfV, 1.1
(1] ajn(a).
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On the other hand V, 1.8 directly entails

(Ex)((y)lyCa —> ycx) &a ~2)

and thus also

2] a ~ zw(a).
(1] and [2] together give
1.10 a < n(a).

In this formula is included the statement that to every set there
exists a set of higher power.

VI, § 2. THE AXIOM OF CHOICE

For the introduction of the axiom of choice we first discuss
various forms of stating the choice principle.

We start from that form of its statement which is related to
the Produktmenge. Here it expresses the intuitively convincing
assertion that a Produktmenge [](m, t(r)) is empty only if at least

E

one factor {(r) is zero. The formal statement is by the schema
2.1 ()(x em = t(r) #0) — [1(m, t(x))#0.
:

In virtue of the defining property of the Produktmenge Df 1.2
this comes out to

2.2 (p)rem—>t(r)*0) —
— (Ey)(Ft(y) & A,p=m & (r)(x e m — 1t € t(1)))-

Instead of this schema we can as well take the formula

2.3 Ft(f) & (x)(x e m — flx£0) - (Ey)(Fily) & dyy=m &
& (x)(x e m — y'x € fz)).
«For every function f/ whose values for the elements of m are

non empty sets there exists a function assigning to every
element x of m an element of fla».
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Indeed on one hand {(x) can be taken to be f'x; on the other hand
2.2 results from 2.3 since for every term t the class

{ry Jrem & y=1(x)}

is by II, 3.10 represented by a functional set f with the domain m.
An equivalent formulation of 2.3 is obtained by substituting
g for f and 4,9 for m:

24 Ft(g) & (x)=)N{x, 2> eg—>2%0) - —>.
= (By)(Ft(y) & Ay =419 & (x)(u)({z, u) € g —> y'v € u)).

For going back from 2.4 to 2.3 we have to substitute for g the term
fN(m x V) ie. to take for g the function f restricted to the
domain m.

Applying 2.2 to the case that t(r) is simply ¢ we get

2.5 () zem—>zx£0) - (Ey)(Ftly) & dyy=m &
& (x)(x e m — y'z € x)).

«If m is a set of non empty sets, there exists a function
assigning to each element of m one of its elements».

From 2.5 Russell’'s and Zermelo’s multiplicative axiom can
be derived. This goes by specializing 2.5 to the case where the
elements of m are mutually exclusive sets. Here then the converse
domain of the function y stated to exist by 2.5, is a set which has
just one element in common with every element of m. Formalizing
this argument by the predicate calculus together with the equality
axioms and using the theorem of replacement —there is no trick
in the derivation—we come to prove the formula

26 (®)Wrem&yem—>x£0&@=yvernNy=0).-—>-
= (Ev)(x)(x em = (Bu)(u ex N v & (2)(z ex N v —> z=u))).

«If m is a set of mutually exclusive non empty sets then there
exists a set v which has with every element of m just one
element in common, i.e. there exists for such a set m an
Auswahlmenge».
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An other form of a choice principle often used is the following

2.7 Ps(a) = (Ey)(y Ca & Ay =40 & Fi(y)).

«For every set of pairs a there exists a subset which is a
function with the same domain as a».

The formula 2.7 can be derived from 2.6 as follows. Let ¢ be the
class term

1] {uv Ju € dia &v=a N {z ] (By)({u, y>=2)}},
then we have

Ps(a) —» Ft(C) & 4,6 = A,0*
and also by II, 3.8

Ps(a) = Rp(4,€), ie.
2] Ps(a) = (Bw)(w* = A,E).

Further we have

Ps(a) &m* =4, —» () y)rem &yem — 0 &
& (x=yvzrny=0))
and therefore by 2.6

Ps(a) & m* = 4, — (Ev)(x)(x e m = (Bu)(z)(z=u © z € x N v))
what together with [2] yields
Ps(a) = (Ev)(x)(x € 4,8 = (Bu)(z)(z=u <>z v N 2x)).
From this using the expression [1] of € we get

[3] Ps(a) — (Ev)((u)u € 4ia — (Ex)(z)(z=2 ©
< zevn (an {w](By){w, y)=w)})).
«For every set of pairs a there exists a set » such that for
every element u of the domain of a, v has just one element
in common with the class of those pairs out of a whose first
element is w».
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Let us indicate the formula [3] by Ps(a) — (Ev)(B(a, v). Now
there is no difficulty in proving

Ps(a) &B(a, ) = fNnaCa &A4,(fNa)=a,0 & Ft(f N a)

and this together with [3] yields 2.7.

The formula 2.7 can in particular be applied to the case where
a is the converse f of a function f so that A,a=4,f. Hence we
come to the formula

2.8 Fb(f) — (By)y C [ & A,y=2A,f & Ft(y)).

The content of this formula can briefly be resumed by the state-
ment that for every functional set there exists an inverse functional
sct. By the way, a functional set which is inverse to a functional
set must be a one-to-one correspondence, what follows from
Ft(f) &g Cf — Ft(g); so in 2.8 the conjunction member Ft(y)
could be replaced by Crs(y).

The statement 2.8, though obtained as a consequence of special-
izations of 2.2, is nevertheless no more special than 2.2. In fact
we are to derive the schema 2.2 from 2.8 in the following way.

Let € be the class

{r | (Bu)(Ev)(uem & v et(u) & g={u, v, ud)}

then we obviously have Ft(€) and (g)(xr € m — t(x) #0) = 4,6 =m*.
Morcover

€ C ((m x 3(m, t(r)) X m)*

T
so that, by II, 2.1, Rp(€). Therefore we get

(x)(x) em —>t(r) #0) — (E3)(Ft(3) & 3* = € & dyg=m).
Now 2.8 gives
(11 @@Eem—>tr)=0) - (Ey)(F(y) &y* CE & 4y = m).
On the other hand from the expression of € we draw

Fi(g) & g* CE = 1)z eg— (Bw)(Bo)(x=u, 1, 0)) &uem &
& v e t(u) & v=1(u, 3y =g'u),
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and this further gives

(2] Ft(g) &g* CC &Ayg=m-—>-
-=>-Ft(4,9) & Ay(dpg)=m & (1)1t € m = (dyg)'ut € t(1r)).

From [1] and [2] together we obtain

(X)(z em—t(r) #0) — (EY)(Ft(Y) & Ahy=m &

& (r)(x e m — Y’z € (1)),
which is the same as 2.2.

So all the different considered statements of the choice principle
are equivalent, even without using A 4.

In particular it results that 2.7 and 2.8 can derived from one
another. This is just the equivalence asserted in V, § 1 between
the formulas (E) and (D). From (D), as we found, it can be proved
that the two different possible definitions of “‘at most equal power”
come out to the same (cf. V, § 1, B). Also the formula (C)in V, § 1,
which is a consequence of (D) is now available; we write it in the
equivalent form

2.9 Fb(f) —> Ayf < Ayf.

For the statement of the axiom of choice we now have —so to
speak —an embarras de richesse. But this is no real difficulty,
since from any one of the statements taken as axiom we easily
pass to the other forms, which we thus have available as theorems.
It seems suitable to adopt the formula 2.7 as our axiom of choice:

As Ps(a) = (Ey)(y Ca & Ay=24,a & Ft(y)) 1),

which is especially handy for the derivations. Note in this respect
the direct passage from A 5 to 2.5 by taking, upon the premise
(x)(x em —> 2+ 0), the set of pairs @ to be the set representing the
class {oy Jz em &y ex}.

1) This form of the axiom of choice has been used by some authors, for
instance by R. Baer [1929].
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VI, § 3. THE NUMERATION THEOREM. FIRST CONCEPTS OF
CARDINAL ARITHMETIC

As well known, a 1nain application of the axiom of choice is
for the wellorder theorem, from which the general comparability
of sets with respect to power can be inferred and which therefore
constitutes the basis for cardinal arithmetic. In our system by
the stated connection between wellorder and numeration the
proof of the wellorder theorem is reduced to that of the numeration
theorem.

This theorem results as an immediate application of the axiom
of choice in the form 2.2, In fact we have already the theorem of
generated numeration IV,3.1 and so, as observed on p. 111, the only
thing still needed is to prove that for any set ¢ there exists a
function G which assigns to every proper subset p of ¢ an element
of ¢—p, (ef. condition [7] on p. 111). This however follows from 2.2
by taking for m: m(c)~[c¢] and for t(a): c—a. Indeed in this way
we get

(By)(Ft(y) & Ay =a(c)[c] & (@)(x € n(c)~[c] = y'z € cx)).

It is to be observed that we have to use here essentially the
axiom A 4. Thus the numeration theorem, i.e. the statement that
for every set there exists a numeration follows from the theorem
of generated numeration in connection with A5 and A 4. The
formal statement can be given, on account of the definition of
numeration IV, Df 3.1 and the concepts involved in it, by the
formula

3.1 (2)(Ez)(0d(z) & z ~ x).

This formula together with III, 1.9 and Df V, 1.1 as also V, 1.2
gives the formula (cf. V, §1, A)

3.2 @) <y vy <2)

which expresses the general comparability of sets with respect to
power.
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A further consequence we can draw from 3.1 is that every set
can be wellordered

3.3 (x)(Ez)(Wor(z, x)).

This in fact results directly from the theorem V, 3.5. On the other
hand we have that from every wellorder of a set ¢ we obtain a
numeration of it.

A particular consequence of 3.3 is

34 (x)(Ez)(Or(z, x)).

Of this theorem, though it is weaker than the wellorder theorem,
no proof without the axiom of choice is known.

Note also that the axiom of choice can be almost directly
inferred from the numeration theorem. For this we apply 3.1 to
the converse domain of the set of pairs a occurring in A 5. Let s
be a numeration of 4,a, then a subset of ¢ which is a function with
the domain A,a is obtained by dropping from @ all those pairs
(b, ¢y to which there is in a a pair <{b, d)> such that d is assigned
by s to a lower ordinal than ¢ is assigned to.

In a near connection with the application made of 3.1 to the
statements 3.2 and 3.3 is that one to the concept of a cardinal
number. Following the method of Frege we should have to define
the cardinal number of a set a as the class of the sets b such that
a ~b; but by this way cardinal numbers in our system would
not be sets. Now this difficulty by 3.1 can easily be overcome.
Namely according to this theorem for every set a the class
{x]x ~a} contains at least one ordinal. Further among the ordinals
belonging to it there is, by the principle of least ordinal number,
a lowest one u,(r ~ a), and by this ordinal the class {x |z ~a}
is uniquely determined. So we can take this ordinal as the cardinal
number of a, which we denote by N(a). The formal definition is

Df3.1 N(a) = plz ~a).
From this we immediately get by III, Df 1.5, I11I, Df 1.6 and 3.1

3.5 Od(R(a)), a ~ X(a)
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3.6 a~b e KRa)=X(b)
and hence also
3.7 R(R(a))=R(a).

Further with application of V, Df 1.1, V, Df 1.2 and V, 1.2, and
the formula 3.6 we get

R(a) CR(B) = a <b, R(@)CRp) = a <D,
and from this, using V, 1.6 and III, 1.9
a<b — Ra) CX(b)
so that we have
3.8 a<b o KRa)CR(D)
o N(a) € R(b).

By 3.6 and 3.8 the relations of equal power and of lower power
between sets are reduced to the identity and the e-relation between
their cardinal numbers-briefly their cardinals.

We note that, for a finite set a, N(a) is the same as mlt(a).
Indeed from Fin(a) — Fin(X(a)), together with 3.5 and III, 5.5,
II1, 5.7 we get

3.9 Fin(a) = X(a)=mlt(a).

Considering the ordinals with respect to their power we are
led to the concept of the Cantor Zahlenklasse. By the relation of
equal power the class {x ] Od(z)} is divided in mutually exclusive
subclasses which we call Zahlenklassen. Thus we define

Df3.2 Ne(d) e (Ex)(Odx) & (y)yed o Odly) &y ~ z)).

Hence the Zahlenklasse to which an ordinal n belongs is the class
of all ordinals which have the same cardinal as n. This cardinal
is itself an ordinal belonging to this Zahlenklasse and among these
the lowest one. It is called the initial number of this Zahlenklasse.
The ordinals which figure as initial numbers of Zahlenklassen
are thus the same as those which occur as cardinal numbers of sets.
Among the ordinals the cardinal numbers of sets are distinguished
by the property, that they are not of equal power with a lower
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ordinal. Hence we can define

Df 3.3 Cd(m) e Od(m) & (x)(x ~m —> x¢m)
«m i3 a cardinal number»,

and we have

Cd(m) & R(m)=m,
Cd(R(a)).

With using A 4 we are able to prove that the class of numera-
tions of a set @ and likewise the class of numerations of subsets
of a is represented by a set. By V, 3.9 there is a one-to-one corres-
pondence between the numerations of a subset ¢ of @ and the well-
orders of t. Hence by II, 3.8 it is sufficient to prove that the class
of wellorders of subsets of a is represented by a set. But this
follows from the fact that every wellorder of a subset of a is
Ca x a and therefore the class of all these wellorders is a subclass
of m(a x a). Thus we have

3.11 Rp({ = | (Ey)(y C a & Num(z, y))})-

As a corollary of 3.11 we infer that every Zahlenklasse is
represented by a set:

3.12 Ne(d) — Rp(4).

Indeed if @ is the initial number of a Zahlenklasse 4, then the
elements of 4 are the ordinals ¢ such that ¢ ~ a. Such a one-to-one
correspondence is a numeration of ¢ with the domain ¢. Thus
every element of A occurs as the domain of a numeration of a.
Hence A is the converse domain of the function

{zy | Num(z, a) & y=A4,x}
whose domain by 3.11 is represented by a set, therefore 4 is also
represented.
Still as an application of the numeration theorem 3.1 we give
a way of defining order types as sets. We cannot prove the class

{x |z ~ b} (cf. V, §2) to be represented by a set, but can assign
to every order b a set o(b) in such a way that for every order d

o(b)=o0(d) & b ~ d.

3.10
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Indeed by V,Df 2.6, V, Df 2.7 and V, 2.10 we have
Or(d) & Ap* wa* —>Or(c|b|c,a) & |b|c~b

and by 3.5
(Ez)(4:0* T (R(4:D))",

which together give

1] Or(d) = (Ez)(z ~ b & A;z=NR(4:D)).
On the other hand by V, 2.13 and 3.6 we have
2] b ~ d = X(4:0) = R(4,d).

From [1], [2] and V, 2.14 we get

3.13  Or() &Or(d) =»>-b ~dofzr]z~b&Ax=R4D)} =
={z |z ~d & Az =R(4,d)}.

By 3.13 is expressed that the order type of an order b can be
characterized by the class {z |x ~ b & 4;z=R(4b)}. This class
however is represented by a set, since it is a subclass of the class
of all orders of R(4;b) which again is a subclass of the set
w(R(4,0) x R(4,b)). Hence defining

Df3.4 o(b)=¢,(z* ={x |z ~ b & A z=R(4,b)}
we have
3.14 Or(b) & Or(d)-—>-0o(b)=0(d) & b ~ d.

VI, §4. ZoRN’S LEMMA AND RELATED PRINCIPLES

In newer algebra there is a tendency of avoiding direct applications
of the axiom of choice and also of the wellorder theorem. Instead
some general maximum principles are used which make no explicit
reference to wellorder. We here consider some of these principles
and show their equivalence. We start from the following principle
stated by F. Hausdorff [1914].

4.1 Po(c) = (Ex)(Ch(z, c) & (y)(xz Cy & Ch(y, ¢) = z=y)).

«ivery partial order has a subset which is a maximal chain».
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In order to prove 4.1 we proceed by the method of Zermelo’s
first proof of the wellorder theorem, applied already to the second
proof of the theorem of generated numeration (IV, § 3).

Firstly we apply the axiom of choice in the following way: For
every subset b of A;c there exists the class

{x ]z e(dic)d &Or(cN (b;x x b; x))}

—briefly {x | €(x, b)} —which of course, being a subclass of 4;c is
represented by a set. Note that this set is non void only when
b C A and Or(c N (b x b)).

Further then there exists the function

(1] {fuv |u C A0 & v* = {& | €(z, u)} & v+~0}.

This function again is represented by a functional set { since its
domain is a subclass of n(d,c); f fulfils the condition of 2.3 with
m being A;f, hence we have the existence of a function g such that

Ag=Af & (x)(x € A;f = g'x € fix).

g assigns to every subset b of A;¢ which ig ordered by ¢, provided
there is an element e of A;c7b such that b; ¢ is again ordered by c,
one of these elements e.

Now we consider the class N of the numerations of subsets of
4,c, generated by ¢g*. By IV, 3.2 we have that | JN is represented
by a set s which is a numeration of a subset ¢ of 4,c, again generated
by ¢*.

But ¢ determines in ¢ a chain; in order to show this it is sufficient!)
to prove that for any two different elements d, e of ¢ we have
(d,e> ecvie,d) ec. Let ¢ be that one of them which by the
numeration of ¢ is assigned to the higher ordinal; then since the
numeration of ¢ is generated by g*, e is the value assigned by g
to the set ¢ of those elements of ¢ preceding e in the numeration, and
therefore by the characterizing property of g the set (cn(g;e X q;e))
is a chain, but d and e are elements of g;e¢ and so indeed
{d,e> ecved)ec. Thus we have that ¢ determines a chain
cN (&t xt) of c.

1) We are relying here of course on our premise Po(c).
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Now this chain is also a maximal chain of ¢, for if there were
a chain of which ¢ N (¢ X t) is a proper subset and r an element of
4;c not in ¢, then ¢ N (¢; r x ¢; r) would be a chain. So we should
have r e f', therefore ¢t € A;f and also t € A,9. If now p=g't, then
p ¢t; on the other hand, if m is the domain of the numeration s,
then s; {m, p) would be again a numeration of a subset of A;c
generated by g*, and so, by the definition of s, p would have to
belong to &.

From this general theorem 4.1, the Hausdorff principle, we draw
the Zorn lemma [1935] by considering the partial order of the
elements of a set by the subset relation. In fact for every set a
the set representing the class

{zylreca &yeca &z Cy}

is a partial order of a. By the Hausdorff principle there is in this
partial order a maximal chain ¢. If 34;c is an element of a it
must be a maximal element, that is an element which is not a
proper subset of an other element. For, if there were an element
b of a such that 3A4,cCb then every element of A;c were a proper
subset of b and so the chain ¢ could be extended.

The condition here occurring that Y4,c ea is certainly then
satisfied if for every subset s of @ which with respect to the subset-
relation is the domain of a chainl), Ys ea. A set satisfying this
condition will be called closed, formally

Df4.1 Clla) & @(zCa & @) (uecx &ver —
- uwCovovCu) — Szrea)

So we come to the statement of the Zorn lemma: Every closed
set has a maximal element; formally

1.2 Clla) = (Ex)(zxea & (z)(zca -z C z)).

In many applications an other similar principle, first stated by
Teichmiiller [1939] is especially handy. For its easier formulation
we call a non cmpty class A characterized by its finite elements

‘<

1) In usual mathematics we should say: . which with respect to
the subsetrelation is a chain.” The more complicated formulation is here
necessary, because we understand by a chain an order and not an ordered set.
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if a set ¢ belongs to 4 if and only if every finite subset of ¢ belongs
to A.

Df4.2 Fch(4) & A#=4 &(@x)(rcd &
<« (y)y Cx & Fin(y) — y € 4)).

The definition of Fch(a) is quite corresponding.

The Teichmiiller principle now says that if a class of subsets
of a set is characterized by its finite elements, it has a maximal
element.

4.3 Fch(4) & (z)(xrecd —=>xCm)-—=-(BEy)yecid &
& (2)(z €A =y Cz)).

In virtue of A4 we can replace 4.3 by the even more simple
statement

4.4 Fch(a) — (Ey)(y ca & (2)(z ea =y C 2))

«Every set which is characterized by its finite elements has
a maximal element.»

Indeed 4.3 follows from 4.4 since

(x)xeAd—->xCm) > 4 Cxaim)*
and
Fch(4) & a* = A — Fch(a).

On the other hand 4.3 entails 4.4 since for every set a we have
)z ea—>2C Ja)

i.e. every element of a is a subset of the sum of the elements of a.
In order to derive 4.4 from the Zorn lemma 4.2 we have to prove

4.5 Fch(a) = Cl(a)
ie. a#0&(2)zxeca & (Y)(yCx & Fin(y) > yea)) » (2)(zCa &
& (uex&ver >uCovvovCu) > drea).

The idea of the proof is the following. Let b be a subset of a
such that (u)(v)(ueb&veb - ulCovvovCu). We have to
show that 3b € a. By Fch(a) it is sufficient for this to show that
every finite subset s of }b is an element of a ). Every element e, of s

1) We can omit here the case s = 0, since, as easily seen, Fch(a) —» 0 € a.
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is an element of some element of b; thus for each of the finitely
many elements e, of s there is an element ¢; of b such that e¢; e¢;.
From the noted property of b follows that there is one of the ¢; of
which all the others are subsets. If ¢ is this element of b, then every
element of s is an element of ¢, hence s C¢. Besides since b C a,
we have c €a and so in virtue of Fch(a), because s is finite, we
have in fact s € a. For formally carrying out this proof we have
to procede by a numeral induction with respect to the multitude of s.

From Teichmiillers principle 4.3 we come back to the axiom of
choice A 5 in the following way: Let a be a set of pairs and A4 be
the class {x |z C a & Ft(x)}, then obviously Fch(4)—since a set
of pairs is a function if and only if every subset consisting of two
elements is a function. Therefore by 4.3, 4 has a maximal element f.
It only remains to show that A,f=A,a. But in the other case there
would exist a pair {(d,e> ea such that d ¢ 4,f, and f; {d, e)> would
be a function and also a subset of a contrary to the maximum
property of f.

Thus we have found that the principles of Hausdorff 4.1, Zorn
4.2 and Teichmiiller 4.3, 4.4 are all, on the supposition of A 4,
equivalent with the axiom of choice.

Attention still may be called to the possibility of obtaining
directly the numeration theorem 3.1 by application of Zorn’s
lemma: by 3.11 the class of numerations of subsets of a set a is
represented by a set ¢. Now this set ¢ is closed. Indeed of any two
numerations of subsets of a, s and ¢, such that s Ct v Cs one is
a segment of the other and from this together with III, 2.4 it
follows that the sum of every chain (with respect to the subset-
relation) of elements of ¢ is again an element of ¢. Therefore by
4.2, ¢ has a maximal element p. Now the subset of a of which p
is a numeration must be a itself. For if there were an element d
of @ which is not in the converse domain of p then we should have
p; {4yp, d> e ¢ and so p would not be maximal.

Here it particularly appears that the réle of the Zorn lemma
consists not only in replacing applications of A5 but also in
sparing the reasonings to be used for proving the theorem of gene-
rated numeration, either by Zermelo’s method or with the general
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recursion theorem ; the same holds of the Hausdorff and Teichmiiller
principle. We mention here an application of this kind of 4.4 which
yields a general theorem, stated by R. Biichi [1953].

For its formulation we denote by €(c,r,a) the expression

cCa& @)y (x#y &rec&yec—{x,yperviy,z>er).
«¢ is an r-connected subset of a.»

Then the formal statement is given by

46 rCaxa&Ft(f) & @)C(z,r,a) >xedf &) zcx—>
= (z, ['x) €7))-—>- (Bu)(C(u, 7, a) & f'u € u).

This formula on the one hand can be proved analogously as the
theorem of generated numeration IV, 3.1 by considering upon
the premise the class 7' of numerations s of subsets of a, such that,
if » ed;s and b=A,3g(s, n), then (b, r, a) & s'n={*. This class,
by 3.11, is represented by a set ¢ and one proves €(4,31), 7, a) &
& ft4, 5t € A, 3.

Here in virtue of the premise on f, no application of the axiom
of choice is needed.

But the proof becomes much simpler by using Teichmiiller’s
principle. Indeed for given a and r, r Ca x a; let I be the class
of sets ¢ such that €(c, r, @), which by A 4 is represented by a
set h. Then as easily seen, we have Fch(k) and therefore by 4.4
there exists a maximal element p in A. Hence in virtue of the
premise of 4.6 we must have f'p € p, since &((p; f'p), r, a).

VI, § 5. AXIoM OF INFINITY. DENUMERABILITY

The general theorems for which we used in the last sections
the axioms A 4 and A 5 are intended properly for non finite sets.
If we have to deal only with finite sets, then the application of
A4 and A5 can be dispensed with. In fact by the theorems of
finite sets III, § 5 we can prove that the class of subsets of a finite
set is represented by a set, and by numeral induction it is provable
that for every set of pairs ¢ with a finite domain there exists a
subset with the same domain which is a function.

On the other hand till now the existence of a non finite set



148 THE COMPLETING AXIOMS [cr. vI

cannot be demonstrated. This in the foregoing was not sensible,
since for number theory and the general theory of ordinals we need
not the existence of non finite sets. However for analysis and for
the Cantor set theory the dealing with non finite sets is essential.
In order to enable it, we have to introduce an axiom of infinity.

There are various possible forms of stating this axiom. The
form we choose is related to Cantor’s way of starting in his set
theory from the set of natural numbers. This set in our system must
be an ordinal which has as elements just the natural numbers and
hence is the least ordinal higher than every natural number. We
denote it as usual by @ and thus state the axiom of infinity by
the formula

A6 a € w « Nu(a).

This formula is obviously equivalent with
5.1 o* = {z | Nu(z)}.
As immediate consequences we note that every class of numerals
is represented by a set:
5.2 A C{xz | Nu(zx)} — Rp(4).

Let us regard in what respect A 6 has the signification of an
axiom of infinity. We have not yet defined infinity, but only still

finiteness. Hence the simplest and most natural definition of
infinity here is

Df 5.1

( Infin(a) < Fin(a)
{ Infin(4) « Fin(4).

This purely negative characterization of infinity is equivalent
with the following positive one

5.3 Infin(4) & (2)(Nu(z) = (Ey)(y* C 4 &y ~x).
Namely on onc hand as a consequence of 111, 5.6 we obtain
(1] Nu(rn)&n ~a &bCa — b ~n’,

and so it follows the implication from the right to the left of 5.3.
On the other hand by numeral induction with respect to n we get

(2] Infin(4) & Nu(n) = (Ez)(x ~n & x* C 4).
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From 5.3 together with A 6 we obtain Infin(w) and thus
5.4 (Ex) Infin(x).
We also can come back from 5.4 to A 6. In fact we have
5.5 Infin(a) — Rp({z | Nu(z)}).
For the proof we consider the class of pairs
{zy ]« C a & Fin(z) & y=mlt(x)}.

This class is a function and by A 4 its domain is represented by
a set, and hence also its converse domain is represented. But this
converse domain, in virtue of our premise and [2] is {x | Nu(z)};
thus {x | Nu(z)} is represented !).

An other, very simple proof of 5.5is by means of the numeration
theorem but without A 4. Indeed the domain of a numeration of
an infinite set ¢ must be an infinite ordinal and thus have
{z | Nu(z)} as subclass.

We further easily come from A 6 to other statements of the
axiom of infinity. Zermelo’s axiom of infinity says

5.6 (Ex)(0 ez & (y)(y € x = [y] € x)).

This is obtained from A 6 by considering the iterator of the
function {zy Jy=[x]} on 0. By III, 4.1 J{zy |y=[x]}, 0) is a
function with the domain {x | Nu(x)}. By A 6 and II, 3.8 the con-
verse domain is represented by a set ¢, and from the property of
the iterator follows

Oec&(y)lyec—[y] ec),

so that we get 5.6.
The inverse passage from 5.6 to A 6 is also possible. Namely
first by numeral induction we prove

Oec&yeco[ylee) — Ay |y=I[x]1},0) C c*
This together with 5.6 and II, 2.1 gives
[1] Rp(Ax)({zy |y =[=1}, 0)).

1) The proof in this form was given by K. Gddel [1940].
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On the other hand by III, 4.2 we have

(2] Crs(({zy |y=1[=1}, 0);
1] and [2] yield by II, 3.8
(3] Rp(4,(J({zy 1y =[=1}. 0)),

and by III, 4.1
Ay Ny =121}, 0) = {= | Nu(@)},

Rp({z | Nu(2)}).

An other form of the axiom of infinity arises from Dedekinds
definition of infinity. According to this definition the assertion of
the existence of an infinite set says that there exists a set which
has a one-to-one correspondence to a proper subset

so that

5.7 (Ex)(Ey)(y Cx & x ~y).

This is an obvious way follows from A 6 since, even in many ways,
we have a one-to-one correspondence of w to a proper subset of it.

For the passage from 5.7 to A 6 let a be a set having a one-to-
one correspondence ¢ with a proper subset b; then we have
(@)x € a = ctx €b). If now d € a~b, then the iterator J(c*, d), by
III, 4.2 is a one-to-one correspondence; its domain is {x | Nu(x)}
and its converse domain is a subclass of @, and thus represented
by a set, hence also {x [ Nu(x)} is represented.

A pregnant form of an axiom of infinity is also that which
occurs in von Neumann’s system of set theory and which was
adopted by Godel

5.8 (Ex)(x#0 & (y)ly e x = (E2)(z e x &y C2))).
«There is a nonempty set which has no maximal element».

The proof of 5.8 from A 6 is immediate since w is a non empty
set and has no maximal element. For the inverse passage we
nced A 5. Let a be a non empty set having no maximal element,.
Applying A5 to the class

{rylrca&yeca&aCy}



§ 5] AXIOM OF INFINITY. DENUMERABILITY 151

we infer the existence of a function F assigning to every element
¢ of @ an other element of @ of which ¢ is a proper subset. The
iterator of this function on some element of ¢ is a one-to-one
correspondence between {x | Nu(z)} and a subclass of a. Namely
the element assigned to the lower of two numerals is a proper
subset of the other. So the converse domain of this iterator and
therefore also the domain {x | Nu(z)} is represented by a set.

In a certain relatedness to the proofs of equivalences between
axioms of infinity are those proofs which are about equivalences
between definitions of infinity or, what comes out to the same,
between definitions of finiteness. As already mentioned (111, § 5)
proofs of this kind have been studied in particular with respect
to the need of applying the axiom of choice. Here we take the
opportunity of mentioning two elegant definitions of finiteness,
connected with the concept of order and wellorder.

5.9 Fin(a) & (2)(Or(z, a) = Wor(x, a))
«A set is finite if and only if every order of it is a wellorder».

5.10 Fin(a) & (x)(y)(Or(x, a) & Or(y, a) »>x ~ y).

The implications from left to right in 5.9 and 5.10 are both derivable
with the help of I11, 5.3, V, Df 2.6, V, Df 2.7, V 3.5 and the formula

5.11 Fin(a) & Or(b, a) = (Ex)(Num(z, a) &
& Ayx=mit(a) & b= | no(4,x) | x)

which is obtainable by means of a numeral induction with respect
to mlt(a). The proof of the inverse implications can be made with
the help of the wellorder theorem 3.3, using the theorem that
a wellorder, whose inverse order is also a wellorder, is an order
of a finite set, formally

5.12 Wor(b, a) & Wor(g) — Fin(a).

This statement in virtue of the connection between wellorder and
numeration (V, 3.6) comes back to the assertion

~—

5.13 Od(n) & Wor(no(n)) — Nu(nr)
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which almost directly follows from the definitions of the concepts
Wor, no, and Nu and the general theorems on ordinals.

From A 6 immediately follows that o is the lowest infinite
ordinal. This in particular entails that « is an initial number of
a Zahlenklasse, and thus its own cardinal number. The sets whose

cardinal number is « are called denumerable. This comes out to
define

Df5.2 Denum(a) © o ~ w.

We further call a class denumerable if it is represented by a
denumerable set

Df 5.3 Denum(4) & (Ex)(z* = A & x ~ w).

According to this we have by the theorem of replacement
5.14 Arz1{z | Nu(z)} — Denum(A4) & Rp(4).

Concerning denumerability there are some often used theorems.
The first says that every infinite set has a denumerable subset.

5.15 Infin(e) = (Ex)(x C a & Denum(z)).

The most simple proof is by using that there exists a numeration
s of a. Since ¢ is infinite, the domain of s cannot be a natural number.
So it must be an infinite ordinal and w is a subset of it. Let b be
the subset of the converse domain of s, consisting of those elements
of a, which in s are assigned to a natural number; then b is a
denumerable subset of a.

5.15 in particular can be used for an alternative proof of the
implications from the right to the left of the formulas 5.9 and 5.10.
This goes, using contraposition, in virtue of the circumstance that
the inverse order of the natural order of w is not a wellorder.

As a further assertion on denumerability we have

5.16 Denum(a) & b C a — Fin(b) v Denum(b).
«Every subset of a denumerable set is finite or denumerable».
Namely a subset b of a denumerable set is of equal power with a

subset of w. Therefore we have a numeration of b by the natural
order of that subset of w. Let m be the domain of this numeration,
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then by V, 3.10 either m is lower than @ and then it is a natural
number and b is finite, or m=w and b is denumerable,

A direct application of 5.16 concerns w-sequences. By an w-
sequence we understand a sequence with the domain w.

Df5.4 Dsq(s) & Sq(s) & 4;5=w.

The assertion in question is that the converse domain of an
w-sequence is finite or denumerable.

5.17 Dsq(s) = Fin(4,5) v Denum(4,s).

Note that an w-sequence can contain repetitions of members. By
2.8 there exists a one-to-one correspondence between A,s and a
subset of w, which by 5.16 is finite or denumerable. Of course,
the one-to-one correspondence could here also be obtained with
the help of the principle of least ordinal number, without applying
the axiom of choice which is used for 2.8.

As a corollary of 5.17 we have

5.18 Ft(f) & Denum(4,f) —> Fin(4,f) v Denum(A4,f).

Namely composing the one-to-one correspondence between w and
A,f with f we get a denumerable sequence with the converse domain
A,f, and 5.17 can be applied.

Next we state

5.19 Denum(a) & Denum(b) — Denum(a x b).

In order to prove this it is sufficient to give a one-to-one corres-
pondence between w X w and . There are known many such
one-to-one correspondences. For instance a one-to-one corres-
pondence between the pairs {(m,n)> of natural numbers and the
natural number % is defined by 2™(2n+1)=k+1, in the usual
arithmetic notation.
Still we have the theorem
5.20 Dsq(s) & (2)(z € 4,8 = Denum(z)) — Denum( (o, s'z))

x
«The sum of the members of an w-sequence of denumerable
sets is again denumerable».
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For a more handy formulation of the proof we introduce the
concept of a denumeration of a set a, defining it as a one-to-one
correspondence between o and a. Now first we are to show that
there exists a functional set g assigning to every natural number %
a denumeration of s‘k. We consider the class of pairs (u, v> where
u is a natural number and v is the set representing the class of
denumerations of s'u, which indeed is represented, as a consequence
of 3.11. The said class of pairs is a function whose domain is
represented by w and is represented by a functional set f. Applying
to f the axiom of choice!) in the form 2.3 with m being w, we infer
the existence of a functional set g such that

Ag=o & (z)(x € ® = Num(g'z, s'z) & 49"z =w).

Thus ¢ is a function such as has been stated to exist. Now let H
be the function

{zy | (Bu)(Ev)(z={u, v) & (u,v) co X o &y=(g'u)v)},
then we have
4iH = (0 X w)*
and
A,H = (o, s'z)*.

From the first also follows that H is represented by a functional
set h. Since w X o is denumerable by 5.19, we have by 5.18 that
Ayh is denumerable or finite. But the case that it is finite is excluded
since every member of s is supposed to be denumerable.

An obvious application of the axiom A 6 yields that for every
function ¢ with 4, = {« | Nu(z)} the converse domain 4,G and
also | JA4,@ is represented, as follows by II, 3.8 and II, 3.7. This
holds in particular for any numeral iterator, which indeed by
III, 4.1 is such a function. By this way it also results in virtue
of III, 4.10 that the transitive closure of any set is represented,
so that we have

5.21 Rp(a*)).

1) Concerning alternatives to 5.20 arising in absence of the axiom of
choice cf. A. Church [1927] and E. Specker [1957].



CHAPTER VII

ANALYSIS; CARDINAL ARITHMETIC;
ABSTRACT THEORIES

VII, § 1. THEORY OF REAL NUMBERS

Going on to discuss the application of our full system of axioms
A 1-A 6 to classical mathematics, we shall consider in particular
two domains: classical analysis and Cantor’s theory of powers.

In order to show the possibility of embodying analysis in our
set theoretic frame, it will be sufficient to indicate the way of
procedure for constructing the system of real numbers and proving
the laws of computation and the continuity property, as also for
handling with functions of real variables. We shall abstain here
from a more detailed treatment which gives no difficulty on
principle.

From our discussion it will result, as it was likewise shown in
[Bernays 1942] that for obtaining classical analysis, also with its
impredicative procedures, the application of axiom A 4 can be
avoided, since the axiom A 6 already implies that every denumer-
able class is represented. Even for a more liberal delimitation
of the frame the full axiom A 4 is not needed but instead, as we
shall see, a strengthening of axiom A 6 is sufficient, namely an
axiom postulating that the class of all number sets, (in place of
the class of natural numbers), is represented.

In general the construction of the system of real numbers,
starting from the series of natural numbers, is made in several
steps, by first constructing the system of rationals which them-
selves are defined as sets of signed fractions. The stage of the
rational numbers can here be dispensed of; and besides we have
a direct passage from natural numbers to signed fractions by
characterizing these as fraction triplets.

By a fraction triplet we understand a set {<a, b), ¢> where a, b
are arbitrary natural numbers, and c¢ is a natural number different
from 0.
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Df 1.1 Ftp(d) & (Ex)(Ey)(Ez)(Nu(zr) & Nu(y) & Nu(z) &z+#0 &
& d={z,y) ).
We use the word “fraction triplet’” in view of the arithmetic role to
be given to these triplets according to the interpretation that
Ka, by, ¢> means a%b (as usually denoted).
In conformity with this interpretation we define the sum
Df1.2 p +7q¢ = 4(Ftp(p) & Ftp(g) &
&(x) () () () () (w)p= {2, 4D, 2> & q={{u, v), w) —
= t={(w-2) + (2 ), (w-y)+ (2-0)), z-w))),
so that
1.1 Ftp(La, b>, ¢>) & Ftp(Kk, Iy, m))-—-
> by +7 (e B, my = (m @) + (- k), (m-b) + (- D), ¢ my
becomes provable. Correspondingly the difference and the product,
symbolized by —7 and -7, are defined so that we have

1.2 Ftp(Ka, b, ¢>) & Ftp({lk, Iy, m))-—-
= {La,bp,¢) =7 Lk D ymy = L (m-a) + (¢ 1), (m - b) + (- k) ), c-om) &
& (La, by, ¢p -7k, By my = (K- k) + (b-1), (a- 1)+ (b-k)), c-m).
Further in accordance with our interpretation of fraction triplets
we define the predicates concerning their sign, equality and order.
A fraction triplet ({a, b), ¢)> is called positive, negative or a
nulltriplet according as bea or aeb or a=b; and a fraction
triplet p is called greater than, less than, or equally great as the
fraction triplet ¢ according as p —7 ¢ is positive, negative or a
nulltriplet. The formal definition of these concepts can be given
as follows

Df13  p="q o Ftp(p) & Ftp(g) & (Bx)(Ey)(Ez)(Ev)(Ev)(Ew)
(p=L2y), 2 &q=Lu, vy, wy &
& (10-2) + (- 0) = (w-9) + (z-w)).

Df1.4 p <"q o Ftp(p) & Ftplg) & (Ex)(Ey)(Ez)(Ev)(Ev)(Ew)
(=L, 90, 2 &q={u, vy, w) &
& ((w-z)+ (2-v)) € (w-y) -+ (z-u))).

Dfi.s p>Tqgerq <" p.
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The properties of p being a positive, or a negative fraction triplet
or a nulltriplet can now be expressed by

1.3 p >7<0,05, 15, p <70, 05,15, p =7<L0,05, 1>.

A fraction triplet p is called a 1-triplet if p =7, 0>, 1>,
Note that a fraction triplet {({a, b>, ¢)> is a 1-triplet if and only
if a=b+c.

To every positive fraction triplet there is an equally great one
of the form ({a, 0), ¢, and to every negative an equally great one
of the form (<0, b>, ¢>. In this way we get the connection between
fraction triplets and fractions; indeed we can define for ¢=+0,

g to be {Ka,0>,¢> and ~§ to be <0, b, c).

Our definition of equally great is so that for all the introduced
operations and relations the substitutivity of equally great fraction
triplets holds. Further now it can be directly stated that all the
laws of an ordered field are satisfied for the fraction triplets, in
particular the existence of a multiplicative inverse for every
fraction triplet which is not a nulltriplet.

Let us notice also that the class of fraction triplets is represented
by a set since it is a subclass of the set (w X w) x w; by the same
reason every class of fraction triplets is represented by a set.
Every such set is also either finite or denumerable, as follows from
VI, 5.16 and 5.19.

Now we come to define real numbers as special sets of fraction
triplets by the method of Dedekind, understanding by a real
number a non void proper initial section without greatest element
in the ordered set of fraction triplets.

Df1.6 Re(c) « c* C{z|Ftp(z)} &c#0&(z)(rec—(Ey)ycc&
&z <y) &@)(yyec&(x ="yvr <Ty)—>zecc).

According to the given definition of real number, as well known,
equality of real numbers is simply set theoretic equality, and the
ordering relation p=gq is directly the subset relation. A real number
is positive if it has some positive fraction triplet as an element;
it is negative if there is some negative fraction triplet which is
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not an element of it. The real number null is the set of all negative
fraction triplets. Obviously thus every real number is either positive
or negative or null.

A real number p is called rational if there exists a fraction
triplet ¢ such that p represents the class {x |» <"t}. In the case
that p is positive or null, the fraction triplet ¢ in question can be
chosen in the form {{k, 0>,1>, so that p is the set representing

the class {x ]z <" ((k, 0>,1>}. We denote this set by [’{I At once
we define [k]=[lcl-]. According to this in particular [0] is the real

number null.

Now we are defining the arithmetic operations on real numbers.
By the arithmetic sum p 3 g of two real numbers p and g we
understand the set of those fraction triplets which are the sum
of an element of p and an element of q:

Df1.7 P 3 ¢=y(Re(p) & Re(q) & t* = {z | (Ex)(Ey)(x ep &
&yep &z=x +7y)}).
According to this definition we have

1.4 Re(p) & Re(q) — Re(p ¥ 9).

Further we can prove the associative and the commutative law
for this arithmetic sum, as also

1.5 Re(p) = p # [0]=p-
We also have
1.6 Re(p) = (Ex)(Re(x) & p 3# x=[0]);

in fact we can prove
Re(p) & c* = {z | Ftp(z) & (B2)(z <"z & (w)(@)(w)({{u,v),w) ep—>
=z <" v, u), wH))}-—> Re(c) & p # c=[0].
Thus we have an additive inverse, and the unicity follows in the

usual way from 1.6 together with the computation laws, so that
we can define the additive inverse by

Df 1.8 —p=1r,(Re(x) & p 4 x=[0]).
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Now obviously the arithmetic difference of two real numbers p
and g can be defined as the arithmetic sum of p and —gq:

Df1.9 prq = pH(—q),

and all its computation laws thus become derivable. Likewise we
have

1.7 Re(p) = ~(—p)=p & [0]Cp e —p C[O]
The absolute value of a real number p is defined as
Df1.10 |p |=¢Re(t) &[0]Ct-&t=pVvi=—p).

As an application we get also the concept of the distance of
two real numbers p, ¢ defining it as

Df1.11 |p,q|=|p—q]

We say that a real number p differs from ¢ by less then a positive
real number d if | p,q|Cd.

For introducing the arithmetic product p # ¢ of two real
numbers p and q we first define an “absolute value product” p O ¢
as the set of those fraction triplets which are either negative or
the product of non negative fraction triplets belonging respectively
to |p| and |q|:

Df1.12 p O g=1u(Re(p) & Re(q) & t* = {z | Ftp(z) &
& (z <70, 00, 1> v (Euw)(Bo)ue|p|) &ve|q| &
&u <70,05,1> &v <0,0), 1> &z=u -"v)});

and then we take for the arithmetic product p ¥ ¢ the well known
definition by cases:

Df1.13 pKq = uRe(p) & Re(q) & (([0]Cp & [0]C q) v
VipC[0]&qC[0)—>i=pOq) & ([0]Cp &qC[O]) v
vV([0]Cq &pC[0]) >i= —(p ).

Here again we have

1.8 Re(p) & Re(q) — Re(p ¥ q)

as also the associative and the commutative law. Further the
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distributive law between the arithmetic sum and the arithmetic
product is provable. Besides we have

1.9 Re(p) = p ¥ [1] =

Concerning the existence of a multiplicative inverse for a real
number p, p # [0] we have

1.10 Re(p) & [0] Cp & c* = {2 | Ftp(z) & (Ey)(z <"y &

& (u)(0)({Kw, 03, vy ep &uz#0—>y <7 (v, 0, w))} —>

and -=>-Re(c) & p ¥ c=[1],

111 Re(p) &p C[0] & Re(r) & (—p) ¥r=[1] = p K (—r)=[1],

and again the unicity of a multiplicative inverse is provable. We
therefore can define

Df1.14 re(p)=1t,(Re(z) & p & v=[1]),
and then have
1.12 Re(p) & p+# [0] — Re (re(p)) & p # re(p) =[1].

Generally now the quotient £ of real numbers p and ¢, for g0
can be defined as p ¥ rc(q), with the effect that all the computation
laws for the quotient become derivable.

From our definitions of the arithmetic sum and product and
their inverses in particular follows the familiar isomorphism
between these operations applied to rational real numbers and
the corresponding operations on fractions, as for instance

1.13 Nu(a) & Nu(b) & Nu(c) & Nu(d) & b+0 &d#O-—»

o [ [5] - [t (w»ﬁ [5])-

Finally also the laws relating to order in connection with the
arithmetic operations can be seen to be satisfied. So the system
of real numbers has with respect to the defined relations and
operations all the properties of an ordered field, [1] being the
multiplicative unit.
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We still have to verify the property of continuity peculiar to
the system of real numbers. Among the various formulations of
the property of continuity we choose that one, especially handy
for the applications, by the principle of the last upper bound:

114 A#£= A4 & (@)(x €A > Re(zx)) & (Ey)(Re(y) & (z)}(xr e 4 —
—>2Cy)-— (Bz)(Re(z) & (w)zCu & (z)(x € 4 =z Cu)).

«For every non void class of real numbers 4 which has an
upper bound there exists a real number which is the least
upper bound».

Indeed the sum of the elements of 4, being a class of fraction
triplets, is represented by a set, and this set has all the required
properties. Obviously in full analogy to 1.14 we have also the
theorem of the existence of a greatest lower bound for any non
void class of real numbers which has a lower bound.

In the principle 1.14 the full continuity property of the system
of real numbers is included. In particular it entails the archi-
median character of the order of real numbers. But this one results
more directly from our definition of real number. In fact the
archimedian property can be formulated by the statement that

s . . 1
for every positive real number p there exists a fraction - such

that I:{IC p, and this is a direct consequence of the fact that every
positive real number has a positive fraction triplet and therefore
also a fraction % as element; indeed from iep follows I}»] Cop.

By this way the theory of real numbers can be established on
the basis of our axioms A1, A2, A3 and A 6, The passage to the
n-dimensional continuum goes in the familiar way by forming
pairs, triplets, and so on, of real numbers. But also the construction
of the Hilbert space is possible, since we have at our disposal
w-sequences of real numbers.

As to the theory of functions we have first that a real function
in the sense of analysis is a function in our sense assigning to
every real number or to those of a certain class of real numbers,
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again a real number. Mostly the domain of such a function is an
interval, that is the class of real numbers from a to b or else between
a and b, where ¢ and b are certain fixed real numbers with a Cb.

For the handling with real functions it is in many cases desirable
to have functions as functional sets. This obviously can be effected
by using A 4. But for most of the function theory this application
of A4 is not required. Namely first continuous functions are
uniquely determined by their values for rational arguments, and
also stiickweise continuous functions by their values for a denume-
rable set of arguments. Further in the theory of arbitrary functions,
especially in that one of the function spaces, functions are regarded
as equal if their values differ only for a set of arguments of Lebesgue
measure 0. On the other hand it is known that every measurable
function is—up to a set of arguments of measure 0-—the limit
of an w-sequence of scale functions belonging to a denumerable
class, so that every measurable function is determined, up to a
set of measure 0, by a sequence of natural numbers.

So for function theory and also for differential geometry, as
also for the theory of measure and the Hilbert space we can on
principle get along with the axioms A1, A2, A3, A6.

Nevertheless this procedure has its artificialities, and it seems
desirable, especially for dealing with point sets, to have the con-
tinuum and its subclasses to be represented by sets. For this
purpose it is not necessary to take the full potency axiom. But
a sufficient measure is to take instead of the axiom of infinity
the stronger ‘“axiom of continuum’ (introducing a symbol y)

AC acy o (x)(xr ca— Nu(z)).
«y represents the class of all number sets.»

Obviously in presence of A4 and A 6 we immediately get AC
by defining y as m(w). On the other hand from AC we can first
derive VI, 5.2 by means of II,3.8, since {z | Nu(x)} is in a one-to-one
correspondence with {z |(Ez)(Nu(x) & z=[z])}, which is a subclass
of y; and hence we can define w as the set representing {x | Nu(x)}.
Moreover we can prove by AC that the class of real numbers is
represented by a set. Namely in virtue of the denumerability of
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(0 x ) X @ we have a one-to-one correspondence of the real
numbers with certain subsets of w, i.e. elements of y, so that
{z | Re(x)} is in a one-to-one correspondence with a subclass of y
and therefore is represented by a set.

Tt is further to be observed that for certain inferences in analysis
the application of the axiom of choice is required. As a simple
instance we take the principle often used that for every limit
point of a class of real numbers C there exists an w-sequence
of elements of C' converging to it. Here limit point is defined as
a real number ¢ such that for every positive real number d there
exists an element of C different from ¢ which differs from ¢ by less
than d, and an w-sequence s is said to converge to g if for every
positive real number d there exists a natural number » such that
for every natural number m greater than n, stm differs from ¢
by less than d. Obviously it is sufficient to prove the assertion for
the case that ¢ ¢ C. We consider the class

{oy | Nu(z) &y eC & |y,q | C [ ]}
This class, we call it @, by our premise on ¢ has the domain o,
and the converse domain of @ is a subclass of {y | Re(y)} and
thus represented by a set, hence @ itself is represented by a set.
Now applying to this set our axiom A 5 we can infer the existence

of an w-sequence s such that sz differs from g by less than [7%]
and which is therefore convergent, since for every positive real
number d there exists a natural number m such that [%] Cd.

Note that here besides the axiom of choice also AC has to
be applied 1). By this axiom the application of A 4 becomes dis-
pensable in analysis. However, it is to be observed that, when we
replace A 4 by AC, we do no more obtain, as it seems, the theorem
that the continuum can be wellordered. By this way, even with
adopting AC and the axiom of choice A 5, a separation between
analysis and a more extended set theory is possible.

1) In the treatment of [Bernays 1942] AC was not required for this
proof, because one there had a somewhat stronger form of the axiom of
choice at disposal, referring to pairclasses instead of pair sets.
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VII, §2. SoME TOPICS OF ORDINAL ARITHMETIC

The fundaments of ordinal arithmetic are contained in the
general theory of ordinals (ITI, § 1, § 2) and in the definition of
the ordinal arithmetic functions a-+b,a-b,a® by means of the
transfinite iterator (IV, § 2). We shall not enter here in all the
details of ordinal arithmetic, which is not problematic from the
the axiomatic point of view, but only exhibit some particular
topics which have applications in cardinal arithmetic.

For this we shall employ the method of introducing specialized
variables. We take small greek letters x, 8, y, 6, %, 4, », 9, ¢ for
free variables and &, 7, { for bound variables, ranging over the
class {x | Od(z)}. However we preserve the old bound variables
in connection with the sum and the y-symbol, since here the
application of the new variables would give no advantage.

The sum operator in ordinal theory has especially the réle of
the limit operator, what is due to the following relations which
hold in virtue of the fundamental properties of ordinals, in particular
II1, 1.17 and III, 2.3, 2.8-2.10 —(we use here the letters u,p to
denote bound greek variables):

2.1 Lim(x) & (u)(v)(ueo &vea — tu) et(v) &
& Od(t(v)) & 1= (x, t(x))-—-
t

a) -—- Lim(7)

b) —>vex—>t(v)el

c) =y ex = v e tly) v=1{(»)

d) = l=p(u)(u ex = tHu) € 1)

e) = €l = (Bu)(u € « & x € t(u)).

We now first transcribe the recursive formulas IV, 2.3-2.5 and
the computation laws IV, 2.6 for a b, a-b according to the general
devices for spezialized variables in I, § 1:

2.2 Od(x+p8), Od(x-p)
g x+0=x S x-0=0
230); s (e+f) b N

Lim(A) =« +4= 3 (4, x-x), (Lim(l) —oa-A= (A & 2)
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x+(B+y)=(x+p)+vy
2.4 x-(B-y)=(x-p)-y

x-(Bry)=a-fto-y
Besides these laws we have those which we get from the general
properties of Normalfunktionen. By IV, 2.8, IV, 2.10 we have

2.5 a) atf=aty < p=y
atfeaty «» ey
Ocx —>ax-B=cx- =
2.5b) Ex-—=>x-f=0-y > f=y
Dex-—>-a-fexyefery
The formulas 2.5 a) and 2.5 b) come in particular to be applied
for the introduction of the inverse processes of ordinal addition
and multiplication: the subtraction of « from an ordinal g not

lower than «, and the division of « by g(+0) with the rest 6 lower
than §.

The possibility and unicity of subtraction is given by the formula
2.6 xC B = (BEx+E& = B)
together with 2.5a). The proof of 2.6 goes by considering the
ordinal w8 € «+2). This can neither be null nor a limit number,
—the last owing to the last formula of 2.3 a), 2.1e) and the
property of the wu-operator —and thus there is a x such that
® = € a+x);
hence by III, Df1.5, 111, Df 1.6
ax+x C B, B ex+x,

and these two formulas together with o 3" = (0 + )" give o+ x=f§.
Note that the resulting subtraction consists only as a onesided
inverse of addition.

The statement on the existence of division is

2.7 B#0 — (BEE)(En)nep &a=F-5+n).

The proof begins analogously as that of 2.6 with considering the
ordinal u(x € f-x). Since we have

1] B#0 — Suc(uy(x € f-2)),
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there is upon § # 0 a »' such that
B-xCux, xef-«;
thus by 2.6 there is a é such that

fx+d = o
and
B-x+6 € p-xtp,

so that by 2.5a) we have d € §.
Besides the existential statement 2.7 also the unicity formula

28 fA0&yef&Icf &L ut+y=044+6 > x=A&yp=0
is provable as a consequence of 2.5b) and 2.5 a).
Taking in 2.7 » for § and using y € @ — Nu(y) we get
2.9 (E&)(Ex)(oc=w-&+x & Nu(z)),
which in particular entails, by III, 3.3
2.10 Lim(d) = (E&i(A=w &),
while on the other hand
2.11 f#0 — Lim(w-p).

From the stated laws on subtraction and division we now draw
some consequences to be used for cardinal arithmetic.

First from the formula 2.9 we can infer that any limit number
as a set of ordinals consists out of w-sections i.e. sets consisting
of the ordinals &+ n, with Nu(n), for a fixed « with Suc(x). Indeed
in virtue of the formula [1] of the proof of 2.7 we have

2.12 w-x= (% 0 2w )
z

and therefore by 2.10
2.13 Lim(d) = (B&(A=3(¢, v 2"~ w-x).

z

Thus every limit number can be decomposed into mutually
exclusive sets w-v»"~w-v, but

(w-v"~w-v)* = {£ | (Ex)(Nu(z) & é=w-v+x)},

and thus w-»"~w-» is an w-scction.
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Another application of 2.9 is to the proof, that every infinite
ordinal is of equal power with a limit number. In virtue of 2.11
it suffices for this to prove

2.14 Nu(n) &%x#0 = w-%x+n ~ w-x,

which results by showing that under our premises the class of pairs

{uv |(Bz)(zen &u=w-x+2&v=2) Vuco &v=n+u) Vv
Vvewx&u¢ow &v=u))}

is a one-to-one correspondence between w-x-+n and w-x.
Still by means of 2.7 and 2.8 we derive

2.15 & X B~ B
For this we first state

Crs({uv | (E&)(En)(u=<&n)> &v=F-£+n & Eca &nep)})
which is a consequence of 2.8. The domain of this one-to-one
correspondence is obviously « x #; hence for proving 2.15 it
suffices to show that the converse domain is §.x, formally

yepx o (BEEn)y=p-+n&écn&nep)

what follows by 2.7, 2.5a) and 2.5 b).

A concept essential for ordinal theory is that of an ascending
ordinal limit sequence, or briefly limit sequence. By this we under-
stand a sequence which represents a strictly monotonic ordinal
function whose domain is a limit number:

Df 2.1 Sqal(s) < Sq(s) & Lim(4;3) & (@)(@)(@)(v)(Kz, y> e s &
&u,v>es&reu - Od(v) &y ev).
There is a direct application of 2.1 a)-e) to limit sequences, since
2.16 Sqa(s) — Lim(4;8) & (E)(n)éen &nedis —»
— & e s'n & Od(s'y)).
Therefore the conclusions of 2.1 under the premise

Sqa(s) & As=o & 1= (x, s'z)

z

hold with t(a) replaced everywhere by s‘a.
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About composing of limit sequences we have the theorem
2.17 Sqa(s) & Sqa(t) &v=4;8 &x=A44 & A= (v, s'z) &
& v=Y(x, t'y) 2—> A= (2, sty).
v

v

The equality to be proved under the premises, by A 3 comes back to
(BE)E € D, ty) & € 8*) « (BE)(& € x & e s'1)
v

and further to
(EE)EnYnex &betn &a e s) & (BE)(£ e x & e s'E).

But this follows from the implications

1] fex&yetf&aesy - fex &a e s,
which holds by the monotonity of s, and
[2] fex&aestf — pex &t ct'f & cs't's

whieh results by Sqa(t) & Ay¢=x.

The theorem 2.17 has an immediate application to Normal-
funktionen since for every limit number » the »-segment of a
Normalfunktion F is a limit sequence, so that we have
Nft(F) & Sqa(t) & x=A41t & v=(x, t'y) = d(v, Flx)= (», F'i'y).

v z v
Since by the continuity of F we have
Fyy="73 (v, Fiz)

we get

2.18 Nft(F) & Sqa(t) & x=4;8 — FY{(3(x, t'y)) = D (x, Fity).

v v
By this formula a generalized continuity property of Normal-
funktionen is expressed.

With the aid of 2.18 we are able to prove the existence of critical
points for any Normalfunktion F, as announced in IV, § 2. We
even show that there exists beyond every ordinal x a critical
point of F. The formal statement is

2.19 Nft(F) — (En)(x e n & F'n=n).
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For the proof we first observe that in the case F'x'=«', 2.19 holds.
Besides this case is only possible if F' has successors as values.
In the other case

1] o' € Fo’

we consider the numeral iterator J(F,«") of F on «'. From [1]
and the strict monotonity of F we get by numeral induction

new = J(I Y0 e l(F, o) n
and hence also
[2] nem&mew — IF,xVne )(F,o ) m.

Therefore, by 2.1 a), >(w, J(F, «")x) is a limit number, and it only
remains to show e

[3] F (0, J(F, o'yx)= (o, (F, «")x).

But this follows from 2.18, using Sqa(e,(z* = J(F, «'))); namely
substituting this «term for ¢, we first get

FeS(w, (F, a'y2) = 3 (o, F(F, ')a)
and from this [3] is obtained by Lim(w) and the iteration theorem.
From 2.19 in particular follows that for every critical point of
a Normalfunktion F there is a higher one and thus also a next
higher one. Further we have that for any limit sequence s of
critical points of F, (4, s'z) is again a critical point of F, or
formally ’

2.20 Nft(F) & Sqa(s) & As=1 & (§)(E € A —> Fisit=s&)-—>-
= FUS(4, str) = D(4, s).

z z

Indeed upon our premise we have by 2.18

'Y (4, sz)= (4, F'stx)

F2 z

= D(4, s'x).
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Therefore the critical points of a Normalfunktion F are the values
of again a Normalfunktion. In fact defining

Df2.2 DWF)=I1{én |n=wulé € x & Flr=2x)}, p(F'z=1x))
we have by 2.19 and IV, 2.9

2.21 Nft(F) — Nft(D(F'))
and further
2.22 Nft(F) - —=-a € Ay(D(F)) & Fla=an.

The proof of 2.22 goes with using the formulas IV, 2.1 and
2.20-2.21.

A transfinite iteration of the class function D is not yielded
by our transfinite iterator, but under certain assumptions it can
be indirectly performed by operating with the segments of the
Normalfunktion in question.

Still we introduce the notion of the type of a limit number.
As we know, for every limit sequence s the sum > (4;s, stz), which

is the same as YA,s, is a limit number 4, by 2.1a). We call 4
generated by the sequence s if Sqa(s) & A= 3> 4,s. Every limit number
A is generated by a sequence, namely the class {én ] £ €1 & E=1n}
is represented by a limit sequence with the converse domain 4,
and by III, 2.14 we have 31=41; of course A can be generated by
various sequences.

Regarding the sequences generating limit numbers A with respect
to their domain, we call 1 x-generatable if there is a sequence with
the domain «, generating A, formally

Df2.3  Gt(d «) « (Ex)(Sqa(z) & djx=o & A= DA,x).
Concerning this concept we state

S a) Lim(d) — Gt(4, 1)
b) Gt(d,») =»> veldvy=1
( c) Gt(4, ») & Gt(v, 2) = Gt(4, x).

2.23

2.23 a) follows by the just made observation from III, 2.14;
2.23 b) by 2.1 ¢) and 2.23 ¢) by 2.17.



§ 2] SOME TOPICS OF ORDINAL ARITHMETIC 171

Now the type of a limit number 1 is defined as the lowest ordinal
x such that Gt(4, x):

Df24 T(A)= u Gt(4, 2) 1)
About this function we prove
2.24 Gt(4, ») > 1) =T(»).

First by 2.23 and Df 2.4 we directly have
GH(4, v) = 1(4) CT(»).
Thus it remains only to show that
Gt(4, ») = 1(») S T(4),
and for this it is sufficient to prove
[1] Gt(4, v) & Gt(4, x) = (EE)E Cx & Gt(v, £)).

This goes as follows. Upon our premise we have two limit sequences
s and ¢, with the domains » and » respectively such that

A= (v, s'z), A= Z(x, 1y).

Let us denote by f(o) the term p.(r v & t'p € sx), then we first
have upon our premise

[2] poex—>ftp)er & to e sH(p).
Using this we further obtain
[3] xev = (BE)(£ e x & o e f(8));

namely we get
xecy—>suel,

stx e A = (BE)(& € » & s'x € 148),
Bex&suect'f — t'f e sH(p)
— o € sH(P)

— « € £(f),
and thus by the predicate calculus[3]results.[2]and [3] together yield
[4] v=2(x, {(y)).

v

1) 1 is the hebraic letter ‘“zayin”. The use of an hebraic letter here is
motived by the fact, still to be shown, that $(1) is a cardinal number.
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From this we cannot infer Gt(», x), since upon « € § € » we cannot
prove f(x) € £{#), but only f(x) C £(5). But a generating sequence
for » is given by the numeration of the different ¥(£), é € » in their
natural order. Now the domain of this numeration, as easily seen,
is Cx, and so we have (E&)(£C » & Gt(», &)).

We call a limit number A reductble or irreducible according as
Y(A)ed or 1(A)=11). By 2.23 ¢, 1(A) is always irreducible. From
this we can further infer, that for every limit number 4, T(4)
is a cardinal. Namely we have

2.25 Lim(1) = T(1) C R(A).

This indeed results from the following more general consideration.
Let ¢ be a one-to-one correspondence between an ordinal » and
a limit number A, then leaving out those pairs {g,s¢> for which
there exists a pair {x, f> in ¢ with « € ¢ and o €, we get a one-
to-one correspondence d between subsets of x» and A such that

f1] E)Etedd&nedd &éEen = d'E edny)
[2] (E)NEed — (En)(neld & & en)).

The last property of d follows since for every « € 2 the ordinal
cu(z € x & €c'z) must be an element of A,d. Further by the
natural order of A;d a numeration s of 4,d is induced whose domain
is an ordinal not higher than x because 4;d C ». Then the composed
set s|d is an ascending limit sequence which generates 4 and
whose domain is not higher than x, so that (1) C ». Now applying
this to the case N(1)=x we obtain 2.25.
From 2.25 we infer

2.26 Lim(4) — T(4)=R(1(1))
using the formulas

Lim(1) — Lim(T(4)), Lim(4) — 1(3(1))=1(4),
which result from 2.23, Df 2.4 and 2.24.

1) This distinetion coincides with that of singular and regular limit
numbers, as it occurs in the literature.
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VII, § 3. CARDINAL OPERATIONS

The arithmetic of cardinals originates from the comparison of
sets with regard to power. The fundamental facts in this respect
are:

(1) the elementary properties of the relation a ~ b, 11, § 4,
2) ., ' ve » 5, relations a <b,a<b V,§1,
(3) in particular the Bernstein—Schréder theorem

aﬁb&bﬁa»ar\zb, Vv, 1.3,
(4) and the general comparability of sets a <bvb <a VI, 3.2,

(5) thelaws of computation and of substitutivity for the operations
aJb,axbat II §4, VI §1,
(6) the inequality a<< 0" VI, 1.10, VI, 1.3.
In order to pass from these statements to the theory of cardinals
we have to use the concept of the cardinal X(a) of a set ¢ (VI, Df 3.1),
and the predicate of m being a cardinal number (VI, Df 3.3) with
its fundamental properties VI, 3.5-VI, 3.101).
With the aid of these concepts we define the arithmetic opera-
tions on cardinal numbers. For this we shall have to employ some
properties of the term a x [p]. We note that we have

a) a X [p] ~a
3.1 b) p#q —> (@ax[p) W (ex[qg]l) = 0
c) aCb — ax][p] C bx[p]

We use a x [p] in order to get mutually exclusive representations
of the power of a. This we do in particular for defining the cardinal
sum of a and b

Df3.1 a4b = Ra x [0]) U (b x [07).
The cardinal product is defined by

Df3.2 aXb = Raxb),

and the cardinal potency by

Df3.3 ad = N(ab).

1) The application of the enumerated laws will not be expressly mentioned
in this and the following section.
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According to these definitions the operations of cardinal sum,
product and potency are functions of arbitrary sets with cardinal
numbers as values. But they yield immediately functions of
cardinals, as results from the provable formula

3.2 a~Nc&b~d s> a++b=c+d&aXb=cxXd&ak=

which immediately gives

a) a4b = XRa)+ X
3.3 b) aXb = X)X X
c) ak = N(a) &(b).
For the sum we also note
3.4 anNb=0—>a++b=X@auUb), a4 0=X(a).

There is no difficulty to extend our definitions of cardinal sum
and product to the case of arbitrary many members, namely
by defining

Df3.4 2 t(z)=N(§(m, t(x) x [£])

Df 3.5 ]] t(r)= N(I;I(m, t(x)))-

Corresponding to 3.2 we have here to provel)

3.5 (@) € m —> 8(x) ~ t(z)) = Zt

3.6 ()(x e m = 8(x) ~ t(z)) = ]]é Ht(x)

For the proof of 3.5 we have to set up a one-to-one correspondence

1) It may be allowed to take in the following formula schemata of this
section (up to p. 179) instead of the syntactical variables 1, 1y, u, v, the
corresponding latin variables. Note that we could deal here everywhere
with formulas instead of schemata by applying instead of denotations of
terms with arguments rather variables for functional sets; of. II, 1.15
and II, 3.10.
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between the two sums on the right. To this end we consider the
class of pairs

[1] {zy ]x e m & Crs(y) & Ay =38(x) x [x] & A,y=t(x) x [x]}.

The domain of [1] is m, since by the premise of 3.5 there exists
for every z out of m a one-to-one correspondence between
8(x) x [x] and t(x) x [x]. In order to apply to [1] the axiom of
choice A 5 we have to show that this class is represented by a set.
This follows by II, 3.14 from the fact that the converse domain of
[1] is a subclass of X(m, =((8(x) x [x]) x (i(z) x [#]))). Now
as a consequence of A 5 there exists a functional set f assigning
to every element x of m a one-to-one correspondence between
3(x) x [#] and t(x) x [#], moreover >(m, fxr) is a one-to-one
correspondence between > (m, 3(x) x [z]) and > (m, t(x) x [z]), so
that 3.5 results. ’

The proof of 3.6 goes by first showing, with applying A5 in a
corresponding way as above, the existence of a function g assigning
to every element z of m a one-to-one correspondence between
8(x) and t(x). Now it results that the class of pairs
[2] {uv Ju e TT(m, 3(x)) & Ft(v) & Av=m & (z)(x € m —

: — (utz, v'x) € g'x)}
is a one-to-one correspondence between the two products [](m, 3(x))
and J](m, t(x)); at the same time it follows that [2] is represented
by a set.

Parallel to the formula 3.4 we also have

37T ) y)xrem&yem &xrry —>3(z) N 3(y)=0) —
= ' 8(@)=R(Z(m, 5(x))).

Indeed a one-to-one correspondence between >(m, 3(x) x [#]) and

>(m, 8(x)) is given by the class

z

{uv | (Ex)(x e m & v € 3(x) & u={v, z))}.
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An advantage of our way of introducing cardinal numbers is
that we need not with respect to them a particular definition of
equality and of smaller than, since equality of cardinal numbers
is the same as set equality and the relation smaller than between
cardinal numbers is the same as the proper subset relation as
also the element relation between ordinals. Further all the
elementary computation laws hold unrestrictedly for the cardinal
operations in virtue of the corresponding laws for the defining
operations; thus for instance we have

aX (b+c) = (aXb) + (@ Xo).
We also get
a<b—s>a4+cChb4c
—2>aXcCbxc
— a= C b
a<b&c#0 = ¢& C c&

3.8

and correspondingly for infinite cardinal sums and products, by
3.5 and 3.6,

3.9 (@)@ € m = 3(x) < t()) - —>- Z 3(x) C Z t(z) &

& [ 8@ C [[ t).
We also note the formula o o

3.10 a#0—=>R(b)Ca X b.

The analogy with ordinary arithematic appears likewise in the
following equations concerning sums and products with equal
members

3.1 Z N(a x [z]) = m X R(a)
3.12 Hx(a x [z]) = R(a)=.

The first results from the formula

Sim,a x [x]) = axm

together with 3.5; the.second follows from VI, 1.5 together with 3.6.
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From 3.11 and 3.12 in connection with 3.9 we get

3.13 (x)(xem»é(x)ﬁa)-—»zé(x)gmXa&llé(x)gaﬂ.

r.m x.m

Also the following distributive laws are valable

3.14 (D t@) xa = 3 @) x a)

. z.m

3.15 ( t(x))i =[] t@e).

z, .m

The proof of 3.14 goes by starting from the identity
2(m, t(x)) x a = 3(m, ({(z) x a))

which then has to be applied with t(x) x [x] instead of t(x) and
using the formula 3.5 and

(e x d]) x a ~ (¢ x a) x [d].

For proving 3.15 the one-to-one correspondence to be set up
consists in coordinating with each function » which assigns to
every y, y €a, a function assigning to every z, z em, a value
(u'y)x, out of t(x), that function v which assigns to every z, z € m,
the function assigning to every y, y € a, the value (¥'y)'x. Formally
the one-to-one correspondence is

{uv | Ft(u) & du=a & (y)(y € a — Ft(uty) & A (v'y)=m &
& (2)(x e m = (u'y)r e t(z)) &
& Ft(v) & Ajw=m & (x)(x € m = Ft(v'z) & A,(v'x)=a &
& (Y)(y € a — (vz)y=(u'y)))}.
The laws for the relation smaller than (with exclusion of
equality) are most not generally valable for infinite sets. But at

all events we have the theorem of J. Konig, which in its generalized
form, given by Ph. Jourdain, says

3.16  (2)(z € m— 3(x) -<t(x))-—>-2§(x) C ]] t().

zr.m
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For the proof we first note that, as a special application of 3.6,
we have

[1] H(m’ t(x)) ~ H(m! t(x) x [x]);

x

so that 3.16 will follow if we prove
[2] @)@ em—>3(z) < t(x) —- 2(m,8(x) x [2]) < TT(m, t(z) x[2]);

x
moreover we have

(e x e m & 8(x) < t(x))-—-8(x) x [x] < t(x) x [x].
and

(@) Nz # y = (8(z) x [2]) N (8(y) x [y])=0),
and the same for t.
Thus for obtaining [2] it is sufficient to prove
[B] @)z em —-Hz) <lz) & @)y)c+y =>Hz) N Hy)=0&
& (z) N U(y)=0) : = 3(m, z)) < [I(m, ().

This is to be done by ’ ’
(i) setting up a one-to-one correspondence between Y(m, f(x))
and a subset of T](m, l(z)) :

(ii) proving that for every mapping of Y(m, f(x)) into T](m, I(x))
by a function f there is an element of [](m, [(x)) which is not in

the converse domain of f.
For (i) we first infer from
(x)(x € m — ()" ()~ 0),
which consists under our premise by V, 1.7, with the aid of the axiom
of choice in the form VI, 2.2, the existence of a functional set g
such that
(x)(x € m = g'z € (I(x)t(x)).
Then the one-to-one correspondence is given by the class of pairs
{uv | (Ex)(z em & u e ¥(x) & Ft(v) & Apv=m & v'r=u &
& 2)zem &z#x = Vz=g"))}

which is easily shown to be one-to-one.
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For (i) we have the premisc on f:
[4] Ft(f) & Ayf=3(m, ¥(z)) & 4,f CTT(m, (=)

at our disposal. From [4] follows
acflc) &cem -— - Ft(fla) & (b e m — (fa)b € (D));

further from the consequence VI, 2.9 of A 5 and our premise we
infer that for every element ¢ of m the functional set with the
domain f(c) assigning to every element of a of f(c) the value ((f'a)’c
has a converse domain of lower power than [(c); therefore again
by V, 1.7

cem = (E2)(z €l(c) & (u)(u € f(c) = (fu)c#2z))
and so the class

{zz |z em &z el(x) & (u)(u € f(x) = (fu)r+2)}

has the domain m. Further this class is represented by a set, since
its converse domain is a subclass of Z m, [(x)). Therefore applying
A5 we get

Ey)y € TT(m, I(z)) & (z)(u)(zem &uetlx) - (fu)z
and from this with the predicate calculus we obtain
(Ey)y € TT(m, I(z)) & (u)(u € 3(m, t(z)) = fuy)).

But just this was to be proved.

VII, § 4. FORMAL LAWS ON CARDINALS

Besides those laws of cardinal arithmetic which are common for
finite and infinite cardinals, there are also some relations peculiar
to transfinite arithmetic. In particular we have here that the sum
and the product of two cardinals, one at least of which is infinite,
equals the maximal one. For proving this it is the main point to
show that for every infinite set a the cardinal sum a 4 ¢ and the
product @ X @ is simply RX(a). We prove first

4.1 Cd(x) & w Cox = & 4 x=«.
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For this we use our theorems concerning the division of ordinals
with w. From 2.9, and 2.14 we get by Df VI, 3.3 of Cd:

4.2 Cdx) & w Co — (BEWEAOD & x=w-§).
Hence our proof comes out to show

Wt wn ~ wx

i.e. by Df3.1
1] 0% X [0l VU wxx[0] ~ o=x
However this results with the aid of 2.12. Namely by this we have
(0% x [0]) U (0% x [0]) =
= (2l 0-2"0-2) X [0]) U (w0270 2) X [07]) =

z

= (% ((0-2"w-z) X [0]) U (02"~ z) X [0])).

T

Since the sets w-x'~w-2 corresponding to different x out of » are
mutually exclusive the proof of [1] reduces to that of

(0-f~w-f) X [0] U (@-fw-f) X [0l ~ o f b
But this directly results by verifying that the class of pairs
{uv | (E2)(Nu(2) : & :u={w-f+2,0) &v=w-f+2+2-V-
Vu=(w-f+2,0) &v=0-f+2+2')}

is a one-to-one correspondence.
From 4.1 we immediately get

4.3 Infin{a) = a + a=NR(a).
More generally from 4.3 we infer
4.4 a<b & Infin(b) — a 4+ b=NR(d).
Namely upon a <b we have
(@x [0]) U (bx [0]) < (bxI01) U (bx[0])
a4+bCb4b

hence

and by 4.3
(1] a 4 b CR(D).
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On the other hand we obviously have
2] X)) Ca +b.
From [1] and [2] together 4.4 results.
At the same time we get
44a a < b & Infin(b) = R(a U b)=R(b).
Parallel to 4.1 we prove for the cardinal product
4.5 Cdlx) &w Cax = & X x=x.

This goes by transfinite induction on x. Thus let & be an infinite
cardinal, such that for lower infinite cardinals 4.5 holds. We
decompose « X « into three sets a, b, ¢ representing the classes

a* = {n |i=n &y ea}
*={n|Een &nea}
ct*={n|net&fea}
Since @ ~« and b ~ ¢, 4.5 will follow with the aid of 4.1, when
we show that ¢ ~ «. For this we consider the lexicographic order

of ¢, which is a wellorder and thus generates a numeration of c.
Let & be the domain of this numeration then ¢ ~ 8. Further 6 > «,

and so we only still need to show that 6 < «. We even prove
8 Cx, what by Cd(«) amounts to show that

yed—R(y) ea.

This now goes as follows. By the said numeration of ¢, y is
assigned to a pair {x, ) with 1 € »x & x ex; at the same time y
is in a one-to-one correspondence with the set of pairs preceding
{x%,A> in the lexicographic order. This set is a subset of »' X »’.
Here x» is lower than « and therefore N(x')ex. Now either x is
finite, then %’ x »’ also is finite and therefore y is finite. If x is
infinite then by the assumption of our induction X(x") X R(s") = X(x")
and hence N(y) C R(x" X »')=X(x"), thus R(y) € «.

Corresponding to the passage from 4.1 to 4.4 we derive from 4.5

4.6 a0 &aﬁ_b&Inﬁn(b) — a X b=N(b),
using that a <b = a xb < b xb and a20—>b < a xb.
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As a consequence of 4.6 we get (writing the symbol 2 for 0"):
4.7 Infin(a) —> 28=af.
Indeed we have
a < [0, 0*
and therefore by VI, 1.9, VI, 1.6 and 4.6

at < 228 o 2

Likewise we have

4.8 2 < c< a &Infin(a) - 2B=ci=af

From the theorems 4.1 and 4.5 it results that for infinite car-
dinals the operations of addition and multiplication do not lead
from two given cardinals to a higher one. On the other hand we
know that 2% is a higher cardinal than ¥X(a), so that there is for
every cardinal a higher one, and thus also a next higher one.
Moreover for every limit sequence s of cardinals the sum of its
members is the next higher cardinal. Namely first this sum 4 is
by III, 2.9, 2.10 the least ordinal higher than these members.
But 1 must also be a cardinal since otherwise there would be a
cardinal s'x, » € 4;s, such that Y(4) < &% < 4, what indeed is
impossible. -

By this way the sequential class X of infinite cardinals in their
natural order is obtainable by the following transfinite iteration

Df41 N =I{& ] n=pCdzx) &£ ex)}, 0); R,=N'a
According to Df4.1 N is a Normalfunktion, and we have

Np=0w, X, is the cardinal following immediately X, and

Lim(») = = (¥, Ra)-

@€r

N, is also determined as being the cardinal number of the set
representing the Zahlenklasse with the initial number X,. Indeed
this set is X, X, and we have

Na’: Nu U (Na’_xa)! Na € Na’
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hence by 4.4 a
N(Na’—xa) = Nzx’ .

To the function N the general considerations on Normalfunktionen
are applying. We have first

4.9 rCR,
and a fortiori
4.10 R(») C R,

Further there exist the critical points of §§ which are the values
of the function D({N). We define

Df 4.2 A =DN), 2,=2%.

D is again a Normalfunktion and its values are the cardinals »
such that
N, =»;

this equation expresses that there are as much cardinals below
X, as there are ordinals below it. Besides by our former statements
on critical points 2.19, using also that every value of N is a limit
number, we have

3'0 = Z(ws J(Nr O)Lx)

z

4.11 3, = o, J(N,2)=)

T

Lim(») = 3, = D>(» 3,).

T

Considering now the cardinals X, with respect to their type,
we have the following facts

4.12 T(Ro) =0
T(N,,/) == N,./.

The first is obvious; the proof of the second one is indirect. If
there were for some 4 € R, a limit sequence s, with 4,s= 4, such that

NV’: 2(}': 'stx):

@€r
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we should have
xed=>R(s'*)CR,,

hence by Df 3.4, 3.13 and 4.6
R(X( #2) C D R(sz) C R X R, = R,
z z, A

Thus for »=0 and Suc(r) the cardinal {X, is irreducible. Now the
question remains of the types of X, for the case Lim(v). Here
we have by the continuity of N, Gt(X,, ») and hence by 2.24

4.13 Lim(») — T(X,)=T(»).

Therefore a necessary condition for {,, with Lim(»), being irreducible
is that ¥, =w», i.e. X, must be a critical point of N, thus a value
of 3. Again if an irreducible ¥, with Lim(y) is an 3,, then x
cannot, be 0 neither a successor, since then by 4.11 1(32,) = w.
Therefore » must be a limit number, and now anew it results
that 2, must be a critical point of 2. In the same way the argu-
ment goes further from 2 to D(Q), and so on, as was pointed to
by Hausdorff. Inquiring here further one comes to state that
it is impossible to infer from our axioms the existence of an
irreducible cardinal &, with limit index »1).

With the aid of the function § the laws of cardinal arithmetic
can be formulated in a pregnant way. By 4.4 and 4.6 we have

4.14 xCB > R+ Vs = R XRp = Ng>
what in particular entails
4.15 xC&YyCo - N+ R, C R+ R

axaxxycxﬂxxd
Further we have by 4.7, 4.8

4.16 X, C 28«
4.17 xCp— 2 = ¥ = xb.

1) The proof of this impossibility belongs to the questions of independence
of which we intend to treat in the second volume.
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The last relation comes to be applied in the proof of Hausdorff’s
recurrence formula [1904]

4.18 X = x, x )&,
For proving this equality we first observe that generally
xPCnd | . oxb
and thus by 4.14
XY x x. C x&
Therefore it is sufficient to show that
X C 2 x ..

For this we distinguish the two cases «” C § and 8 C«x. In the
first case we have by 4.17

N-ﬂ—- NJCN XNaz.

For the second case we argue as follows. Every element of Na,ﬁ‘z
is a sequence s of elements of X, with the domain ¥,. If
A=pu(E)(& € Ays = & € ), that is the lowest ordinal higher than
every value of s, then s e and 1C N, But here the equality
cannot hold. For otherwise the numeration of 4,s by the natural
order would be an ascending limit sequence ¢ generating ¥,.; and
since X, is an irreducible limit number, 4, would have to be X,..
However this is impossible since Alt.<Als 415 =Rp Vp < Ve
Hence A€ X,. This means that the members of a sequence belonging
to N}@ are elements of some element of NX,..
Hence we have

C > N x__

z

and thus

[1] M C VoS

Z, Rt
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Besides

c exa,»cﬁﬂgxgﬂ.
Therefore by 3.13
[2] N Con x w

& Ry

and by [1] and [2]
XY C X x &8

By the Hausdorff recurrence formula 4.18 the potency al for
the case of X(a)= R, is reduced to the potency xf- For the case
that X(a)=N,; with Lim(4) a reduction formula has been given by
Tarski, which however includes infinite sums and products.

For infinite sums and products there are also general evaluation
laws. Concerning sums we have

a) Zxxzxz

4.19 i
b) Lim(d)—> Y R.= .

x A

4.19 a) follows by 3.13, 4.10 and 4.14. Indeed we get

® C DR C R X R C R X R C N

@ A

At the same time we get

[1] DR C
z, A
Besides for a limit number 4 we have
le z(}': Nr)
and hence
[2] X C )R,
x, A

From [1] and [2] results 4.19 b).
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In analogy to the formulas 4.19 the following formulas for
infinite products hold

a) VB

4.20 ny xa)
Lim(4 —>wa =

The proof of these formulas, Whlch was given by Tarski [1925],
requires somewhat more entering in the theory of ordinals. We
refrain here from carrying it out1).

The formulas 4.19 b and 4.20 b can in particular be used for
proving the mentioned reduction laws of Tarski for potencies
Ng-ﬁ with Lim(x):

Sa) Lim(x) & R C¥(x) -—>- xgﬁ = Z x%ﬂ

4.21 b) Lim(x) & T(x) C X & Sqa(s) & 2 (N(x), 8'x) = & - —>-
“ﬂ -
( x_g s'z

Instead of the exponent {; we could here everywhere write simply an
ordinal variable in virtue of a¥ = a¥® .
Concerning the function I(x) we still note the inequality

4.22 Lim(x) = R, C &I“.

This results from the generalized Ko6nig theorem 3.16; indeed by
this, using also 2.18 and 3.13 we have

Lim(x) & Sqa(s) & > (I(x), s'z) = & -—>-
= Na = z( ’ x‘:c Zxa‘z c Hxs‘z = L(a)

z, o) z. T(x)
From 4.22 we especially draw

4.23 Lim(x) &3(x) Cp — & # R..

1) A newer comprehensive exposition of ordinal and ecardinal theory is
to be found in [Bachmann 1955].
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I( &)

For, by the premise we have (xg) = xf, whereas by 4.22
Tix)

X=  # R.- A particular consequence of 4.23 is that
2% (= X=) # K,

As is well known, the question if 28 = §,,, as Cantor supposed,

is undecided. The assumption that generally 28 = R, is called
the generalized continuum hypothesis. If this relation holds, then
obviously many of the foregoing equations and inequalities become
considcrably simplified. As K. Godel [1940] has shown, the
generalized continuum hypothesis at all events cannot be refuted,
provided our system, without the axiom of choice, is consistent.

VII, § 5. ABSTRACT THEORIES

Not only the categorical theories of mathematics, as are number
theory, analysis and the theories of ordinals and cardinals, are
included in our system, but also the hypothetical theories of
abstract algebra and topology can be embodied in it. The method
of this embodying was already applied in chap. V for treating
order, partial order and lattices. The characteristic means consists
in fixing the hypothetical domain and the hypothetical operations
and relations by free variables referring to them.

Giving here some instances of this method, we shall content us
to show on principle the possibility of embodying the theories in
question. For the nearer formal handling it will be required to
introduce suitable simplifying conventions.

Let us take as first instance group theory. We say that a set a
forms a group with respect to the operation f, if f is a functional
sct with the domain ¢ x @ such that the well known conditions of
associativity and invertibility are satisfied.

Formally we define

Df5.1  Gr(f,a) & Ft(f) &Af=a xa &A,fCa &
& @)y reca &yeca&zea = [Ha, [y, 2D) =
= f{f'z, ., ) &)= rea &zea —
- By)yea - (Ka, > = 2) &(By)(f<y, 2> = 2)).
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It would be possible to deal also with a function F and a class 4
constituting a group in a generalized sense, but for formalizing
the mathematical reasonings this will not be required, especially
if we make use of the axioms A 4 and A 6, If only f is replaced by
a function F, then no generalization arises since then the domain
of F is (a X a)* and thus F is represented.

The formal development of group theory goes by deriving
theorems under the premise Gr(f,a) with the fixed parameters
f and a. In the text we shall speak briefly of the group “{f, a)”
and call the elements of a the elements of the group. The order
of a group {f, a)> is simply X(a). The unit element of the group is
t(f*¢x, ) =x), and the inverse element of b is ¢.(y)(f(f*<b,z),y)>=y).
An element ¢ of the group is said to be of infinite or finite order
according as the converse domain of the iterator J({uv|v=f(u,c)},c),
is infinite or finite. In the last case the cardinal of that converse
domain is called the order of ¢; it then can be expressed by the
number term

0"+ u,(J({uv [v=F<u, >}, c)fx=1(f<y, y>=9))
The definition of a subgroup of (f,a) is given by
Df5.2 Sgr(b,f,a) & Gr(f,a) &b Ca & Gr(f N ((b xXb) Xa), b)
«b is a subgroup of a with respect to the operation f».

An example of an higher concept related to group theory is
that of the group of automorphisms of a set ¢ with respect to a
certain —for instance ternary —relation H, which is a subclass
of (V x V) x V. Then the class of automorphisms of ¢ with respect
to H is

{x [Crs(z) & Ajz=c & Ayr=c & (W)(@)(w)(uecc &vec&wec-—-
= u, v, wy € H « {(atu, 2v), 2'w) € H)}.

This class is represented by a set ¢, since it is a subeclass of z(¢ X ¢);
and ¢ is a group with respect to the function

{uv | (Ex)Ey)zect &yect &u=_{,y) &v=z|y)},

which is represented, since its domain is ¢ x ¢.
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From these brief indications it will appear that group theory
can be developed in the frame of our system. There exists the
class of all groups, or in other words the class of all models for
the axioms of group theory, namely {zy | Gr(z, ¥)}.

Especially near to set theory is the fopology of spaces. Let us
briefly consider the method of starting in topology with a concept
of closure. Generally a functional set ¢ is said to be a closure
function for a set a, if it assigns to every subset of a again a subset
in such a way that the following closure conditions are fulfilled:

Df5.3 Cl(c,a) o Ft(c) & die=nla) & A,c C n(a) &
&@)exCa&yCa -—>-
=z Ccte &'z Ccle & (x Cy — ctx C c'y)).

Now a set s is said to be a space with respect to a closure function ¢ if

Cllc, s) & (@) xCs &yls — cxrVy)=cax U dy) &
& (x)(x e s = Hx] =[x])-

Then the point sets to be considered are the subsets of s, and
hence the language of the theory is directly set theoretic. The
derivations are expressible quite in the familiar way. Of course
on a certain stage of the theory, namely when upon suitable
conditions a distance function is to be defined, we have to adjoin
the theory of real numbers.

Somewhat more complicated is the embodying of such theories
where formal operating and abstract reasonings are combined, as
it occurs in the algebraic theory of rings. For this case a method
of that embodying procedure shall be briefly indicated.

We begin with the concept of a ring. Restricting our consi-
deration to commutative rings with a multiplicative unit we
introduce by explicit definition the predicate with five free
arguments Rg(f, g, ¢, 0, ¢), to read ‘‘¢ is with respect to f as ring sum
and ¢ as ring product a commutative ring with null element o and
unit element e (#0)”. It will not be necessary to write down here
this definition which formulates the familiar properties of such
a ring. In the text we shall speak briefly of “the ring ({f, ¢>, ).
(Note that o and e are determined by f,g,¢.) We also take the
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liberty to speak of an element of this ring in the sense of an
element of ¢.

There are some of the elementary notions connected with the
concept of a ring which we shall have to use. The k-fold of a ring
element a, k being a natural number, is defined by

J{uv fo=FCu, ad}, o)k

and likewise the k™ potency of a ring element a by
I{uv |v=g'Cu, ad}, e)'k.

The ring sum Zs of the members of a finite sequence s of ring
elements and likewise the ring product IIs of these members is
definable by primitive recursion. (Cf. 1II, 4.7).

Now we go on to define a polynomial over our ring {{f, g>, >
in n variables =z, ...x,_;. Intuitively it consists of Potenz-
produkte of the n variables with coefficients out of ¢{-[o], joined
by ‘4 ”. Each Potenzprodukt is determined by the powers assigned
to the different variables. Thus we can formally represent it by
a sequence of natural numbers with the domain » (n-sequence of
natural numbers), which we call briefly a n-complex. Correspondingly
for a Potenzprodukt with coefficient we take an ordered pair
whose first member is a n-complex and the second member an
element of {—[o]. We call such a pair a monomial and the second
member the coefficient of the monomial. Now a polynomial (n-
polynomial over our ring) is defined as a finite functional set
whose elements are monomials. By this definition the empty set
is a particular n-polynomial. The coefficients of the monomials
in a polynomial are also called the coefficients of this polynomial.
Equality of polynomials is set-theoretic identity.

We state at once some familiar notions, related to n-complexes
and polynomials. By the degree of a n-complex we understand the
number-theoretic sum of its members, and by the degree of a
polynomial the highest degree of a complex of its domain. (The
degree of the empty polynomial is taken as zero.) A polynomial
is called homogenious if the n-complexes of its domain have all
the same degree. Two n-complexes p, q are said to be associated
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if there is a one-to-one correspondence ¢ of n into itself (permu-
tation) such that ¢ | p=¢. A polynomial is called symmetrical if
any two of its monomials with associated n-complexes have the
same coefficient.

We now come to define algebraic sum and product of poly-
nomials.

The algebraic sum of polynomials p, ¢ is obtained as follows.
We first form the set of monomials whose domain is the set sum
of the domains of p and ¢ and whose each complex ¢ occurs with
that coefficient which is either —in case that ¢ occurs only in one
of the polynomials p, g — p'c or ¢'c, and in case that ¢ occurs in both,
f{p'c, ¢'c)>. From this set we get the algebraic sum of p and g by
cancelling the monomials with the coefficient 0. The associativity
and commutativity of this sum can be inferred from the correspon-
ding properties of the ring sum. For the so defined sum operation
on polynomials the null element is the empty polynomial, and
the opposite of a polynomial p is that polynomial which assigns
to every complex ¢ of the domain of p that element of the ring
which is opposite to p'c. Still the sum of the members of a finite
sequence of polynomials can be defined in the usual manner by
primitive recursion.

In order to define the algebraic produet of polynomials we
first define the product of two n-complexes ¢ and d as that n-
complex which assigns to any natural number &k € n the natural
number ¢'k+d‘%. The product of two monomials (¢, a), {d, b) is
the monomial whose first member is the product of the complexes
¢ and d and whose second member is ¢*{a, b)>.1) The product of a
monomial r with a polynomial q is that polynomial whose elements
are the products of » with the elements of q. The algebraic product
of two polynomials p, ¢ now is got as follows. Let % be a numeration
of p (which is a finite sequence). We pass from % to that sequence s,
which assigns to each natural number ! out of the domain of % the
product of Al with q. The sequence s is then a sequence of poly-

1) However in the casc that g*<a, b is 0, the product of the monomials
“vanishes”; it then has simply to be dropped in the following product
formation.
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nomials and the algebraic sum of its members can be proved to
be independent from the special numeration of p. This algebraic
sum then is the algebraic product of p and gq.

The proofs of the commutativity and associativity of this
product as also of the distributive law have to be made by means
of numeral inductions with respect to the multitudes of the occurring
polynomials applying the corresponding properties of the ring
operations and the commutativity and associativity of products
of monomials. The unit element for the algebraic product operation
is the polynomial [(n x [o], e>]. We note also that an algebraic
product of which one factor is the empty polynomial yields the
empty polynomial.

On the whole we thus get that the polynomials over our ring—
the “coefficient ring” — constitute with respect to the defined
algebraic sum and product operations, again a commutative ring
with unit element.

In this ring to every element a of {~[0] corresponds a constant
polynomial [{n x [0],a>]; these polynomials together with the
empty polynomial, taken as corresponding to o, form a subring
which is isomorphic to our ring ((f, ¢>, t).

For the following we note still that we can define the product
of a polynomial p with an element a of ¢, namely as its product
with the constant polynomial corresponding to a; this product is
to be obtained from p by replacing every coefficient ¢ of it by
g'{a, c>; only in case that a is o the product is the empty set.

An essential procedure in the theory of polynomials is to sub-
stitute for the variables elements of a ring r. For the possibility
of this process it is required that the product of an element of r
with an element of the coefficient ring can be defined as an element
of r. The substitution process for a polynomial p is then as
follows. First in every element (I, k> of a n-complex ¢ of p we
replace the natural number k by the k* potency of that element
of r which is to be substituted for the variable with the number I.
By this we get from the complex ¢ a sequence s of elements of r;
and its ring product IIs is the value to be substituted for ¢. Further
for every monomial {c, @) of p the value to be substituted is the
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product of the value substituted for ¢ with the element a of the
coefficient ring. Now we take a numeration of p; replacing here
every monomial in the converse domain by the substituted value
and forming the ring sum Zs of the resulting sequence s we obtain
the value to be substituted for p.

As an instance for the application of this substitution process
we formulate in our frame the theorem on symmetrical %-poly-
nomials over {({f,¢>,t> which says that every such polynomial is
expressible as a polynomial over ({f,g>,t> in the elementary
symmetrical n-polynomials.

We define the elementary symmetrical polynomial with number
[ (I e n) to be the set of those pairs {c, ¢) wherein ¢ is an n-complex
associated to the set representing

{zy|lrel &y=0-v-zenl &y=0}.

(Note that we begin the numbering of elementary symmetrical
polynomials, like that of the variables, with null.)

Now in order to state the theorem we need only still to express
what it means that a n-polynomial p is expressible in n special
numbered polynomials. This can be formulated by saying that
the polynomial p results as the value obtained from substituting
the numbered polynomials for the equally numbered variables
in a certain n-polynomial. The substitution can be performed,
since the elementary symmetrical polynomials are elements of
the ring of n-polynomials over the ring {{f,¢>,t> and the product
of an n-polynomial with an element of this ring has been defined
as an n-polynomial. —

These instances might be suffice to make appear the possibility of
englobing formal algebra in our set-theoretic frame. We have
refrained here from a more explicit formalization because this
would have required to introduce a lot of notations what seemed
not to be worthwhile, as we are not going farther into the subject.
On the other hand the definitions here given are formulated
in such a way that the passage to formulas of our system is at hand.



CHAPTER VIII
FURTHER STRENGTHENING OF THE AXIOM SYSTEM

VIII, § 1. A STRENGTHENING OF THE AXIOM OF CHOICE

In this chapter we are considering certain extensions of our
axiomatic system which, as the preceding chapters show, are
not required for establishing classical mathematics, but have
the effect of giving the system a stronger closure. This will
be attained by strengthening the axiom of choice and adopting
a form of the “Fundierungsaxiom”, as called by Zermelo [1930].

First as to axiom of choice, a motive for modifying the form
A 5 hitherto used can be found in the circumstance that this form
of the axiom is in a striking way deviating from the explicit form
of all our other axioms A 1-A 4, A 6. Indeed with each of these
axioms a new function symbol § or individual symbol a is introdu-
ced, by which a “symbolische AuflGsung” of an existential state-
ment (xzy)...(x,)(Ey)A(x;. ..x,, y) is afforded in the form

(). . (@)Ul . .2, .. .2,))
or (if » is zero) A(a) 1).

The question thus arises if we cannot apply this method to one
of the different forms of the axiom of choice stated in VI, § 2.
This indeed is possible. We perform the symbolische Auflsung
with starting from the formula VI, 2.5. Here by introducing the
function symbol o(a, b), and cancelling the conjunction members
Ft(y) and 4;y=m, which now become redundant, we get first

1] () rem—>x+£0)-—>-cem —>a(m, c) Ec.

Now we observe that [1] can be replaced by a simpler formula;
namely by substituting [¢] for m and dropping the redundant
antecedent ¢ € [¢] the formula [1] gives

(2] (x)x e[c] > 2#0) = o([c], ¢) ec.

Bernays 1934/391, vol. II, § 1, p. 6.
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Combining [2] with the obvious formula

c#0 = (x)(x e [c] > 2+£0)
we obtain

[3] c#0—=0a([c],c) ec.
Now defining a(¢)=0a([c],c), we come to the pregnant formula
A, c#0—0(c) ec,

which is an explicit form of the axiom of choice. Indeed from A4,
we come back to VI, 2.5 by means of the formula

[4] ()Mxem—>z#0)&b*={zz|zem &z=0(x)}-—-
-—>-Fi(b) & Ajb=m & (z)(x € m — b'x € x),
using II, 3.10.

An inverse passage is not possible. In fact, E. Specker proved that
A, cannot be inferred (using a definition of o(a)) from A 5 and our
other axioms, provided our system is consistent.

Thus A4, is a strengthened form of the axiom of choice. That
A4, is not directly included in A 5 appears from the interpretation.
Indeed A4, expresses the existence of a function which assigns to
every non empty set one of its elements. Such a function is a
subclass of the class {xy |y €} with the same domain. By A 5
the existence of such a function is stated only for sets of pairs.

With regard to our application of the symbolische Auflésung
two things may be observed. The one is that this process itself
amounts to applying a form of a choice principle. Therefore in using
this process with respect to the statement of a choice axiom two
applications of a choice principle so to speak are superposed. The
second remark is that the strength of our application of that
process, in introducing o(a, b), is due to the circumstance that
the variable m in VI, 2.5 ranges over the class of all sets, and not
only over a set.

The elegant explicit form A, of the axiom of choice was first
given by Th. Skolem [1929]. In our system it removes the above
mentioned deviation in structure of the axiom of choice from the
other axioms. On the other hand we must be conscious of a
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new kind of deviation from the other axioms which here arises.
Indeed all our former axioms A 1-A 4, A 6, include an extensional
definition of the symbol introduced by it. This however is obviously
not the case for the symbol o. Nevertheless o(a) syntactically
figures as a function, for which we also can derive by means of
the equality axioms the formula

1.1 a=b—ca(a)=c()).

The adoption of 4, instead of A 5 allows in particular to make
dispensable in several proofs the application of A 4.

Thus in the proof of the numeration theorem VI, 3.1 we have
only to take for @ the function {zy | y=o(c—x)}. — Further in the
proof of the Hausdorff principle VI, 4.1 the function ¢ there
occurring can be replaced by

{uwv |u C Aic & (Ex)(C(x, u) &v = o({z | €z, )} N Aic)}.

In fact it is not used in the proof that g is a set.

So we find that in the passage from the axiom of choice to the
Hausdorff principle and thus also to Zorn’s lemma the application
of A 4 is dispensable, if we use the form A4, of the choice axiom
instead of A 5. However for the inverse passage from Zorn’s lemma
to A 5 it seems that the application of A 4 cannot be avoided ).

There is still a stronger form of the choice principle, suggested
by the Hilbert “‘e-formula’

Ola) = C(e,0(x))
which is translated in our frame by taking a class variable instead

of the predicate variable and o(C) instead of ¢,C(x). In this way
we come to the axiom

A, aecC—o(C)el.
The parallelism of A, with 4, is obvious. Besides A, is derivable
from A upon defining o(a)=a(a*). However the formula which

would correspond to 1.1 is not provable; namely the schema I, 3.1
is no more derivable after ¢(4) being introduced, since the axiom

1) Cf. the corresponding remark, relative to the simple type theory,
by R. Biichi [1953].
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A, gives no means for eliminating this symbol. Therefore in order
to complete the parallelism between ¢(A) and o(¢) we have to
add the axiom

A A = B —¢(4)=09(B).

In a like way as A arises from A4, by changing a set variable
into a class variable, there is a strengthening of A 5 for the case
of the set a being replaced by a class A. This strengthened statement
can be derived from A;; namely using this axiom we have

1.2 Ps(A) & F ={w|uedhd &v=0{x |{u, ) c A})} —
— FCA&AF = A4 &F(F).

In comparison with A 5 there is here the difference that instead
of the pure existential assertion we have an explicit indication of
the class stated to exist. The pure existential statement was taken
in [Bernays 1941] as axiom of choice. In our present frame it
cannot be directly formalized, since we do not employ bound class
variables.

The axiom A, affords a general method for formalizing the
symbolische Auflésung. Let us show this for the case of the passage
from (x)(Evy)A(z, y) to (z)A(z, f(x)) — with a new function symbol {.
Indeed here 4, together with the Church schema and the predicate
calculus gives

Ala. by > b e {z | Ula, 2)}
— o({z [ Ua. 2)}) € {z | Ua, 2)}
— A(a, o({z | Ala, 2)}))
and hence

(@) (Ey) Az, y) = ()A(z, o({z | A=, 2)})),
so that upon our premise we get (x)U(z, f(x)) by defining

fe)=a({z | Alc, 2)})-
From A; together with A, we still can derive a further choice
principle, which is a generalization of the multiplicative axiom
VI, 2.6 1y;

1) This form of the choice principle was stated by E. Specker in his
Habilitationsschrift [1957].
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1.3 DPs(d) & (@)@ (e, z>ed &{y,zped = (r,yped &
& {(z,2) e ) &C = {y | (Ex)y=0fz | (z, z) € A}))} - —>-
= (W)redid = Ey)lyeC &,y e A& (R)zelC &
&{x,z) e d - y=z2)))
«f A is a class of pairs such that by {a, b) € 4 the domain
A4 is divided in mutually exclusive classes, each expressible
in the form {z | (a, z) € A}, then there exists a class C' which
has exactly one element in common with each of these
classes».

The proof goes as follows. Denoting by 8(a) the term
o({z [{a, 2> e 4})
we have in virtue of A, and the Church schema
1] aed A —{a,sa)) el
It will be sufficient to derive from our premises the formula
aecdd—>3a)cC &<{a,8a))ecd &(cel &{a,c) e A —38(a)=c).
From the third premise we get, using again 4,
[2] belC e (Bx)(x e A &b=35(x))
from which we also infer
[3] aecMAd—38a)el.
By [1], [2] and [3] it only remains to derive
de A &{a,3(d)) e 4 - 8(a)=3(d),
what by [1] comes out to prove
{d, 8(d)) e A & {a, 3(d)) € A — 3(a)=23(d).

For this we employ our first premise, by which we get successively
d,8(d))ed &<a,8(d)y)ed—>{a,dyecd

—={z|<a,z) e d} = {z|d,2) e 4}

=z |<a, ) e A} =0({z | (d,2) € 4}) by A,
—> 3(a) = 3(d).
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With the help of 4, we now still can prove an assertion stated
in the beginning of V, § 3, whose proof then was delated, namely
that for every non empty ordered class A with no foremost element
there is a subset with the same property:

14 Or(C) & ACAC &acA &@)zxecd—
= (Ey)yecd &y+2 &y, 2)el)) —-
o = (BR)(*CA &2 0& (2)(xez— (By)lyez &
&y # 2z &y, ) eC))).

For the proof we denote by & the iterator

JWfuwv|ued &v=0({y |ycd &y+u &y, u) eC})}, a).
In virtue of our premise we have by III, 4.1 and A 6

Ft() &4 =0* &A,8CA &neco —»
— R'n' # {n & (K, {'n) € C).
Now, by II, 3.8
(B2)(z* = 4,8)

and thus the succedent of 1.4 results.

In the following we shall show that A4, and A, become derivable
from A4,, under a suitable definition of o(4), if we add the Fun-
diernngsaxiom.

VIII, § 2. THE FUNDIERUNGSAXIOM

The idea of adding the Fundierungsaxiom to the axioms of set
theory goes back to Mirimanoff [1917-1920], who took it as a means
for excluding some sets of an anomalous kind. In fact by our axioms
the concept of a set is precized only in the sense that definite pro-
cesses of set formation are axiomatically introduced. But by this way
the possibility of some anomalies is not excluded, which lie beyond
the ordinary mathematical set formations; on the other hand this
possibility is a hindering for some proofs. An instance of such an
anomaly is a set which is its own element, or else a set [a, b] such
that each of its elements is an element of the other. In the theory
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of ordinals we have excluded such anomalies by requiring ordinals
to satisfy the property Fund (III, Df 1.3).

Thus we are lead to postulating generally Fund(a) for every
set a, what can be stated by the formula

bCa &b£0 — (Ey)yedb &y Nb=0).
An equivalent statement obviously is

A7 c#0 = (By)lyec & (x)(x ¢y va ¢c))
«For every non empty set ¢ there is an element which has
no element in common with c».

From the way we have come to A 7 it is evident that, if A 7 is
present, the definition of Od (I1I, Df 1.4) can be simplified to

2.1 0d(d) < Trans(d) & Alt(d).
Applying A 7 to the sets [a], [a, ], [a, b, c] we get
2.2 ada, acb—->bd¢a, acb&bec — céa.
Generally we can prove with A7
2.3 Sq(s) & Ays=k & Nu(k) & (x)(z ek —
— s'r e s'2') = sk ¢ §0,

This goes by deriving, upon our premises, using the number-
theoretic formula

Nu(k)-—-(z)(x ek’ &x#0 = (Ey)y ek &x=y"),
the formula
@) x ek &x£0 = sz N Ays#0),
which gives together with A 7 applied to 4,s

S0 N A,5=0
and hence
stk ¢ s0.
The consequence 2.3 of A7 excludes the existence of finite
sets whose elements are in a cyclic element relation. But A 7
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also excludes the existence of w-sequences whose every member
has the following member as element. In fact we have (cf. VI, Df 5.4)

2.4 (By) (Dsq(y) & (z)(x € 0 = y'z’ € y'z)),
sinece
[1] Dsq(s) & (z)(z € w = s'z" €5'7) = (2)(z € Aps =z N A5 5 0)
and the succedent of [1] contradicts A 7.
With the aid of this theorem we can prove, using A4,, the

stronger statement of the Fundierungsaxiom which was adopted
by von Neumann [1929], Zermelo [1930] and in [Bernays 1941]1):

2.5 aecC — (By)yeC &yn C=0).

The proof goes indircctly by deriving a contradiction from the
premise (with fixed a and ()

Y aecC & y)yeC—ynCx0).
For this we take the iterator

I{ey Jy=0(z N O)}), a)
which by A 6 and II, 3.10 is represented by an w-sequence s. Now
using our premise [1] we first infer a N Cx0, ie. s$0NC -0,
and from the characterizing property of the iterator it follows by
numeral induction on = (using again [1])

Nu(n) = s'n' e s'n N C.
But this contradicts 2.4.

The application of A, in this proof can be avoided by a method
which uses A 4. This reasoning, due to Gdédel [1940], will be given
in the next section.

We still observe that in the case we have the axiom A4, at our
disposal, the Fundierungsaxiom can be taken in the simple form
F, ala) N n=0.

1) As was carried out in [Bernays, 1941] with indication of literature,
ordinal theory, so far as developed in III, § 1, can be obtained with taking
as axioms A 1, A 2 and the formula 2.5. The method here used has after-
wards been found to be mainly contained already in Mirimanoff [1917].
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In fact from this formula together with A4, A 7 directly follows.
The corresponding formula, related to o(4),

F: o(d)yn A=0

can be reduced, as we shall see, to F, in an analogous way as A, is
derivable from A,.

VIII, § 3. A ONE-TO-ONE CORRESPONDENCE BETWEEN THE CLASS
OF ORDINALS AND THE CLASS OF ALL SETS

The axioms A4, and F, can be applied to set up a one-to-one
correspondence between the class of ordinals and the class of all
sets. For this purpose we start from a construction, due to von
Neumann, which is still independent of A, and F,.

We define

Df3.1 ¥ = 1({zy jy==(2)}, 0).
Then we have
3.1 Ft(¥), 4,¥ = {z ] Od(x)}
3.2 Trans(¥'x). 1)
The proof of 3.2 goes by transfinite induction. We have first
[1] Trans(0),
further
2] Trans(a) — Trans(z(a)),

which follows by
)Nrea—=>a2Ca) » @)()zCa&axez—sxCa)
— (2)(z € n(a) = 2z C n(a)),
and obviously also

[3] (x)(x € a = Trans(t(x))-—- Trans(>(a, t()))-

14
By [1], [2], [3] and Df 3.1 transfinite induction yields 3.2.

') As in chapt. VI1, §§ 2-4 we use in this section specialized variables
for ordinals.
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Moreover we get

3.3 Pi)=0, Pix € P’',
and by 3.2
3.4 P C¥P%'.

Further, since Fin(a) — Fin(n(a)), we have

3.5 Nu(x) = Fin(¥'x).
By VI, 1.10 we get

3.6 R(Plx) e X(Ph'),

which together with 3.4 gives

3.7 Yin C ¥,

Further from
Lim(l) &x el = P’ C P4

together with 3.3, 3.6, 3.7 we get

[cH. vIIx

Lim(A) &x el = Pla e P4 & VPla C PA & R(P'x) e R(P*4).

Hence by transfinite induction results

38  xef o WaePp & Pu C PP & R(Px) € R(PP).

We now definc

Df3.2 =A%,
by which we have
3.9 acll & (Ef)(ae PY¥).

We shall call an element of /7 briefly a Il-set. The class I7, as a
union of transitive sets, is a transitive class, i.e. every element of a

I-set is itself a Il-set:
3.10 aeh&bell » aell

The [7-sets are characterized as those which occur as elements
in some ¥ ; and the least x for which a 71-set a is in ¥ is called

the degree of a, formally

Df 3.3 dg(a) = p o € Pla).
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From this definition together with Df 3.1 the following properties
of dg(a) result:
3.11 a ¢ Il — dg(a)=0, a e ll— Suc(dg(a))
3.12 acll - aecPgla) & (£)a e V¢ o dgln) C &)
3.13 ach &bell —» dg(a) edg(d);
the last is proved in the following way:
aech &dgb)=a" = be ¥
— b e n(V')
- b C ¥
— dg(a) C .
By means of the concept dg(a) we still prove that every set of
IT-sets is itself a [l-set:
3.14 c*CHl—cell
For this we consider the class

{uv ju e c & v=dg(u)}.

This is a function with the domain ¢, thus the converse domain
is represented by a set d. Since d is a set of ordinals, 3¢ is an
ordinal ». Moreover we have

() (x € c = dgix) C»),
hence by 3.12
cC ¥
ce Py,
Now the existence of a one-to-one correspondence between

{z | Od(z)} and II results in the following way, using 4.
First we have in virtue of 3.5—3.7 and VII, 4.4

3.15 R(Pa)"R(P%) ~ Vo'~ Pl

Thus for every « the class { of one-to-one correspondences between
R(V'a'y R(¥P'x) and P'«’'~P'x is not empty. On the other hand
cach of these one-to-one correspondences is C R{(P') x ¥’
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therefore ' C #(X(P'«'y x P'x)* and hence C ig represented by
a set, which ig expressed by the i-term:

* = {2 | Crs(z) & Ayz = R(P'o")y " R(Via) & Adpz= Vo'~ P'n}.
Denoting it by 8(x) we have by 3.15
()50

a(8(x)) € 3(x).

and hence by 4,

Now we define
Df 3.4 = {u | (E&)(u e a(3(E))}

@ is evidently a pairclass; further it is a one-to-one correspon-
dence. This results from the formulas
11 xef = Pa'Pa N PP-VF = 0
(2] x€f = R(FP'YyR(WVix) N RPB)RPP) = 0,
which follow by a € — o« C 8 and 3.8.

The converse domain of @ is II. Namely first for every «,
(F'a'y* C 11, and on the other hand every element ¢ of I7 has a
degree which is a successor ' such that ¢ € ¥'a'~'¥'«. The domain

of O is {x ] Cd(x)}. For showing this it is sufiicient, in virtue of
x C R(V), to prove

(3] reR(¥hn) — (HE)Eea &r e R(PE)R(VE)).

This goes by transfinite induction with respect to «. Let [3] be
satisfied with x replaced by any » lower than «. In the cases
x =0 aud Sue(«) |3] is simply proved. In the case Lim(x) we have

Pl = S, ) - Do, Pl'~¥Pa),

hence T «
RX(Pix} - N(Z(Vx, Wir'-¥hr).
‘((z (o, RV R(¥Wx))) by[1].{2],3.15,V113.5,3.7;
,) . R(P"))) by our induction premise;
N(z R(Pa)))
: z(a R(¥'x)),
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since a sum of cardinals is a cardinal. Therefore if » ¢ X(¥'«)
then » is in some R(¥'f) with § € «, so that our induction premise

applies.
Thus on the whole we have
3.16 {z | Od(x)} Tel I1.
From the construction of @ it also follows that
3.17 acll &bell-—-dg(a) edg(d) — Ol c O%
and hence by 3.13
3.18 acll&bell —-acb — B'a c G%.

Now with the aid of the Fundierungsaxiom we come to state
that 7T is the class V of all sets. In fact we have

ceNIT=0=>c*CII
—c¢ el by 3.14
—>c ¢]_f,
hence
(Bx) (x e IT &2 N IT=0).
Therefore by 2.5

a¢ll
thus
3.19 (x)x € I)
and
3.20 {z | Od(x)}a1V.

With the help of the one-to-one correspondence @ we can
define o(4) in such a way that 4, 4; and F; become derivable.
Namely defining

Df3.5 o(4)=Ou(By)y € A & z=0'y),
we can prove
3.21 a) wted—->ad)ec A

b) A = B— ¢(4)=09(B)

3.22 a(d) N 4=0.
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Indeed denoting the u-term in Df 3.5 by n, we have
aeA— (By)y € 4 & n=0')
{1 sed—>nC 6.

The iirst formula gives

ncA—=>Oned

and thus 3.21 a) results. 3.21 b) is by Df 3.5 immediate. As to
3.22 we have

cecA)Nd—acen&ced
— O'cen &nC O by 3.18 and {1]
— &' ¢ Blc;

bt 9 ¢ G since G'c is an ordinal.

An immediate consequence of 3.20 is that every class 4 isin a onc-
to-one correspondence with a class of ordinals. Now by what we
stated at the end of V, § 3, this class of ordinals is either represented
or is in a one-to-one correspondence with {z | Od(x)}. In the
first. case A, by II, 3.8, is also represented and in the other case
a one-to-one correspondence between 4 and {x | Od(x)} and also
between 4 and V results. Thus we have the von Neumann state-
ment, already intended by Cantor, that for every non represented
class there is a one-to-one correspondence with {x § Od(z)}, so that
for every class there exista a wellorder. Formally we can express
the said theorem, with explicitly indicating the one-to-one corre-
spondence, by the formula (ef. IV, 3.3)

3.23 Rp(4) v ATg 51 {z | Cd(=)}.
% being  {xy §Sq(x) & 42* C R &y=p,(z € & &z ¢ 42)}
and § being {z ]| (Bu)(uecA & uyc O))

We add here a consideration concerning the form of the axiom
of choice used in the last reasonings of this section. 4, was applied
iwice, onee for the construction of the class @ and then implicitly
tn the proot of 3.19 by the application of 2.5, which was reduced
in the preceding section to A 7 by means of 4,.
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As we observed already, 2.5 can be derived from A 7 without
applying an axiom of choice. This goes using the construction of
I1, which essentially employs A 4. The derivation, due to Godel,
is as follows:

Firstly we prove anew Il = V, but using A 7 instead of 2.5.
By contraposition of 3.14 we get

1] a¢Il - (Ex)(xca &z ell);
by IIT, 4.8 we have

2] (b ea—bela*l) & Trans (la*])
and by [1] and [2]

[3] a¢I-la*InT+0.
Further by Trans (IEﬂ) we get

[4] bed &d ela*lnIT — b ela*]

and by once more applying 3.14
[5] d ela*In 1T - (Bx)zed & e I0).
The formulas [3], [4] and [5] together yield
[6] a¢ll-— ¥ InIT » 0& @)z ela*lnT—
— (Ez)(z € zn (le*]n I))).
By VI, 5.21 and II, 2.4 the class [a*] N I7 is represented by a
set. Application of A 7 to this set, together with [6], gives
[7] (x)x e ll) ie. II=

Now from IT = V it is easy to infer 2.5. Namely by the principle
of least ordinal and [7] we get

acd —» (Ex)xec 4 &(y)yed — dg(x) Cdgly)))
and by III,1.11 and 3.13

dg(b) C dg(c) — dg(c) ¢ dg(b)

—>c¢b.
Hence
ccd — (Ex)(xec A & (y)lyecd—yd¢x)),

what is the statement 2.5.
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